The Effects of Mixed Inoculum Storage Time on In Vitro Rumen Fermentation Characteristics, Microbial Diversity, and Community Composition
<p>Gas production dynamics in response to incubation time across various mixed inoculum storage times. H0, H12, H24, H36, and H48 indicate the mixed inoculum used in the in vitro fermentation tests was stored for 0 h, 12 h, 24 h, 36 h, and 48 h, respectively.</p> "> Figure 2
<p>Rumen bacterial beta diversity across different storage times of mixed inoculum. (<b>a</b>) Principal coordinates analysis (PCoA); (<b>b</b>) non-metric multidimensional scaling (NMDS). H0, H12, H24, H36, and H48 indicate the mixed inoculum used in the in vitro fermentation tests was stored for 0 h, 12 h, 24 h, 36 h, and 48 h, respectively.</p> "> Figure 3
<p>Illustration of the effects of mixed inoculum storage times on discriminative bacterial communities at multiple taxonomic levels: (<b>a</b>) linear discriminant analysis; and (<b>b</b>) cladogram. H0, H12, H24, H36, and H48 indicate the mixed inoculum used in the in vitro fermentation tests was stored for 0 h, 12 h, 24 h, 36 h, and 48 h, respectively.</p> ">
1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Rumen Fluid Acquisition, Inoculum Preparation, and Experimental Design
2.3. In Vitro Fermentation Test
2.4. Parameter Measurement
2.5. DNA Extraction, Sequencing, and Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Total Gas Production
3.2. Rumen Fermentation Characteristics
3.3. Rumen Bacterial Alpha Diversity
3.4. Rumen Bacterial Community Composition
3.5. Rumen Bacterial Beta Diversity
3.6. Biomarker Analysis
3.7. Predicted Functions of Ruminal Bacterial Microbiota
4. Discussion
4.1. Effects of Mixed Inoculum Storage Time on Gas Production and Rumen Fermentation Characteristics
4.2. Effects of Mixed Inoculum Storage Time on Rumen Bacterial Diversity and Community Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Almeida, R.T.R.; do Prado, R.M.; Porto, C.; dos Santos, G.T.; Huws, S.A.; Pilau, E.J. Exploring the rumen fluid metabolome using liquid chromatography-high-resolution mass spectrometry and molecular networking. Sci. Rep. 2018, 8, 17971. [Google Scholar] [CrossRef] [PubMed]
- Sanjorjo, R.A.; Tseten, T.; Kang, M.-K.; Kwon, M.; Kim, S.W. In pursuit of understanding the rumen microbiome. Fermentation 2023, 9, 114. [Google Scholar] [CrossRef]
- Silva, É.B.; Silva, J.A.; Silva, W.C.; Belo, T.S.; Sousa, C.E.; Santos, M.R.; Neves, K.A.; Rodrigues, T.C.; Camargo-Júnior, R.N.; Lourenço-Júnior, J.D. A review of the rumen microbiota and the different molecular techniques used to identify microorganisms found in the rumen fluid of ruminants. Animals 2024, 14, 1448. [Google Scholar] [CrossRef] [PubMed]
- Artegoitia, V.M.; Foote, A.P.; Lewis, R.M.; Freetly, H.C. Rumen fluid metabolomics analysis associated with feed efficiency on crossbred steers. Sci. Rep. 2017, 7, 2864. [Google Scholar] [CrossRef]
- Dhakal, R.; Neves, A.L.; Sapkota, R.; Khanal, P.; Hansen, H.H. Prokaryote composition and structure of rumen fluid before and after in vitro rumen fermentation. Fermentation 2024, 10, 108. [Google Scholar] [CrossRef]
- Martins, L.F.; Cueva, S.F.; Lage, C.F.A.; Ramin, M.; Silvestre, T.; Tricarico, J.; Hristov, A.N. A meta-analysis of methane-mitigation potential of feed additives evaluated in vitro. J. Dairy Sci. 2024, 107, 288–300. [Google Scholar] [CrossRef]
- Yáñez-Ruiz, D.R.; Bannink, A.; Dijkstra, J.; Kebreab, E.; Morgavi, D.P.; O’Kiely, P.; Reynolds, C.K.; Schwarm, A.; Shingfield, K.J.; Yu, Z.; et al. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—A review. Anim. Feed Sci. Technol. 2016, 216, 1–18. [Google Scholar] [CrossRef]
- Fu, C.; Qu, M.; Ouyang, K.; Qiu, Q. Effects of storage time and temperature on the fermentation characteristics of rumen fluid from a high-forage diet. Agriculture 2024, 14, 1481. [Google Scholar] [CrossRef]
- Tunkala, B.Z.; DiGiacomo, K.; Alvarez Hess, P.S.; Dunshea, F.R.; Leury, B.J. Impact of rumen fluid storage on in vitro feed fermentation characteristics. Fermentation 2023, 9, 392. [Google Scholar] [CrossRef]
- Tunkala, B.Z.; DiGiacomo, K.; Alvarez Hess, P.S.; Dunshea, F.R.; Leury, B.J. Rumen fluid preservation for in vitro gas production systems. Anim. Feed Sci. Technol. 2022, 292, 115405. [Google Scholar] [CrossRef]
- Spanghero, M.; Chiaravalli, M.; Colombini, S.; Fabro, C.; Froldi, F.; Mason, F.; Moschini, M.; Sarnataro, C.; Schiavon, S.; Tagliapietra, F. Rumen inoculum collected from cows at slaughter or from a continuous fermenter and preserved in warm, refrigerated, chilled or freeze-dried environments for in vitro tests. Animals 2019, 9, 815. [Google Scholar] [CrossRef] [PubMed]
- Fortina, R.; Glorio Patrucco, S.; Barbera, S.; Tassone, S. Rumen fluid from slaughtered animals: A standardized procedure for sampling, storage and use in digestibility trials. Methods Protoc. 2022, 5, 59. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.J.; Stoltz, M.A.; Meyer, J.H.F.; Bechaz, F.M. The effect of rumen fluid storage time on digestive capacity with five forage/browse samples. Trop. Grassl. 1998, 32, 270–272. [Google Scholar]
- Prates, A.; de Oliveira, J.A.; Abecia, L.; Fondevila, M. Effects of preservation procedures of rumen inoculum on in vitro microbial diversity and fermentation. Anim. Feed Sci. Technol. 2010, 155, 186–193. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, S.; Tan, J.; Wang, Y.; Li, L.; Zhao, H.; Liu, M.; Jiang, L. Bioconversion of citrus waste by long-term DMSO-cryopreserved rumen fluid to volatile fatty acids and biogas is feasible: A microbiome perspective. J. Environ. Manag. 2024, 351, 119693. [Google Scholar] [CrossRef]
- Fabro, C.; Sarnataro, C.; Spanghero, M. Impacts of rumen fluid, refrigerated or reconstituted from a refrigerated pellet, on gas production measured at 24h of fermentation. Anim. Feed Sci. Technol. 2020, 268, 114585. [Google Scholar] [CrossRef]
- Martin, C.C.; Hilgert, A.R.; Guirro, E.C.B.D.P. Influence of food, storage temperature, and time on the extracorporeal viability of ruminal fluid of cattle. Semin. Cienc. Agrar. 2018, 39, 1181–1188. [Google Scholar] [CrossRef]
- Qiu, Q.; Long, T.; Ouyang, K.; Lei, X.; Qiu, J.; Zhang, J.; Li, Y.; Zhao, X.; Qu, M.; Ouyang, K. Effect of preservation temperature and time on fermentation characteristics, bacterial diversity and community composition of rumen fluid collected from high-grain feeding sheep. Fermentation 2023, 9, 466. [Google Scholar] [CrossRef]
- Takizawa, S.; Baba, Y.; Tada, C.; Fukuda, Y.; Nakai, Y. Preservation of rumen fluid for the pretreatment of waste paper to improve methane production. Waste Manag. 2019, 87, 672–678. [Google Scholar] [CrossRef]
- Paz, H.A.; Anderson, C.L.; Muller, M.J.; Kononoff, P.J.; Fernando, S.C. Rumen bacterial community composition in Holstein and Jersey cows is different under same dietary condition and is not affected by sampling method. Front. Microbiol. 2016, 7, 1206. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, Y.; Xue, S.; Wang, W.; Wang, Y.; Cao, Z.; Yang, H.; Li, S. Feeding value assessment of substituting Cassava (Manihot esculenta) residue for concentrate of dairy cows using an in vitro gas test. Animals 2021, 11, 307. [Google Scholar] [CrossRef] [PubMed]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Sharma, O.P.; Dawra, R.K.; Negi, S.S. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 1982, 65, 2170–2173. [Google Scholar] [CrossRef]
- Qiu, Q.; Wei, X.; Zhang, L.; Li, Y.; Qu, M.; Ouyang, K. Effect of dietary inclusion of tea residue and tea leaves on ruminal fermentation characteristics and methane production. Anim. Biotechnol. 2023, 34, 825–834. [Google Scholar] [CrossRef]
- Qiu, Q.; Gao, C.; Aziz ur Rahman, M.; Cao, B.; Su, H. Digestive ability, physiological characteristics, and rumen bacterial community of Holstein finishing steers in response to three nutrient density diets as fattening phases advanced. Microorganisms 2020, 8, 335. [Google Scholar] [CrossRef]
- Won, M.Y.; Oyama, L.B.; Courtney, S.J.; Creevey, C.J.; Huws, S.A. Can rumen bacteria communicate to each other? Microbiome 2020, 8, 23. [Google Scholar] [CrossRef]
- Wei, X.; Ouyang, K.; Long, T.; Liu, Z.; Li, Y.; Qiu, Q. Dynamic variations in rumen fermentation characteristics and bacterial community composition during in vitro fermentation. Fermentation 2022, 8, 276. [Google Scholar] [CrossRef]
- Lima, J.; Ingabire, W.; Roehe, R.; Dewhurst, R.J. Estimating microbial protein synthesis in the rumen—Can ‘Omics’ methods provide new insights into a long-standing question? Vet. Sci. 2023, 10, 679. [Google Scholar] [CrossRef]
- Lin, X.; Hu, Z.; Zhang, S.; Cheng, G.; Hou, Q.; Wang, Y.; Yan, Z.; Shi, K.; Wang, Z. A study on the mechanism regulating acetate to propionate ratio in rumen fermentation by dietary carbohydrate type. Adv. Biosci. Biotechnol. 2020, 11, 369–390. [Google Scholar] [CrossRef]
- Tucker, C.M.; Cadotte, M.W.; Carvalho, S.B.; Davies, T.J.; Ferrier, S.; Fritz, S.A.; Grenyer, R.; Helmus, M.R.; Jin, L.S.; Mooers, A.O.; et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 2017, 92, 698–715. [Google Scholar] [CrossRef]
- Langwig, M.V.; De Anda, V.; Dombrowski, N.; Seitz, K.W.; Rambo, I.M.; Greening, C.; Teske, A.P.; Baker, B.J. Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups. ISME J. 2022, 16, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.S.; Wang, R.; Ma, Z.Y.; Zhang, X.M.; Jiao, J.Z.; Zhang, Z.G.; Ungerfeld, E.M.; Le Yi, K.; Zhang, B.Z.; Long, L.; et al. Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminants. ISME J. 2022, 16, 2535–2546. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, I.; Wallace, R.J.; Moraïs, S. The rumen microbiome: Balancing food security and environmental impacts. Nat. Rev. Microbiol. 2021, 19, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Pidcock, S.E.; Skvortsov, T.; Santos, F.G.; Courtney, S.J.; Sui-Ting, K.; Creevey, C.J.; Huws, S.A. Phylogenetic systematics of Butyrivibrio and Pseudobutyrivibrio genomes illustrate vast taxonomic diversity, open genomes and an abundance of carbohydrate-active enzyme family isoforms. Microb. Genom. 2021, 7, 000638. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, R.; Chang, J.; Chen, L.; Nabi, M.; Zhang, H.; Zhang, G.; Zhang, P. Rumen microbes, enzymes, metabolisms, and application in lignocellulosic waste conversion—A comprehensive review. Biotechnol. Adv. 2024, 71, 108308. [Google Scholar] [CrossRef]
- Sorbara, M.T.; Littmann, E.R.; Fontana, E.; Moody, T.U.; Kohout, C.E.; Gjonbalaj, M.; Eaton, V.; Seok, R.; Leiner, I.M.; Pamer, E.G. Functional and genomic variation between human-derived isolates of Lachnospiraceae reveals inter-and intra-species diversity. Cell Host Microbe 2020, 28, 134–146. [Google Scholar] [CrossRef]
- Jia, M.; Zhu, S.; Xue, M.-Y.; Chen, H.; Xu, J.; Song, M.; Tang, Y.; Liu, X.; Tao, Y.; Zhang, T.; et al. Single-cell transcriptomics across 2,534 microbial species reveals functional heterogeneity in the rumen microbiome. Nat. Microbiol. 2024, 9, 1884–1898. [Google Scholar] [CrossRef]
- Wang, D.; Chen, L.; Tang, G.; Yu, J.; Chen, J.; Li, Z.; Cao, Y.; Lei, X.; Deng, L.; Wu, S.; et al. Multi-omics revealed the long-term effect of ruminal keystone bacteria and the microbial metabolome on lactation performance in adult dairy goats. Microbiome 2023, 11, 215. [Google Scholar] [CrossRef]
- Xue, M.Y.; Xie, Y.Y.; Zang, X.W.; Zhong, Y.F.; Ma, X.J.; Sun, H.Z.; Liu, J.X. Deciphering functional groups of rumen microbiome and their underlying potentially causal relationships in shaping host traits. iMeta 2024, 3, e225. [Google Scholar] [CrossRef]
- Fonseca, P.A.S.; Lam, S.; Chen, Y.; Waters, S.M.; Guan, L.L.; Cánovas, A. Multi-breed host rumen epithelium transcriptome and microbiome associations and their relationship with beef cattle feed efficiency. Sci. Rep. 2023, 13, 16209. [Google Scholar] [CrossRef]
- Chen, X.; Su, X.; Li, J.; Yang, Y.; Wang, P.; Yan, F.; Yao, J.; Wu, S. Real-time monitoring of ruminal microbiota reveals their roles in dairy goats during subacute ruminal acidosis. NPJ Biofilms Microbiomes 2021, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Chen, B.; Zhang, X.; Akbar, M.T.; Wu, T.; Zhang, Y.; Zhi, L.; Shen, Q. Exploration of the muribaculaceae family in the gut microbiota: Diversity, metabolism, and function. Nutrients 2024, 16, 2660. [Google Scholar] [CrossRef] [PubMed]
- Keum, G.B.; Pandey, S.; Kim, E.S.; Doo, H.; Kwak, J.; Ryu, S.; Choi, Y.; Kang, J.; Kim, S.; Kim, H.B. Understanding the diversity and roles of the ruminal microbiome. J. Microbiol. 2024, 62, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhong, H.; Li, M.; Zheng, N.; Wang, J.; Zhao, S. Contribution of ruminal bacteriome to the individual variation of nitrogen utilization efficiency of dairy cows. Front. Microbiol. 2022, 13, 815225. [Google Scholar] [CrossRef]
Item | 0 h | 12 h | 24 h | 36 h | 48 h |
---|---|---|---|---|---|
pH value | 6.78 | 6.80 | 6.80 | 6.81 | 6.83 |
Ammoniacal nitrogen, mg/dL | 11.66 | 16.02 | 21.59 | 24.02 | 22.98 |
Acetate, mmol/L | 21.83 | 28.29 | 29.90 | 31.36 | 29.45 |
propionate, mmol/L | 6.74 | 8.42 | 8.87 | 9.13 | 7.45 |
Isobutyrate, mmol/L | 0.20 | 0.29 | 0.37 | 0.41 | 0.45 |
Butyrate, mmol/L | 4.54 | 6.24 | 6.54 | 6.84 | 6.28 |
Isovalerate, mmol/L | 0.21 | 0.50 | 0.79 | 0.99 | 0.97 |
Valerate, mmol/L | 0.40 | 0.69 | 0.80 | 0.88 | 0.97 |
Total volatile fatty acids, mmol/L | 33.92 | 44.43 | 47.26 | 49.61 | 45.57 |
Branched-chain volatile fatty acids, mmol/L | 0.81 | 1.48 | 1.95 | 2.28 | 2.39 |
Acetate-to-propionate ratio | 3.24 | 3.36 | 3.37 | 3.44 | 3.95 |
Item | Storage Time 1 | SEM 2 | p-Value | ||||
---|---|---|---|---|---|---|---|
H0 | H12 | H24 | H36 | H48 | |||
Total gas production, mL/g | 135.56 b | 160.10 a | 164.70 a | 152.65 ab | 151.35 ab | 4.129 | 0.002 |
pH value | 7.01 ab | 6.93 ab | 6.81 b | 6.95 ab | 7.05 a | 0.048 | 0.021 |
Ammoniacal nitrogen, mg/dL | 19.31 c | 36.34 b | 41.38 a | 35.81 b | 35.35 b | 0.851 | <0.001 |
Microbial protein, mg/L | 177.63 a | 79.94 b | 83.40 b | 110.85 b | 91.52 b | 7.947 | <0.001 |
Total volatile fatty acids, mmol/L | 77.08 c | 94.58 a | 94.94 a | 89.80 ab | 79.10 bc | 2.899 | <0.001 |
Concentration, mmol/L | |||||||
Acetate | 44.58 c | 57.05 a | 59.28 a | 54.41 ab | 49.81 bc | 1.537 | <0.001 |
Propionate | 20.84 | 19.84 | 18.57 | 18.51 | 16.70 | 0.982 | 0.083 |
Isobutyrate | 0.50 d | 0.93 ab | 1.02 a | 0.88 bc | 0.75 c | 0.030 | <0.001 |
Butyrate | 8.68 b | 12.44 a | 11.45 a | 11.91 a | 8.51 b | 0.389 | <0.001 |
Isovalerate | 1.09 d | 2.32 ab | 2.64 a | 2.15 bc | 1.79 c | 0.084 | <0.001 |
Valerate | 1.39 b | 2.00 a | 1.98 a | 1.95 a | 1.54 b | 0.076 | <0.001 |
Branched-chain volatile fatty acids | 2.98 b | 5.25 a | 5.64 a | 4.97 a | 4.08 b | 0.180 | <0.001 |
Proportion, % | |||||||
Acetate | 57.97 c | 60.32 b | 62.44 ab | 60.60 b | 63.09 a | 0.527 | <0.001 |
Propionate | 26.97 a | 20.98 b | 19.55 b | 20.61 b | 20.98 b | 0.582 | <0.001 |
Acetate-to-propionate ratio | 2.15 b | 2.88 a | 3.19 a | 2.95 a | 3.04 a | 0.101 | <0.001 |
Isobutyrate | 0.64 c | 0.98 ab | 1.07 a | 0.98 ab | 0.95 b | 0.025 | <0.001 |
Butyrate | 11.21 bc | 13.15 a | 12.06 b | 13.26 a | 10.77 c | 0.215 | <0.001 |
Isovalerate | 1.41 c | 2.45 b | 2.79 a | 2.39 b | 2.27 b | 0.056 | <0.001 |
Valerate | 1.79 c | 2.11 a | 2.09 ab | 2.17 a | 1.94 b | 0.036 | <0.001 |
Branched-chain volatile fatty acids | 3.84 c | 5.55 ab | 5.95 a | 5.53 b | 5.16 b | 0.095 | <0.001 |
Item | Storage Time 1 | SEM 2 | p-Value | ||||
---|---|---|---|---|---|---|---|
H0 | H12 | H24 | H36 | H48 | |||
Chao1 | 984.53 | 1061.37 | 1088.51 | 1004.18 | 836.84 | 64.755 | 0.087 |
Observed species | 982.25 | 1059.00 | 1086.00 | 999.98 | 831.00 | 63.646 | 0.073 |
PD whole tree | 74.68 ab | 77.69 a | 75.15 ab | 72.83 ab | 62.58 b | 3.278 | 0.032 |
Shannon index | 8.16 a | 8.52 a | 8.63 a | 8.28 a | 7.55 b | 0.124 | <0.001 |
Simpson index | 0.9898 a | 0.9922 a | 0.9917 a | 0.9862 ab | 0.9758 b | 0.002 | 0.001 |
Phylum Name | Storage Time 1 | SEM 2 | p-Value | ||||
---|---|---|---|---|---|---|---|
H0 | H12 | H24 | H36 | H48 | |||
Bacteroidota | 32.64 c | 49.02 a | 52.40 a | 48.49 a | 41.26 b | 1.398 | <0.001 |
Firmicutes | 42.19 a | 30.17 b | 30.17 b | 32.64 b | 36.12 ab | 1.461 | <0.001 |
Proteobacteria | 20.06 a | 13.00 ab | 10.65 b | 14.42 ab | 16.51 ab | 1.927 | 0.036 |
Verrucomicrobiota | 2.44 bc | 3.82 ab | 4.33 a | 1.86 c d | 0.33 d | 0.435 | <0.001 |
Fusobacteriota | 0.003 b | 0.035 b | 0.015 b | 0.053 b | 3.97 a | 0.564 | <0.001 |
Desulfobacterota | 0.36 b | 0.84 a | 0.80 ab | 0.89 a | 0.54 ab | 0.107 | 0.014 |
Spirochaetota | 0.28 c | 0.33 c | 0.54 bc | 0.98 ab | 0.99 a | 0.103 | <0.001 |
Euryarchaeota | 1.12 ab | 1.78 a | 0.21 b | 0.09 b | 0.04 b | 0.288 | 0.001 |
Patescibacteria | 0.40 b | 0.44 ab | 0.60 a | 0.22 c | 0.12 c | 0.038 | <0.001 |
Actinobacteriota | 0.22 | 0.13 | 0.05 | 0.12 | 0.01 | 0.078 | 0.442 |
Genus Name | Storage Time 1 | SEM 2 | p-Value | ||||
---|---|---|---|---|---|---|---|
H0 | H12 | H24 | H36 | H48 | |||
Rikenellaceae RC9 gut group | 7.82 c | 13.91 b | 17.42 a | 15.85 ab | 14.36 b | 0.690 | <0.001 |
Ruminobacter | 8.88 ab | 5.07 b | 7.39 ab | 11.35 ab | 15.26 a | 1.912 | 0.011 |
Prevotella | 10.49 | 9.25 | 9.95 | 7.85 | 9.85 | 1.246 | 0.632 |
Succiniclasticum | 10.51 a | 9.04 a | 9.58 a | 4.63 b | 2.82 b | 1.026 | <0.001 |
Anaerovibrio | 1.60 b | 0.95 b | 0.33 b | 2.54 b | 8.44 a | 1.193 | 0.001 |
Succinivibrio | 4.82 a | 5.11 a | 1.35 b | 2.08 b | 0.94 b | 0.287 | <0.001 |
Succinivibrionaceae UCG-002 | 5.47 a | 1.88 b | 1.43 b | 0.18 c | 0.11 c | 0.272 | <0.001 |
Pseudobutyrivibrio | 4.80 a | 0.84 b | 0.46 b | 0.90 b | 0.65 b | 0.135 | <0.001 |
Butyrivibrio | 2.14 a | 0.98 c | 0.95 c | 1.64 b | 1.09 c | 0.108 | <0.001 |
Lachnospiraceae FCS020 group | 0.48 d | 0.59 d | 1.02 c | 1.70 b | 2.42 a | 0.066 | <0.001 |
Probable genus 10 | 1.22 b | 0.63 c | 0.45 c | 1.58 a | 1.71 a | 0.074 | <0.001 |
Bacillus | 0.09 b | 0.18 b | 0.13 b | 0.66 b | 4.21 a | 0.175 | <0.001 |
Christensenellaceae R-7 group | 0.83 cd | 1.37 ab | 1.40 a | 1.02 bc | 0.52 d | 0.088 | <0.001 |
Lachnospiraceae AC2044 group | 0.76 b | 0.54 b | 0.80 b | 1.41 a | 1.58 a | 0.105 | <0.001 |
Item | Storage Time 1 | SEM 2 | p-Value | ||||
---|---|---|---|---|---|---|---|
H0 | H12 | H24 | H36 | H48 | |||
Carbohydrate metabolism | 13.85 ab | 13.38 c | 13.57 bc | 13.85 ab | 14.10 a | 0.098 | <0.001 |
Metabolism of cofactors and vitamins | 13.64 | 13.56 | 13.72 | 13.37 | 13.69 | 0.120 | 0.258 |
Amino acid metabolism | 13.03 ab | 13.05 ab | 13.17 a | 13.00 ab | 12.92 b | 0.053 | 0.037 |
Metabolism of terpenoids and polyketides | 9.30 ab | 9.88 a | 9.71 ab | 9.65 ab | 9.23 b | 0.140 | 0.018 |
Metabolism of other amino acids | 7.07 | 6.99 | 6.95 | 6.84 | 6.93 | 0.139 | 0.850 |
Replication and repair | 6.28 b | 6.42 ab | 6.48 a | 6.38 ab | 6.28 b | 0.033 | 0.001 |
Energy metabolism | 5.26 | 5.49 | 5.29 | 5.33 | 5.16 | 0.083 | 0.111 |
Lipid metabolism | 4.89 | 4.91 | 4.92 | 5.10 | 4.96 | 0.076 | 0.357 |
Glycan biosynthesis and metabolism | 4.55 c | 4.93 ab | 5.08 a | 4.85 abc | 4.68 bc | 0.078 | 0.001 |
Translation | 3.55 bc | 3.65 a | 3.65 a | 3.57 ab | 3.47 c | 0.019 | <0.001 |
Folding, sorting and degradation | 3.40 | 3.33 | 3.35 | 3.33 | 3.36 | 0.035 | 0.722 |
Xenobiotics biodegradation and metabolism | 2.39 | 2.50 | 2.37 | 2.34 | 2.31 | 0.151 | 0.915 |
Biosynthesis of other secondary metabolites | 2.28 | 2.33 | 2.38 | 2.39 | 2.28 | 0.035 | 0.096 |
Nucleotide metabolism | 2.10 | 2.14 | 2.16 | 2.14 | 2.12 | 0.013 | 0.101 |
Cell motility | 2.32 a | 1.64 bc | 1.41 c | 1.83 b | 2.33 a | 0.079 | <0.001 |
Membrane transport | 1.80 ab | 1.57 c | 1.58 c | 1.71 b | 1.83 a | 0.023 | <0.001 |
Cell growth and death | 1.65 | 1.63 | 1.67 | 1.66 | 1.66 | 0.012 | 0.355 |
Transcription | 0.98 b | 1.05 a | 1.05 a | 1.01 ab | 1.00 ab | 0.012 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Ge, J.; Dai, J.; Qu, M.; Ouyang, K.; Qiu, Q. The Effects of Mixed Inoculum Storage Time on In Vitro Rumen Fermentation Characteristics, Microbial Diversity, and Community Composition. Animals 2025, 15, 5. https://doi.org/10.3390/ani15010005
Liu C, Ge J, Dai J, Qu M, Ouyang K, Qiu Q. The Effects of Mixed Inoculum Storage Time on In Vitro Rumen Fermentation Characteristics, Microbial Diversity, and Community Composition. Animals. 2025; 15(1):5. https://doi.org/10.3390/ani15010005
Chicago/Turabian StyleLiu, Chang, Jing Ge, Jiaqi Dai, Mingren Qu, Kehui Ouyang, and Qinghua Qiu. 2025. "The Effects of Mixed Inoculum Storage Time on In Vitro Rumen Fermentation Characteristics, Microbial Diversity, and Community Composition" Animals 15, no. 1: 5. https://doi.org/10.3390/ani15010005
APA StyleLiu, C., Ge, J., Dai, J., Qu, M., Ouyang, K., & Qiu, Q. (2025). The Effects of Mixed Inoculum Storage Time on In Vitro Rumen Fermentation Characteristics, Microbial Diversity, and Community Composition. Animals, 15(1), 5. https://doi.org/10.3390/ani15010005