Effects of Standardized Natural Citrus Extract on Growth, Gut Health, Carcass Quality, and Welfare of Broiler Chickens
<p>Hock burn visual assessment (<a href="http://www.welfarequalitynetwork.net" target="_blank">http://www.welfarequalitynetwork.net</a> accessed on 13 November 2023).</p> "> Figure 2
<p>Transepithelial electrical resistance values from CTL and SNCE groups. *** <span class="html-italic">p</span> < 0.01.</p> ">
1. Introduction
2. Material and Methods
2.1. Ethics
2.2. Animals and Diet
2.3. Growth Parameters and Slaughter Performance Assessment
2.4. Gut Health
2.4.1. Short-Chain Fatty Acids (SCFA) Analysis
2.4.2. Jejunal Permeability and Health Status
2.4.3. Histopathological Examination
2.5. Welfare Assessment
2.5.1. Footpad Dermatitis
2.5.2. Litter Quality
2.5.3. Lameness (Gate Score)
2.5.4. Hock Burn
2.6. Statistical Analysis
3. Results
3.1. Growth Parameters and Slaughters Performance
3.2. Gut Health
3.3. Welfare Assessment
4. Discussion
4.1. Effect of SNCE on Growth Performance of Broilers Chickens
4.2. Effect of SNCE on Slaughter Performance
4.3. Effect of SNCE on Gut Health
4.4. Effect of SNCE on Welfare
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviation
C | Celsius |
CTL | control |
d | day |
EEI | European Efficiency Index |
FCR | feed conversion ration |
FPD | Footpad Dermatitis |
SCFA | Short-chain fatty acid |
SNCE | Standardized Natural Citrus Extract |
TEER | Transepithelial electrical resistance |
References
- Kwon, B.-Y.; Lee, H.-G.; Jeon, Y.-S.; Song, J.-Y.; Kim, S.-H.; Kim, D.-W.; Kim, C.-H.; Lee, K.-W. Research Note: Welfare and Stress Responses of Broiler Chickens Raised in Conventional and Animal Welfare-Certified Broiler Farms. Poult. Sci. 2024, 103, 103402. [Google Scholar] [CrossRef]
- Santos, M.N.; Widowski, T.M.; Kiarie, E.G.; Guerin, M.T.; Edwards, A.M.; Torrey, S. In Pursuit of a Better Broiler: Walking Ability and Incidence of Contact Dermatitis in Conventional and Slower Growing Strains of Broiler Chickens. Poult. Sci. 2022, 101, 101768. [Google Scholar] [CrossRef] [PubMed]
- Torrey, S.; Mohammadigheisar, M.; Nascimento dos Santos, M.; Rothschild, D.; Dawson, L.C.; Liu, Z.; Kiarie, E.G.; Edwards, A.M.; Mandell, I.; Karrow, N.; et al. In Pursuit of a Better Broiler: Growth, Efficiency, and Mortality of 16 Strains of Broiler Chickens. Poult. Sci. 2021, 100, 100955. [Google Scholar] [CrossRef] [PubMed]
- Knowles, T.G.; Kestin, S.C.; Haslam, S.M.; Brown, S.N.; Green, L.E.; Butterworth, A.; Pope, S.J.; Pfeiffer, D.; Nicol, C.J. Leg Disorders in Broiler Chickens: Prevalence, Risk Factors and Prevention. PLoS ONE 2008, 3, e1545. [Google Scholar] [CrossRef] [PubMed]
- Zuidhof, M.J.; Schneider, B.L.; Carney, V.L.; Korver, D.R.; Robinson, F.E. Growth, Efficiency, and Yield of Commercial Broilers from 1957, 1978, and 20051. Poult. Sci. 2014, 93, 2970–2982. [Google Scholar] [CrossRef]
- Hartcher, K.M.; Lum, H.K. Genetic Selection of Broilers and Welfare Consequences: A Review. Worlds Poult. Sci. J. 2020, 76, 154–167. [Google Scholar] [CrossRef]
- Fleming, R.H. Nutritional Factors Affecting Poultry Bone Health: Symposium on ‘Diet and Bone Health’. Proc. Nutr. Soc. 2008, 67, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Korver, D.R. Review: Current Challenges in Poultry Nutrition, Health, and Welfare. Animal 2023, 17, 100755. [Google Scholar] [CrossRef]
- Tallentire, C.W.; Edwards, S.A.; Van Limbergen, T.; Kyriazakis, I. The Challenge of Incorporating Animal Welfare in a Social Life Cycle Assessment Model of European Chicken Production. Int. J. Life Cycle Assess. 2019, 24, 1093–1104. [Google Scholar] [CrossRef]
- Ducatelle, R.; Goossens, E.; Eeckhaut, V.; Van Immerseel, F. Poultry Gut Health and Beyond. Anim. Nutr. 2023, 13, 240–248. [Google Scholar] [CrossRef]
- Amer, M.M. REVIEW: Footpad Dermatitis (FPD) in Chickens. Korean J. Food Health Converg. 2020, 6, 11–16. [Google Scholar] [CrossRef]
- Ayalew, H.; Zhang, H.; Wang, J.; Wu, S.; Qiu, K.; Qi, G.; Tekeste, A.; Wassie, T.; Chanie, D. Potential Feed Additives as Antibiotic Alternatives in Broiler Production. Front. Vet. Sci. 2022, 9, 916473. [Google Scholar] [CrossRef]
- Godoy, G.L.; Rodrigues, B.N.; Agilar, J.C.; Biselo, V.; Brutti, D.D.; Maysonnave, G.S.; Stefanello, C. Effects of Acacia mearnsii Tannins on Growth Performance, Footpad Dermatitis, Nutrient Digestibility, Intestinal Permeability, and Meat Quality of Broiler Chickens. Anim. Feed Sci. Technol. 2024, 308, 115875. [Google Scholar] [CrossRef]
- Makowski, Z.; Lipiński, K.; Mazur-Kuśnirek, M. The Effects of Different Forms of Butyric Acid on the Performance of Turkeys, Carcass Quality, Incidence of Footpad Dermatitis and Economic Efficiency. Animals 2022, 12, 1458. [Google Scholar] [CrossRef]
- Swiatkiewicz, S.; Arczewska-Wlosek, A.; Jozefiak, D. The Nutrition of Poultry as a Factor Affecting Litter Quality and Foot Pad Dermatitis—An Updated Review. J. Anim. Physiol. Anim. Nutr. 2017, 101, e14–e20. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, E. Nutritional Manipulations for Preventing Contact Dermatitis in Poultry—A Review. CABI Rev. 2024, 19. [Google Scholar] [CrossRef]
- Abbasi, H.; Seidavi, A.; Liu, W.; Asadpour, L. Investigation on the Effect of Different Levels of Dried Sweet Orange (Citrus sinensis) Pulp on Performance, Carcass Characteristics and Physiological and Biochemical Parameters in Broiler Chicken. Saudi J. Biol. Sci. 2015, 22, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Cisse, S.; Bahut, M.; Marais, C.; Zemb, O.; Chicoteau, P.; Benarbia, M.E.A.; Guilet, D. Fine Characterization and Microbiota Assessment as Keys to Understanding the Positive Effect of Standardized Natural Citrus Extract on Broiler Chickens. J. Anim. Sci. 2023, 101, skad069. [Google Scholar] [CrossRef]
- Juin, H.; Elgaard, T.; Chicoteau, P. Effect of a Citrus Extract (NOR-SPICE AB) on Broiler Performances. Br. Poult. Sci. 2003, 44, 810–811. [Google Scholar] [CrossRef] [PubMed]
- Seidavi, A.; Zaker-Esteghamati, H.; Salem, A.Z.M. A Review on Practical Applications of Citrus sinensis By-Products and Waste in Poultry Feeding. Agrofor. Syst. 2020, 94, 1581–1589. [Google Scholar] [CrossRef]
- Bui, H.; Cisse, S.H.; Ceccaldi, M.; Perrin, A.; Benarbia, M.E.A.; Chicoteau, P. Mitigating the Environmental Impacts from Pig and Broiler Chicken Productions: Case Study on a Citrus Extract Feed Additive. Animals 2023, 13, 3702. [Google Scholar] [CrossRef] [PubMed]
- Michalczuk, M.; Zdanowska-Sąsiadek, Ż.; Damaziak, K.; Niemiec, J. Influence of Indoor and Outdoor Systems on Meat Quality of Slow-Growing Chickens. CyTA—J. Food 2017, 15, 15–20. [Google Scholar] [CrossRef]
- Ruhnke, I.; Röhe, I.; Meyer, W.; Kröger, S.; Neumann, K.; Zentek, J. Method for the Preparation of Mucosal Flaps from the Jejunum of Laying Hens for Transporter Studies in Ussing Chambers. Arch. Anim. Nutr. 2013, 67, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Boumezrag, A.; Khiati, B.; Benaraba, R.; Boukraa, L.; Hammoudi, S.M.; Chicoteau, P.; Benarbia, M.E.A. Modulation of Broilers’ Productivity and Blood Biochemical Parameters by Citruselements Dietary Supplementation. Veterinaria 2018, 67, 129. [Google Scholar]
- Cisse, S.; Burel, A.; Vandenbossche, C.; Chicoteau, P. Standardized Natural Citrus Extract Effect on Broilers Chikens; OASES: Ghent, Belgium, 2019; Volume 25, p. 176.
- Mourão, J.L.; Pinheiro, V.M.; Prates, J.a.M.; Bessa, R.J.B.; Ferreira, L.M.A.; Fontes, C.M.G.A.; Ponte, P.I.P. Effect of Dietary Dehydrated Pasture and Citrus Pulp on the Performance and Meat Quality of Broiler Chickens. Poult. Sci. 2008, 87, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Nazok, A.; Rezaei, M.; Sayyahzadeh, H. Effect of Different Levels of Dried Citrus Pulp on Performance, Egg Quality, and Blood Parameters of Laying Hens in Early Phase of Production. Trop. Anim. Health Prod. 2010, 42, 737–742. [Google Scholar] [CrossRef]
- Fernandes, J.I.M.; Bortoluzzi, C.; Triques, G.E.; Neto, A.F.G.; Peiter, D.C. Effect of Strain, Sex and Age on Carcass Parameters of Broilers. Acta Sci. Anim. Sci. 2013, 35, 99–105. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Qotbi, A.A.A.; Seidavi, A.; Bahar, B. The Effects of Dietary Supplementation of Citrus Sinensis Peel Extract on Production and Quality Parameters of Broiler Chicken. J. Appl. Anim. Res. 2014, 42, 445–450. [Google Scholar] [CrossRef]
- Tumová, E.; Teimouri, A. Fat deposition in the broiler chicken: A review. Sci. Agric. Bohem. 2010, 41, 121–128. [Google Scholar]
- Pourhossein, Z.; Qotbi, A.; Seidavi, A. Investigation on the Effects of Different Levels of Citrus Sinensis Peel Extract on Gastrointestinal Microbial Population in Commercial Broilers. Afr. J. Microbiol. Res. 2012, 6, 6370–6378. [Google Scholar] [CrossRef]
- Cisse, S.; Benarbia, M.E.A.; Burel, A.; Friedrich, M.; Gabinaud, B.; Belz, É.; Guilet, D.; Chicoteau, P.; Zemb, O. Standardized Natural Citrus Extract Dietary Supplementation Influences Sows’ Microbiota, Welfare, and Preweaning Piglets’ Performances in Commercial Rearing Conditions. Transl. Anim. Sci. 2020, 4, 1278–1289. [Google Scholar] [CrossRef]
- Liu, L.; Li, Q.; Yang, Y.; Guo, A. Biological Function of Short-Chain Fatty Acids and Its Regulation on Intestinal Health of Poultry. Front. Vet. Sci. 2021, 8, 736739. [Google Scholar] [CrossRef] [PubMed]
- Gullón, B.; Gómez, B.; Martínez-Sabajanes, M.; Yáñez, R.; Parajó, J.C.; Alonso, J.L. Pectic Oligosaccharides: Manufacture and Functional Properties. Trends Food Sci. Technol. 2013, 30, 153–161. [Google Scholar] [CrossRef]
- Hager-Theodorides, A.L.; Massouras, T.; Simitzis, P.E.; Moschou, K.; Zoidis, E.; Sfakianaki, E.; Politi, K.; Charismiadou, M.; Goliomytis, M.; Deligeorgis, S. Hesperidin and Naringin Improve Broiler Meat Fatty Acid Profile and Modulate the Expression of Genes Involved in Fatty Acid β-Oxidation and Antioxidant Defense in a Dose Dependent Manner. Foods 2021, 10, 739. [Google Scholar] [CrossRef] [PubMed]
- Unno, T.; Hisada, T.; Takahashi, S. Hesperetin Modifies the Composition of Fecal Microbiota and Increases Cecal Levels of Short-Chain Fatty Acids in Rats. J. Agric. Food Chem. 2015, 63, 7952–7957. [Google Scholar] [CrossRef] [PubMed]
- Cisse, S.; Laurain, J.; Garcia, J.M.; Benarbia, M. Standardized Natural Citrus Extract Stimulates the Production of Endogenous Butyric Acid in the Gut. In Proceedings of the XVI European Poultry Conference 2024 (EPC), Valencia, Spain, 24–28 June 2024; p. 274. [Google Scholar]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef]
- Markowiak-Kopeć, P.; Śliżewska, K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 2020, 12, 1107. [Google Scholar] [CrossRef]
- Sztandarski, P.; Marchewka, J.; Konieczka, P.; Zdanowska-Sąsiadek, Ż.; Damaziak, K.; Riber, A.B.; Gunnarsson, S.; Horbańczuk, J.O. Gut Microbiota Activity in Chickens from Two Genetic Lines and with Outdoor-Preferring, Moderate-Preferring, and Indoor-Preferring Ranging Profiles. Poult. Sci. 2022, 101, 102039. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, B.; Kolli, A.R.; Esch, M.B.; Abaci, H.E.; Shuler, M.L.; Hickman, J.J. TEER Measurement Techniques for in Vitro Barrier Model Systems. J. Lab. Autom. 2015, 20, 107. [Google Scholar] [CrossRef]
- Yuan, L.; van der Mei, H.C.; Busscher, H.J.; Peterson, B.W. Two-Stage Interpretation of Changes in TEER of Intestinal Epithelial Layers Protected by Adhering Bifidobacteria During E. coli Challenges. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Cardoso Dal Pont, G.; Farnell, M.; Farnell, Y.; Kogut, M.H. Dietary Factors as Triggers of Low-Grade Chronic Intestinal Inflammation in Poultry. Microorganisms 2020, 8, 139. [Google Scholar] [CrossRef] [PubMed]
- Kogut, M.H.; Genovese, K.J.; Swaggerty, C.L.; He, H.; Broom, L. Inflammatory Phenotypes in the Intestine of Poultry: Not All Inflammation Is Created Equal. Poult. Sci. 2018, 97, 2339–2346. [Google Scholar] [CrossRef] [PubMed]
- Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and Anti-Inflammatory Properties of the Citrus Flavonoids Hesperidin and Hesperetin: An Updated Review of Their Molecular Mechanisms and Experimental Models. Phytother. Res. PTR 2015, 29, 323–331. [Google Scholar] [CrossRef]
- Rustam, M.; Ifora, I.; Fauziah, F. Potential Anti-Inflammatory Effects of Eriocitrin: A Review. J. Drug Deliv. Ther. 2022, 12, 187–192. [Google Scholar] [CrossRef]
- Singh, S.K.; Kaldate, R.; Bisht, A. Chapter 4.5—Citric Acid, Antioxidant Effects in Health. In Antioxidants Effects in Health; Nabavi, S.M., Silva, A.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 309–322. ISBN 978-0-12-819096-8. [Google Scholar]
- Ahmed, R.M. The Effect of Different Dietary and Management Interventions on Aspects of Foot Health, Gut Function and Litter Microbiome Composition in Growing Poultry. Master’s Thesis, University of Reading, Reading, UK, 2021. [Google Scholar]
- Nagaraj, M.; Wilson, C.A.P.; Saenmahayak, B.; Hess, J.B.; Bilgili, S.F. Efficacy of a Litter Amendment to Reduce Pododermatitis in Broiler Chickens1. J. Appl. Poult. Res. 2007, 16, 255–261. [Google Scholar] [CrossRef]
- Greene, J.A.; McCracken, R.M.; Evans, R.T. A Contact Dermatitis of Broilers -Clinical and Pathological Findings. Avian Pathol. J. WVPA 1985, 14, 23–38. [Google Scholar] [CrossRef] [PubMed]
Components | Starter (1–10 d) (kg) | Grower (11–27 d) (kg) | Finisher (28–35 d) (kg) |
---|---|---|---|
Corn 8.2% | 20 | 20 | 20 |
Wheat 11.5% | 41.741 | 42.513 | 35.751 |
Triticale 10.5% | - | - | 10 |
Soybean meal 46% | 28.159 | 25.369 | 21.554 |
Rapeseed meal 35% | 4 | 5 | 5 |
Soybean oil | 2.315 | 4.013 | 4.773 |
L-lysine 78% | 0.419 | 0.36 | 0.347 |
DL-methionine 98% | 0.311 | 0.196 | 0.218 |
L-threonine 98% | 0.141 | 0.091 | 0.108 |
Limestone | 1.47 | 1.133 | 1.121 |
Mono-calcium phosphate | 0.843 | 0.723 | 0.522 |
Salt | 0.324 | 0.326 | 0.329 |
Vitamin–mineral premixture 1 | 0.25 | 0.25 | 0.25 |
Xylanase (Ronozyme WX, DSM, La Garenne-Colombes, France) | 0.012 | 0.012 | 0.012 |
Phytase (Axtra ® PHY GOLD, IFF-Danisco Animal Nutrition and Health, Brabrand, Denmark) | 0.015 | 0.015 | 0.015 |
Total (kg) | 100 | 100 | 100 |
ME (kcal/kg) | 2950 | 3100 | 3150 |
Neutral detergent fiber (%) | 3.43 | 3.43 | 3.31 |
Crude protein (%) | 21.5 | 20.5 | 19 |
Total lysine (g/kg) | 13.5 | 12.5 | 11.5 |
Total methionine (g/kg) | 6.21 | 5 | 5.02 |
Met. + Cys. (g/kg) | 10 | 8.7 | 8.5 |
Total threonine (g/kg) | 9 | 8.2 | 7.8 |
Total tryptophan (g/kg) | 2.55 | 2.43 | 2.23 |
Total arginine (g/kg) | 13.35 | 12.68 | 11.58 |
Calcium (g/kg) | 10 | 8.5 | 8 |
Phosphorus (g/kg) | 6.87 | 6.55 | 5.89 |
Avail. phosphorus (g/kg) | 4.8 | 4.5 | 4 |
Sodium (g/kg) | 1.5 | 1.5 | 1.5 |
Chloride (g/kg) | 3.3 | 3.18 | 3.11 |
1 Provided per kilogram of diet: Vitamin A (E 672): 10.000 IU; Vitamin D3 (E 671): 4.000 IU; Vitamin E (a-tocopherol): 15.0 mg; Vitamin K3: 3.0 mg; Vitamin B1: 2.0 mg; Vitamin B2: 5.0 mg; Vitamin B6: 4.0 mg; Vitamin B12: 11.0 µg; Nicotinic acid: 40.0 mg; Calcium pantothenate: 12.0 mg; Folic acid: 2.0 mg; Biotin: 0.18 mg; Cu: 8.0 mg; Fe: 50.0 mg; I: 2 mg; Mn: 70.0 mg; Se: 0.15 mg; Zn: 80.0 mg. | 1 Provided per kilogram of diet: Vitamin A (E 672): 10.000 IU; Vitamin D3 (E 671): 4.000 IU; Vitamin E (a-tocopherol): 15.0 mg; Vitamin K3: 3.0 mg; Vitamin B1: 2.0 mg; Vitamin B2: 5.0 mg; Vitamin B6: 4.0 mg; Vitamin B12: 11.0 µg; Nicotinic acid: 40.0 mg; Calcium pantothenate: 12.0 mg; Folic acid: 2.0 mg; Biotin: 0.18 mg; Cu: 8.0 mg; Fe: 50.0 mg; I: 2 mg; Mn: 70.0 mg; Se: 0.15 mg; Zn: 80.0 mg. | 1 Provided per kilogram of diet: Vitamin A (E 672): 10.000 IU; Vitamin D3 (E 671): 4.000 IU; Vitamin E (a-tocopherol): 10.0 mg; Vitamin K3: 3.0 mg; Vitamin B1: 2.0 mg; Vitamin B2: 5.0 mg; Vitamin B6: 4.0 mg; Vitamin B12: 11.0 µg; Nicotinic acid: 40.0 mg; Calcium pantothenate: 12.0 mg; Folic acid: 2.0 mg; Biotin: 0.18 mg; Cu: 8.0 mg; Fe: 50.0 mg; I: 2 mg; Mn: 70.0 mg; Se: 0.15 mg; Zn: 80.0 mg. |
Score | 0 | 1 | 2 |
---|---|---|---|
Description | No evidence of FPD | Minimal evidence of FPD, superficial lesions, discolouration no more than 0.5 cm in diameter | Deep lesions with scab and ulceration, discoloration of 0.5 cm in diameter and larger |
Picture |
Score | Description |
---|---|
0 | Completely dry and flaky, i.e., moves easily with the foot |
1 | Dry but not easy to move with the foot |
2 | Leaves imprint of foot and will form a ball if compacted, but the ball does not stay together well |
3 | Sticks to boots and sticks readily in a ball if compacted |
4 | Sticks to boots once the cap or compacted crust is broken |
Score | Gate Description |
---|---|
0 | Gate is smooth and the animal maintains balance while moving |
1 | Gate is irregular, unable to determine which leg is inoperative |
2 | Gate is irregular, the bird’s stride is shortened, and the chicken partially uses its wings for balance |
3 | Similarly to score 2, but the bird moves reluctantly and cannot stand for more than 15 s and lies down after a series of steps |
4 | The bird is reluctant to move and can only take a few steps in a series, the bird only keeps its balance with the constant help of its wings |
5 | Bird is unable to take a single step, even when forced to |
Score | Description |
---|---|
0 | No evidence of hock burn (score ‘0’) |
1 | Minimal evidence of hock burn (score ‘1’ and ‘2’) |
2 | Evidence of hock burn (score ‘3’ and ‘4’) |
Parameters (d35) | Group | p Value | |||
---|---|---|---|---|---|
CTL | SD | SNCE | SD | ||
Body weight [g] | 2201.83 | 158.20 | 2364.34 | 43.93 | 0.001 |
FI/broiler [g] | 3096.24 | 118.12 | 3281.44 | 84.57 | <0.001 |
FCR [kg kg−1] | 1.44 | 0.08 | 1.42 | 0.03 | 0.340 |
Mortality [%] | 3.03 | 3.08 | 2.75 | 1.56 | 0.761 |
EEI [points] | 426.31 | 24.61 | 461.24 | 13.67 | <0.001 |
Parameters | Groups | p Value | |||
---|---|---|---|---|---|
CTL | SD | SNCE | SD | ||
Carcass weight [g] | 1562.8 | 59.7 | 1639.6 | 75.9 | <0.001 |
Carcass yield [%] | 69.1 | 1.6 | 70.6 | 2.1 | 0.094 |
Breast muscles [g/100 g BW] | 19.3 | 1.7 | 21.3 | 1.3 | 0.009 |
Drumstick [g/100 g BW] | 13.0 | 0.9 | 12.6 | 1.9 | 0.526 |
Liver [g/100 g BW] | 2.39 | 0.26 | 2.33 | 0.24 | 0.593 |
Gizzard [g/100 g BW] | 0.69 | 0.07 | 0.67 | 0.14 | 0.727 |
Heart [g/100 g BW] | 0.57 | 0.09 | 0.62 | 0.12 | 0.265 |
Fat [g/100 g BW] | 1.36 | 0.28 | 1.08 | 0.24 | 0.025 |
Parameters | Group | p Value | |||
---|---|---|---|---|---|
[mM/g Caecal Digesta] | CTL | SD | SNCE | SD | |
Acetic | 3.92 | 0.78 | 4.17 | 1.00 | 0.382 |
Propionic | 0.50 | 0.15 | 0.57 | 0.19 | 0.250 |
Iso-butyric | 0.08 | 0.03 | 0.06 | 0.02 | 0.037 |
Butyric | 0.94 | 0.29 | 0.88 | 0.27 | 0.467 |
Iso-valeric | 0.11 | 0.04 | 0.07 | 0.02 | 0.003 |
Valeric | 0.10 | 0.03 | 0.08 | 0.03 | 0.067 |
Total SCFA | 5.62 | 1.09 | 5.86 | 1.39 | 0.547 |
Putrefactive SCFA | 0.19 | 0.07 | 0.13 | 0.03 | 0.003 |
Observations | Picture 40× | Picture 400× | |
---|---|---|---|
Samples from the CTL group | Inflammatory cellular infiltrates in the mucosa (with the participation of heterophils) Single mitotic figures in crypt epithelial cells Connective tissue hyperplasia | ||
SNCE group | Scant infiltration of inflammatory cells in the mucosa (with the participation of heterophils) and the formation of individual lymphatic nodules Numerous goblet cells/heavily filled with mucus Vesicular nuclei of intestinal crypt epithelial cells; numerous mitotic figures | ||
Parameters | Score | Group | p Value | |||
---|---|---|---|---|---|---|
CTL | SNCE | |||||
n | % | n | % | |||
Footpad Dermatitis | 0 | 278 | 79.2 | 343 | 96.9 | |
1 | 59 | 16.8 | 11 | 3.1 | ||
2 | 14 | 4.0 | 0 | 0.0 | <0.001 | |
Hock burn | 0 | 329 | 93.7 | 317 | 89.6 | |
1 | 22 | 6.3 | 37 | 10.4 | 0.084 | |
Gate score (lameness) | 0 | 298 | 84.9 | 343 | 96.9 | |
1 | 53 | 15.1 | 11 | 3.1 | <0.001 | |
Litter quality | 0 | 17 | 24.3 | 16 | 24.6 | |
1 | 33 | 47.1 | 21 | 32.3 | ||
2 | 20 | 28.6 | 28 | 43.1 | 0.146 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cisse, S.; Matuszewski, A.; Bień, D.; Ciborowska, P.; Zalewska, A.; Urban, J.; Michalczuk, M.; Mendel, M.; Latek, U.; Polak, J.; et al. Effects of Standardized Natural Citrus Extract on Growth, Gut Health, Carcass Quality, and Welfare of Broiler Chickens. Animals 2025, 15, 127. https://doi.org/10.3390/ani15020127
Cisse S, Matuszewski A, Bień D, Ciborowska P, Zalewska A, Urban J, Michalczuk M, Mendel M, Latek U, Polak J, et al. Effects of Standardized Natural Citrus Extract on Growth, Gut Health, Carcass Quality, and Welfare of Broiler Chickens. Animals. 2025; 15(2):127. https://doi.org/10.3390/ani15020127
Chicago/Turabian StyleCisse, Sekhou, Arkadiusz Matuszewski, Damian Bień, Patrycja Ciborowska, Anna Zalewska, Jakub Urban, Monika Michalczuk, Marta Mendel, Urszula Latek, Joanna Polak, and et al. 2025. "Effects of Standardized Natural Citrus Extract on Growth, Gut Health, Carcass Quality, and Welfare of Broiler Chickens" Animals 15, no. 2: 127. https://doi.org/10.3390/ani15020127
APA StyleCisse, S., Matuszewski, A., Bień, D., Ciborowska, P., Zalewska, A., Urban, J., Michalczuk, M., Mendel, M., Latek, U., Polak, J., Sobczak-Filipiak, M., Konieczka, P., & Benarbia, M. E. A. (2025). Effects of Standardized Natural Citrus Extract on Growth, Gut Health, Carcass Quality, and Welfare of Broiler Chickens. Animals, 15(2), 127. https://doi.org/10.3390/ani15020127