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Simple Summary: The current state of knowledge regarding the impact of climate on
the number, weight, and size of female red king crabs in the Barents Sea is insufficient
for drawing any conclusions. In this study, we examined the relationship between long-
term fluctuations in female stock indices and the average weight of an individual crab, as
well as temperature conditions. Our analysis demonstrated a robust correlation between
these variables at varying time lags (6–10 years), supporting the hypothesis that female
maturation occurs more rapidly during periods of elevated temperatures. Our findings
indicate that warmer water conditions are conducive to the survival and growth of young
crabs. The most significant factors influencing female abundance and biomass are seawater
temperatures between June and August. Our findings could prove valuable for fishery
managers in anticipating periods of high crab productivity and abundance, as well as for
coastal managers in predicting abundance fluctuations of red king crab in the Barents Sea.

Abstract: Stock–recruitment relationships depend on the total abundance of females, their
fecundity, and patterns of their maturation. However, the effects of climatic conditions on
the abundance, biomass, and mean weight of female red king crabs, Paralithodes camtschati-
cus, from the introduced population (Barents Sea) have not yet been studied. For this
reason, we analyzed long-term fluctuations in stock indices and the average weight of
an individual crab in a small bay of the Barents Sea and related these parameters to the
dynamics of temperature conditions (temperature in January–December, mean yearly tem-
perature, and temperature anomaly) in the sea. The average weight of a crab at age 6–9 had
strong negative correlations with water temperature at lags 8 and 9, indicating faster female
maturation in warm periods. Positive relationships were registered between temperature
and stock indices for 15–19-year-old females at lag 4 and for 10–14-year-old females at lag
10, supporting the idea of higher survival rates of juveniles and their rapid development
being a response to a pool of warm waters. Both redundancy and correlation analyses
revealed seawater temperatures in June–August being the most important predictors of
female abundance and biomass, indicating that favorable temperature conditions in the
first 3 months of crab benthic life result in high survivorship rates for red king crabs.

Keywords: red king crab; females; Barents Sea; temperature conditions; climate; abundance

1. Introduction
The red king crab, Paralithodes camtschaticus (Tilesius, 1815), is an important species

in terms of its commercial value and the ecological role it plays in benthic communities
throughout its native areas in the western and eastern Bering Sea, USA, and the Sea of
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Okhotsk, Russia [1]. The success of red king fisheries in native habitats initiated Soviet
scientists to introduce this lithodid crab into the Barents Sea. Although this region is
known to have high productivity owing to interactions between cold Arctic and warm
Atlantic waters and a wide range of environmental conditions [2–5], there are no native
commercially important crab species here. The transoceanic introduction experiment
conducted in the 1960s was successful, and the establishment of a new self-sustaining
population of red king crab in the Barents Sea was reported in the mid-1990s. For this
reason, a Russian–Norwegian joint research fishery for P. camtschaticus occurred from 1994
to 2001 [6]. Commercial fisheries were opened in 2002 in Norwegian and in 2004 in Russian
waters of the Barents Sea [1]. The red king crab supports a viable fishery with annual
stocks (landings) accounting for 199, 192, and 159 thousand metric tons (11,629, 12,529, and
10,420 t) in 2021, 2022, and 2023, respectively [7–9].

The population dynamics of the Barents Sea red king crab have been extensively
studied, owing to the species’ invasive status and high commercial importance [1,10–17].
Many factors affect the development and distribution of crustaceans [18]. Among these,
climatic fluctuations play an important role in the functioning of benthic communities in the
Arctic regions [19–23]. Some studies indicate that the biomass of the Barents Sea benthos
may fluctuate considerably in response to large-scale climatic forcing [24–26], providing
evidence that both abundance and biomass of the whole bottom community and/or its
members or groups may be used as indicators of climate change [5]. Recent investigations
have documented pronounced climatic shifts in the Arctic seas with a warming trend
starting in the early 2000s [27–29]. Climatic variations in the Barents Sea can be detected as
a series of temperature anomalies along standard transects of the sea [30,31].

The response of commercially important species to changing climate may vary widely
because of exploitation pressure and other direct and indirect effects of environmental
variations [32,33]. Recently, we analyzed inter-annual fluctuations in the total number of
recruits and commercially sized male red king crabs and found some correlations between
these indices and environmental factors, such as water temperature and the North Atlantic
oscillation and Arctic oscillation, with time lags [34]. We concluded that the abundance
of males is a poor indicator of climate shift because of fishing pressure on this group. In
contrast, both the abundance and biomass of juvenile red king crabs have been shown
to relate to environmental factors such as water temperature and temperature anomalies,
as well as to cod predation. These correlations can vary significantly depending on the
age group of juvenile red king crabs [21]. At the same time, the relationships between
environmental factors and stock indices of adult female red king crabs in the Barents Sea are
far less evident. Females are considered to be the most important functional groups in each
red king crab population because their number and individual fecundity directly affect the
number of released larvae, the number of juvenile crabs, and, therefore, the commercial
stock in the area [35].

In the coastal Barents Sea, the abundance of egg-bearing females in some years may
reach 19,000,000 individuals, with mean catch per unit efforts (CPUEs) for these females
ranging from 1.9 to 7.3 individuals per pot [16]. Although time-series analysis has demon-
strated that the introduction of red king crab and their subsequent population growth
have not adversely affected local fish and shellfish stocks [36], negative consequences for
coastal benthic communities associated with increased crab abundance have been observed.
These consequences include a reduction in species diversity, habitat disturbance, and a
simplification of benthic community structure [37–42].

Thus, knowledge about relationships between environmental drivers and stock indices
of adult female red king crabs could have important implications, not only for crab fishery
management, but also for the prediction of possible changes in benthic communities
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associated with feeding activity of the crabs and their competition for food with native
inhabitants. For this reason, the aim of our paper was to investigate the effect of temperature
conditions on the abundance characteristics of female red king crabs in a typical bay of the
Barents Sea.

2. Material and Methods
2.1. Red King Crab Stock Indices

Red king crabs were caught by divers at depths of 8–40 m in Dalnezelenetskaya Bay in
July–August, 2003–2017. A detailed description of the study area is presented in previous
papers [43–45].

Each crab was sexed and weighed and the carapace length (CL, the straight-line
distance across the carapace from the posterior margin of the right eye orbit to the medial-
posterior margin of the carapace) was measured using calipers. In our study, we considered
adult female red king crabs. The crabs were divided into three age groups: 6–9-year-olds
(95–125 mm CL), 10–14-year-olds (126–150 mm CL), and 15–19-year-olds (151–170 mm CL),
according to published size-at-age data [14,35,46,47].

The area of the bay was divided into several parts with the same types of biological
communities (benthic organisms living on hard and soft grounds, kelps, and sand). A
standardized transect grid comprising 10 to 25 transects was established to encompass a
diverse range of depths (from 3 to 42 m) and various types of benthic communities [12,21].
When duplicate transects were analyzed, the obtained values were averaged to ensure
reliable representations of the data. The number of crabs and their biomass on each transect
line (observation width: 15 m) were used to estimate the total abundance (the total number
of crabs) and the total biomass using a spline approximation method (the approximate
representation of a function in a given class from incomplete information using splines)
with the Chartmaster Software Tool ver. 1.0 [48]. In addition to the stock indices, the
analyses were also applied for averaged individual weights (g) of different aged crabs.

2.2. Environmental Data

It is accepted that climatic conditions of the southern Barents Sea are determined by
temperature characteristics of Murmansk coastal waters (stations 1–3 of the standard tran-
sect called “Kola Section” 33◦30′ E, 69◦–78◦ N, 0–200 m depth). Mean seawater temperature
in the Kola Section (averaged month values for each year and the averaged year value
for 50–200 m depths, which reflects near-bottom temperatures) in 1984–2017 and data on
temperature anomaly in the section were derived from a long-term dataset collected by
Polar Research Institute of Marine Fisheries and Oceanography (www.pinro.ru accessed
on 20 March 2018). The calculation of anomaly values involved the subtraction of the
mean from 1951 to 2017 from the original data and dividing the result by the standard
deviation. Initially, we also tested the North Atlantic oscillation indices and salinity data as
environmental predictors of the red king crab stock indices, but these factors had no effects
on P. camtschaticus females and were excluded from further consideration.

2.3. Data Analysis

Firstly, we calculated simple pairwise correlations (Pearson’s correlation coefficient)
between crab abundance indices and environmental factors. We used both data for the
current year and data with time lags of up to 19 years according to the maximum age
of a female crab in our study. The normality and homogeneity of variances were tested
before performing the statistical analyses. The assumption of homogeneity of variance
was verified using Levene’s test and the assumption of normality was verified using the
Shapiro–Wilk test. The Benjamini–Hochberg procedure was used to correct p-values for

www.pinro.ru


Animals 2025, 15, 99 4 of 15

multiple testing [49]. In each case, the total number of tests was 14 and a false discovery rate
was set at 10%. Since simple correlation overstates the significance of associations in the
case of significant autocorrelation in time-series data [50], we tested the data for temporal
autocorrelations using the Box–Pierce test and found that the p-values were higher than the
critical value of 0.05.

Secondly, to analyze the complex factor loadings and for visualization of our results,
we used multivariate techniques. The influence of water temperature between 50 and
200 m depth on the biomass of females at different ages was examined using redundancy
analysis (RDA). Biomass was used as a metric instead of abundance because this parameter
explained a higher proportion of the total variation. RDA is an analytical tool that explicitly
models response variables as a function of explanatory variables [51]. This approach can
be applied to assess the effects of environmental variables on the stock characteristics of
red king crabs. This method was used because a preliminary detrended correspondence
analysis showed that the lengths of gradient were all less than 3 [52]. The graphical output
of RDA consists of a simple biplot showing the associations between the quantitative
explanatory variables and the response variables. This analysis was applied only to the
dataset for which the correlation analyses indicated significant results. Prior to RDA,
quantitative data were log-transformed.

Correlation testing and redundancy analyses were carried out with the PAST 3.26 and
CANOCO 4.5 software packages.

3. Results
3.1. Environmental Conditions

During the period of 1984–2017, temperature conditions varied strongly in the south-
ern Barents Sea. Monthly and mean temperature values as well as temperature anomalies
are presented in Figure 1.
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Animals 2025, 15, 99 5 of 15

March and April were the coldest months, while October and November were the
warmest, at a depth of 50–200 m. A warming trend in the Barents Sea began to be registered
in 1989 when negative temperature anomalies were reversed and the mean temperature
increased by 1 ◦C in comparison to previous years. At the beginning of the twenty-first
century, the advection of the North Atlantic current continued to increase. In the Barents
Sea, the warm temperature anomaly peaked (0.86) in 2006, followed by a decrease in the
next years (Figure 2).

A second peak (1.14) was registered in 2012. During the subsequent years, water tem-
perature anomalies remained high (0.52–1.1). The highest levels of seawater temperature
in the Kola section were found in 2006, 2012, 2016, and 2017, reaching 5.08, 5.36, 5.32, and
5.15 ◦C, respectively.
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Figure 2. Variations in female red king crab stock indices and mean weight over 2003–2017.
Ab—abundance (thousand crabs), Bm—biomass (metric tons), W—weight (kg). 1—aged 6–9 years,
2—aged 10–14 years, 3—aged 15–19 years.

3.2. Red King Crab Stock Indices

During the study period, the 6–9-year-old group had the lowest abundance among
adult female red king crabs. The maximum abundance of 725 crabs (biomass 0.84 t) was
registered in 2010, while intermediate numbers of 400 crabs (0.4–0.6 t) were found in 2003,
2005, and 2011. The mean weight increased from 1.03 kg in 2003 to a maximum of 1.43 in
2005. A decreasing trend was registered in subsequent years, with a minimum value of
0.59 kg found in 2016.

A total of three peaks were registered in the abundance and biomass of P. camtschaticus
at ages 10–14. These peaks occurred almost every 6 years across the study period: in 2005
(4415 crabs, 8.05 t), in 2011 (3460 crabs, 5.99 t), and in 2017 (6835 crabs, 12.78 t). The mean
weight of a female increased from 1.57 kg in 2003 to 1.90 kg in 2006, then decreased to
1.58 kg in 2010, before increasing again to 1.87 kg in 2017.
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The abundance and biomass of 15–19-year-old females were the similar between 2005
and 2009 (150–170 crabs, 0.35–0.41 t). A sharp increase in these indices was observed in
2010 (1030 crabs, 2.29 t). Over the next 3 years, the parameters decreased to the initial levels
and increased again to 900–1000 crabs or 2.15–2.18 t in 2016–2017. The mean weight of a
crab in this group decreased from 2.56 kg in 2004 to 2.10 in 2007. A smooth increase was
observed in the next 4 years. In 2012–2015, mean weights were stable (2.40–2.45 kg) but a
lower value (2.04 kg) was observed in 2013.

3.3. Relationships Between Crab Abundance and Environmental Variables

In the case of the 6–9-year-old group, correlation analyses indicated no significant
associations between stock indices and environmental variables, while strong negative
relationships were registered for the average weight of a crab from this group at time lags 8
and 9 years (Table 1).

Table 1. Correlation coefficients (r) between red king crab abundance, stock and weight characteristics,
and environmental conditions in the Barents Sea in 2003–2017.

Parameter Ab1 Ab2 Ab3 Bm1 Bm2 Bm3 W1 W2 W3

Lag 4
T1 0.104 0.333 0.501 0.127 0.312 0.508 −0.211 −0.154 0.261
T2 0.281 0.408 0.524 0.298 0.388 0.532 −0.055 −0.108 0.359
T3 0.360 0.366 0.514 0.375 0.349 0.522 0.010 −0.067 0.283
T4 0.242 0.306 0.546 0.255 0.293 0.556 −0.142 0.043 0.256
T5 0.089 0.203 0.556 0.102 0.187 0.554 0.000 0.002 0.018
T6 0.168 0.260 0.643 0.167 0.245 0.637 0.107 0.063 −0.130
T7 −0.151 −0.116 0.435 −0.223 −0.130 0.425 −0.292 −0.152 −0.257
T8 −0.149 −0.014 0.466 −0.217 −0.031 0.447 −0.330 −0.220 −0.445
T9 −0.427 −0.280 0.041 −0.464 −0.278 0.027 −0.463 0.161 −0.490

T10 −0.173 −0.184 0.248 −0.220 −0.186 0.228 −0.261 0.060 −0.602
T11 −0.042 0.348 0.476 −0.147 0.355 0.473 −0.471 0.065 −0.246
T12 0.129 0.012 0.141 0.039 0.013 0.137 0.187 −0.224 −0.261
T 0.024 0.444 0.739 −0.029 0.423 0.743 −0.373 −0.059 0.024
Ta 0.024 0.444 0.739 −0.029 0.423 0.743 −0.373 −0.059 0.024

Lag 8
T1 −0.380 0.003 0.076 −0.423 0.022 0.094 −0.717 0.176 0.057
T2 −0.408 −0.022 0.063 −0.458 −0.010 0.081 −0.701 0.022 0.061
T3 −0.336 0.013 0.161 −0.393 0.022 0.178 −0.666 −0.007 0.078
T4 −0.194 0.050 0.267 −0.273 0.045 0.282 −0.649 −0.192 0.109
T5 −0.070 0.043 0.310 −0.128 0.038 0.322 −0.593 −0.173 0.105
T6 −0.120 0.103 0.367 −0.172 0.096 0.375 −0.638 −0.183 −0.006
T7 −0.104 0.218 0.387 −0.144 0.212 0.394 −0.530 −0.042 −0.035
T8 0.072 0.189 0.312 0.008 0.177 0.310 −0.569 −0.249 −0.315
T9 0.190 0.192 0.341 0.160 0.156 0.330 −0.158 −0.592 −0.230

T10 0.298 0.184 0.278 0.272 0.162 0.274 −0.205 −0.375 −0.040
T11 0.058 0.245 0.244 0.012 0.247 0.244 −0.266 −0.182 −0.099
T12 0.009 0.249 0.338 −0.049 0.257 0.336 −0.207 0.026 −0.381
T −0.253 −0.036 0.208 −0.318 −0.035 0.215 −0.647 −0.154 −0.124
Ta −0.253 −0.036 0.208 −0.318 −0.035 0.215 −0.647 −0.154 −0.124

Lag 9
T1 −0.416 0.179 0.421 −0.471 0.181 0.415 −0.414 −0.060 −0.174
T2 −0.364 0.259 0.469 −0.432 0.257 0.466 −0.461 −0.090 −0.070
T3 −0.265 0.351 0.529 −0.347 0.347 0.530 −0.500 −0.084 −0.058
T4 −0.072 0.439 0.558 −0.151 0.430 0.563 −0.485 −0.140 0.097
T5 −0.016 0.274 0.471 −0.099 0.258 0.478 −0.389 −0.248 0.062
T6 −0.004 0.284 0.485 −0.100 0.269 0.492 −0.508 −0.202 0.112
T7 −0.012 0.138 0.154 −0.112 0.141 0.165 −0.609 0.014 0.096
T8 −0.052 0.029 0.105 −0.128 0.024 0.121 −0.615 −0.163 0.451
T9 0.312 −0.006 −0.028 0.262 −0.021 −0.020 −0.354 −0.153 0.432

T10 0.161 0.061 0.038 0.100 0.043 0.059 −0.560 −0.127 0.419
T11 −0.073 0.229 0.140 −0.085 0.234 0.159 −0.688 0.185 0.356
T12 −0.120 0.224 0.190 −0.136 0.244 0.208 −0.690 0.290 0.219

T −0.182 0.188 0.387 −0.252 0.178 0.393 −0.645 −0.205 0.102
Ta −0.182 0.188 0.387 −0.252 0.178 0.393 −0.645 −0.205 0.102

Lag 10
T1 - 0.554 0.718 - 0.531 0.725 - −0.026 0.084
T2 - 0.670 0.786 - 0.646 0.792 - −0.029 0.140
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Table 1. Cont.

Parameter Ab1 Ab2 Ab3 Bm1 Bm2 Bm3 W1 W2 W3

T3 - 0.712 0.795 - 0.689 0.800 - −0.057 0.147
T4 - 0.763 0.726 - 0.743 0.734 - 0.020 0.202
T5 - 0.731 0.706 - 0.708 0.715 - −0.058 0.152
T6 - 0.729 0.711 - 0.707 0.724 - −0.079 0.255
T7 - 0.514 0.471 - 0.508 0.493 - −0.013 0.415
T8 - 0.562 0.512 - 0.553 0.527 - 0.052 0.327
T9 - 0.390 0.248 - 0.394 0.270 - 0.302 0.487

T10 - 0.514 0.348 - 0.524 0.364 - 0.317 0.327
T11 - 0.315 0.476 - 0.326 0.479 - 0.402 0.015
T12 - 0.157 0.414 - 0.162 0.411 - 0.121 −0.140

T - 0.657 0.693 - 0.643 0.707 - 0.051 0.291
Ta - 0.657 0.693 - 0.643 0.707 - 0.051 0.291

Note: temperature variables: T1–T12—water temperature at stations 1–3 of the Kola section at 50–200 m depth
from January to December, respectively, T—averaged year water temperature, Ta—temperature anomaly. Crab
indices: Ab—abundance, Bm—biomass, W—weight. Age groups: 1—aged 6–9, 2—aged 10–14, 3—aged 15–19.
Bold font indicates significant p-values confirmed by the Benjamini–Hochberg procedure. Correlation coefficients
for the 0–3, 5–7, and 11–19 lag datasets were insignificant.

In contrast, the abundance and biomass of females at ages 10–14 had strong positive
correlations with seawater temperature in the period from January to August and in October,
as well as the average annual temperature and temperature anomaly at lag 10. Strong
relationships were found between pairs of stock parameters for 15–19-year-old females and
environmental variables. Both abundance and biomass showed positive associations with
seawater temperature from February to June, mean yearly temperature, and its anomaly at
lag 4. Similar patterns were registered for the abundance and biomass of this age group at
lag 10 but, in this case, significant correlations were also found for abundance in January
and for biomass in January, July, and August (Table 1).

In general, multivariate RDA confirmed the results of simple correlation analyses. For
the lag 4 dataset, the largest portion of environmental variables was negatively associated
with the first RDA axis (Figure 3a), explaining 65.6% of the total variation in the crab indices.
Along Axis 2, the biomass data were positively scaled with the majority of environmental
variables (Figure 3a). This axis explained 14.6% of the total variation. Using the data
obtained for environmental variables and red king crab indices at lag 8 as input parameters
for RDA, we found that the first two axes accounted for 72.8% of the total variance of the
crab parameters. The first axis was negatively correlated with almost all variables, while
the second axis was positively correlated with the weight and negatively correlated with
the biomass data (Figure 3b). The forward selection of environmental factors with Monte
Carlo permutation tests reveals mean yearly temperature as the main factor contributing to
the observed variability in the weight data, explaining 19% of the total variation.

In the case of the lag 9 dataset, the first two RDA axes explained 79.7% of the total
variance in the crab indices and environmental factors. The RDA showed that the most
important predictors were seawater temperature in April and the average water tempera-
ture, explaining 22% (F = 3.63, p = 0.033) and 18% (F = 3.64, p = 0.021) of variability in the
average crab weight, respectively. These factors were positively scaled mainly with the
data for 6–9-year-old crabs (Figure 3c).

RDA applied to the lag 10 dataset showed that environmental variables were nega-
tively associated with the first axis and positively with the second axis, explaining 72.7%
and 16.0% of the data variation, respectively. Based on RDA results, seawater tempera-
tures demonstrated strong associations with some crab indices (Figure 3d). Significant
factor contributions were found for June (F = 14.20, p = 0.001), July (F = 2.71, p = 0.049),
and August (F = 3.08, p = 0.017). These factors explained 52%, 9%, and 9% of the total
variation, respectively.
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Figure 3. Redundancy analysis ordination plots showing female red king crab characteristics in
relation to temperature variables in Dalnezelenetskaya Bay at lag 4 (a), lag 8 (b), lag 9 (c), and
lag 10 (d). T1–T12—water temperature at stations 1–3 of the Kola section at 50–200 m depth in
January–December, T—averaged year water temperature, Ta—temperature anomaly. Crab indices:
Bm—biomass, W—weight. Age groups: 1—aged 6–9, 2—aged 10–14, 3—aged 15–19.

4. Discussion
Previous research has indicated that the fluctuations in the abundance of both fish and

crabs in Dalnezelenetskaya Bay accurately reflect the broader ecological patterns observed
in the Barents Sea [14,21,53]. Consequently, this area can be regarded as a reference site for
studying the impacts of environmental factors on specific species, including commercially
significant red king crabs and gadid fish. We found that the abundance and biomass of
P. camtschaticus females varied considerably among age groups. The youngest female crabs
were less abundant than older specimens. This pattern seems to reflect the higher mortality
rate of 6–9-year-old crabs, owing to their higher vulnerability to predators. In our previous
paper, we showed that smaller P. camtschaticus juveniles are consumed by the Northeast
Arctic cod Gadus morhua, a major red king crab predator in the Barents Sea, in substantially
higher amounts than larger king crabs [10,21]. Thus, smaller ovigerous females seem to be
more vulnerable to predators’ attacks including cod and marine mammals. It is important to
emphasize that smaller female red king crabs exhibit a tendency to remain within a specific
area throughout the year [11]. Therefore, the observed fluctuations are unlikely to be related
to changes in migratory patterns. In addition, smaller females are less competitive with
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their larger conspecifics, both females and males. Competition between different-sized red
king crabs is supported by the fact that no aggregations of mixed age classes were found
during the study period in the area. This result is in contrast to the patterns registered
for P. camtschaticus in Alaskan waters, where ovigerous female red king crabs exhibited
“podding” behavior, similar to that reported for juveniles [54]. It is important to note
that, while larger female red king crabs exhibit seasonal migrations, departing the area in
autumn and returning in spring for egg release and spawning [11], there is currently no
evidence to support significant variations in the migratory patterns and routes of female red
king crabs in the study area [14]. Consequently, the annual influx of newly migrated crabs
reflects the general population fluctuations driven by natural mortality and recruitment,
both of which are influenced by temperature fluctuations and other temperature-related
indices, such as the biomass of predators [21]. It is also not surprising, that the oldest
females were less abundant than the females from the 10–14-year age group. Aging as
an animal means degradation of all physiological functions, a decrease in mobility, high
vulnerability to disease and parasites, and, finally, higher mortality [11,32] [Harman, 2003].
Illegal fishing could also be considered as a factor responsible for the higher mortality of
older females because larger and heavier crabs are preferable for fishermen than smaller
specimens [14,55]. It is noteworthy that within the studied area, significant fishery activities
were not observed throughout the study period. The interannual fluctuations observed
were primarily attributed to variations in the local temperature regime. Since 10–14-year-
old females predominated in terms of their abundance and biomass, natural fluctuations
in their stock indices were clearly expressed. We found that abundant cohorts occur
every 6 years. This pattern reflects red king crab recruitment oscillations and recruit–stock
relationships in this species and is in good accordance with the patterns reported in the Sea
of Okhotsk [56].

The effects of climate shifts on marine communities, in general, and their compo-
nents, in particular, have been the subject of many studies [57–60]. Responses of benthic
assemblages to cooling or warming have been shown to depend on their origin and biogeo-
graphical status. For example, in cold years, the abundance of true arctic species increases,
while the abundance of boreal and arctic-boreal species decreases [5,24,25]. So, after cooling,
some cold-water polychaetes have been shown to shift their distribution to the northern
areas of the Barents Sea while, after warming, such species disappeared from the coastal ar-
eas where they were abundant in cold and normal years. As a rule, the responses of benthic
animals, especially long-lived, to environmental forcing factors are registered with time
lags, owing to a cascading effect from the physical stimulus to benthic biological response,
which is presumably mediated through constraints on primary production [58,61]. Red
king crabs are also affected by climatic conditions [21,34] and, in general, their responses to
a changing environment are similar to those observed for other benthic species [62–64].

In Dalnezelenetskaya Bay, a strong positive relationship was observed between tem-
perature conditions and the total number of 15–19-year-old females at lag 4. This result, in
our opinion, reflects direct temperature effects on the biomass of benthic animals consumed
by P. camtschaticus. In the coastal areas of the Barents Sea, echinoderms (sea urchins, sea
stars, and brittle stars) play an important role in the diet of adult P. camtschaticus because
they provide red king crabs with calcium, which is crucial for shell hardening after the
crabs molt [37,65,66]. According to the data reported by Frolova et al. [25], the biomasses
of echinoderms are directly linked to temperature conditions, but an increase in these
parameters as a response to climate forcing is registered at lag 3 for brittle stars and lag 4
for sea stars, which can explain the pattern observed for our lag 4 dataset.

We found negative relationships between the average weight of a female crab at ages
6–9 and environmental conditions at lags 8 and 9. At the same time, we found no negative
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associations between abundance and water temperatures. This result means that, in warm
years, the cohorts of 0–1-year-old crabs are composed of smaller and lighter specimens
than in cold and normal years. Growth and molting in red king crabs are temperature-
dependent [67], and the maturation of female red king crabs in warmer waters is faster
than in colder waters; therefore, females living in more favorable conditions reach sexual
maturity earlier than the same-aged individuals from colder environments [68]. In addition,
a predator-induced mortality rate in smaller juveniles (age 0–2) is lower than in larger
individuals (age 0–5) due to differences between their behavior patterns which are closely
related to their vulnerability to predators [21].

The most obvious results were obtained for the abundance and biomass of crabs at ages
15–19 and, especially, 10–14. Strong positive correlations were found for the lag 10 dataset.
Oscillations in the climate, coupled with shifts in advection, are likely to affect the survival
rates of pelagic larvae and reproductive patterns of red king crab populations [12,69,70].
In cold periods, when the ice cover in the Barents Sea is extended, the period available
for the growth of primary producers (microalgae) tends to be shorter [71]. Consequently,
cold periods lead to decreasing biomasses of phytoplankton, their predators, and dissolved
organic carbon [72]. The pool of food sources for benthic animals, including prey for red
king crabs, in such periods is smaller than in warm periods. Furthermore, a complex of
biological processes at shallow water sites of the Barents Sea plays a pivotal role in the
life cycle of P. camtschaticus because adult crabs use the coastal zone for spawning, and
juveniles spend their first years of life exclusively at depths not exceeding 100 m [12,35].
Suspended sediments from upland areas are delivered into the nearshore zone of the
Barents Sea by river discharge and coastal erosion [73]. These processes are known to have
a close association with climate change, which is expressed in warmer years [74]. Thus, an
increase in the total terrestrial inputs of particulate organic carbon leads to the increased
productivity of benthic marine communities in the Arctic [75–77], including red king crab
abundance [34,78]. All these reasons can explain why the abundance of female red king
crabs tended to increase after warming and decrease after cooling. Similar patterns have
been recorded for stocks of commercial male red king crabs both in their native area (Gulf
of Alaska and the eastern Bering Sea, [79]) and in the area of introduction [34]. In addition
to abundance, changes in climatic conditions may affect the distribution of female red king
crabs. For example, in Bristol Bay, a pool of very cold water led to a shift in the center of
abundance from the south-west part to the center of the area [80].

Both simple correlation analyses and RDA applied to the lag 10 dataset indicated
that temperature conditions in the summer period are the most important predictors of
female abundance (age 10–19) in the coastal zone of the Barents Sea. It is known that
the reproductive cycle of P. camtschaticus lasts for 11–11.5 months, with a spawning peak
in April, a peak of larval release during May–April, and a peak of larval settlement, as
well as a transition from a swimming planktonic larva to a crawling benthic juvenile [11].
Since red king crabs have a relatively narrow temperature tolerance [67,81], their survival
rates at the first 3 months of life on the seafloor have close associations with temperature
and temperature-related conditions such as feeding habits. Other important factors are
the availability and characteristics of suitable benthic habitats. During this critical period
when they are highly vulnerable, post-settlement red king crabs are also exposed to a new
suite of predators and competitors [82,83]. Thus, the temperature regime in coastal waters
of the Kola peninsula directly influences mortality, recruitment patterns [21], and, hence,
population abundance of red king crabs [70].

Fishing activities exert a significant impact on stock biomass, potentially leading to
adverse effects on recruitment when stock biomass levels are critically depleted. This
phenomenon is particularly relevant for the male component of a crab population in male-
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only fisheries [84]. From this perspective, the abundance of females becomes a more suitable
metric for examining the relationship between stock dynamics and climatic variations. As
the modeling of stock dynamics in the Barents Sea incorporates female abundance of the
red king crab, our data hold significant implications for fishery management strategies in
this region. Historically, the inability to sustain productive crab fisheries over extended
periods has necessitated the adoption of progressively more conservative management
approaches [9]. Consequently, this has precipitated dramatic declines in red king crab
abundance, both within their native distribution areas and in the Barents Sea [1,12,55,85].
However, in the latter region, timely conservation measures have facilitated the recovery of
the stock. Our study has identified time lags of 4 and 10 years in the response of female red
king crabs to changes in temperature regimes. These findings provide a crucial foundation
for more accurate forecasting of female abundance, thereby informing and refining the
management practices for the sustainable exploitation and conservation of the red king
crab stock in the Barents Sea.

5. Conclusions
The abundance and biomass of female red king crabs, as well as their mean weight,

are closely associated with temperature conditions. Climate forcing leads to a decrease in
mortality and provides favorable food conditions for juvenile red king crabs. As a result,
a peak in abundance is expected after 10 years of population development. This pattern
is also relevant for adult males and, therefore, can be used for the prediction of the total
population number, abundance of recruits, and the commercial stock of P. camtschaticus in
the Barents Sea. Taking into account that fluctuations in abundance are accompanied by
fluctuations in distribution, our data may be useful for scientists and managers involved in
tracking the range expansion of P. camtschaticus in the Barents Sea and evaluating its impact
on local benthic assemblages. Although red king crabs are well adapted to the new habitat
conditions and their impact on the major fish stocks is considered to be neutral, some
authors suggest that there are negative consequences caused by these invaders on benthic
fauna at several coastal sites and on the recruitment of non-commercial fish. Indirect effects
of crab predation have been shown to include a positive cascade effect on macroalgae due
to predation on herbivorous sea urchins, a negative effect on benthic-feeding birds, and the
dispersion of crab-associated fish leeches that can increase transmission of trypanosomes
to cod. Because the increased abundance and range expansion of red king crabs into new
areas can be expected as a response to climate forcing, the managers of alien species should
be prepared to undertake appropriate steps and measures to prevent negative scenarios.
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