Effects of Dietary Protein Levels on Digestion, Metabolism, Serum Biochemical Indexes, and Rumen Microflora of Lanzhou Fat-Tailed Sheep
<p>(<b>a</b>) Comparison of the differences in the Venn diagrams between the four groups. (<b>b</b>) Comparison of the differences in the dilution curves between the four groups. (<b>c</b>) Comparison of the differences in the PCoA plots between the four groups. (A, B, C, and D represent the LP group, MP group, HP group, and EHP group, respectively).</p> "> Figure 2
<p>Comparison of the differences in alpha diversity between the four groups. A, B, C, and D represent the LP group, MP group, HP group, and EHP group, respectively.</p> "> Figure 3
<p>Bacterial comparisons of the rumen in Lanzhou fat-tailed sheep in the four groups (A = LP, B = MP, C = HP, D = EHP). (<b>a</b>) At the phylum level, (<b>b</b>) at the genus level.</p> ">
1. Introduction
2. Materials and Methods
2.1. Ethics Committee Approval
2.2. Experimental Design and Animals
2.3. Diet and Feeding Management
2.4. Measurements and Sample Collection
2.5. Digestion and Metabolism Analysis
2.6. Biochemical Indexes Analysis in Serum
2.7. Rumen Bacterial Diversity Analysis
2.8. Statistical Analysis
3. Results
3.1. Apparent Digestibility of Nutrients
3.2. Nitrogen and Energy Metabolism
3.3. Serum Biochemical Indicators
3.4. Rumen Microbial Diversity and Composition
3.4.1. Alpha Diversity Analysis
3.4.2. Beta Diversity Analysis
3.4.3. Effect of Different Protein Levels in Diet on Rumen Bacterial Taxonomic Composition and Community Structure (Phylum Level) in Fat-Tailed Sheep
3.4.4. Effect of Different Protein Levels in Diet on Rumen Bacterial Taxonomic Composition and Community Structure (Genus Level) in Fat-Tailed Sheep
4. Discussion
4.1. Effect of Dietary Protein Level on Apparent Digestibility of Nutrients
4.2. Effect of Dietary Protein Level on Energy Metabolism
4.3. Effect of Dietary Protein Level on Nitrogen Metabolism
4.4. Effect of Dietary Protein Level on Serum Biochemical Indexes
4.5. Effects of Dietary Protein Level on Rumen Microbial Diversity and Community Structure
4.5.1. Effects of Dietary Protein Level on Rumen Microbial Diversity of Lanzhou Fat-Tailed Sheep
4.5.2. Effects of Dietary Protein Level on Rumen Bacterial Taxonomic Composition and Community Structure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Xu, H.; Liu, X.; Xu, H.; Cai, Y.; Lan, X. Insight into the Possible Formation Mechanism of the Intersex Phenotype of Lanzhou Fat-Tailed Sheep Using Whole-Genome Resequencing. Animals 2020, 10, 944. [Google Scholar] [CrossRef]
- Wang, X.; Xu, T.; Zhang, X.; Geng, Y.; Kang, S.; Xu, S. Effects of Dietary Protein Levels on Growth Performance, Carcass Traits, Serum Metabolites, and Meat Composition of Tibetan Sheep During the Cold Season on the Qinghai-Tibetan Plateau. Animals 2020, 10, 801. [Google Scholar] [CrossRef] [PubMed]
- Ludden, P.A.; Wechter, T.L.; Hess, B.W. Effects of Oscillating Dietary Protein on Nutrient Digestibility, Nitrogen Metabolism, and Gastrointestinal Organ Mass in Sheep. J. Anim. Sci. 2002, 80, 3021–3026. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.-F.; Wang, Y.-C.; Wang, X.; Dai, C.-P.; Wang, Q.-Y. Dietary Energy and Protein Levels on Lactation Performance and Progeny Growth of Hu Sheep. J. Appl. Anim. Res. 2022, 50, 526–533. [Google Scholar] [CrossRef]
- Wang, Y.C.; Wang, X.; Li, J.Z.; Huang, P.F.; Li, Y.L.; Ding, X.Q.; Huang, J.; Zhu, M.Z.; Yin, J.; Dai, C.P.; et al. The Impact of Lactating Hu Sheep’s Dietary Protein Levels on Lactation Performance, Progeny Growth and Rumen Development. Anim. Biotechnol. 2023, 34, 1919–1930. [Google Scholar] [CrossRef]
- Noviadi, R.; Candra, A.A.; Putri, D.D. Different Levels of Protein in Complete Feed Silage Based on Cassava Leaves on the Local Goats Performance. IOP Conf. Ser. Earth Environ. Sci. 2022, 1012, 012012. [Google Scholar] [CrossRef]
- Prado, I.N.; Campo, M.M.; Muela, E.; Valero, M.V.; Catalan, O.; Olleta, J.L.; Sañudo, C. Effects of Castration Age, Dietary Protein Level and Lysine/Methionine Ratio on Animal Performance, Carcass and Meat Quality of Friesian Steers Intensively Reared. Animal 2014, 8, 1561–1568. [Google Scholar] [CrossRef]
- Wang, Y.; Shelby, S.; Apple, J.; Coffey, K.; Pohlman, F.; Huang, Y. Effects of Two Dietary Crude Protein Levels on Finishing Performance, Meat Quality, and Gene Expression of Market Lambs. Anim. Sci. J. 2021, 92, e13641. [Google Scholar] [CrossRef]
- da Costa, N.; McGillivray, C.; Bai, Q.; Chang, K.-C.; Wood, J.D.; Evans, G. Restriction of Dietary Energy and Protein Induces Molecular Changes in Young Porcine Skeletal Muscles. J. Nutr. 2004, 134, 2191–2199. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wang, Z.; Nie, H.; Ma, T.; Wang, Z.; Wang, F. Determination of Energy and Protein Requirements for Maintenance and Lactation of Dorper × Hu Crossbred Sheep. Small Rumin. Res. 2020, 190, 106162. [Google Scholar] [CrossRef]
- Cutrim, D.O.; Alves, K.S.; Santos, R.d.C.d.; da Mata, V.J.V.; Oliveira, L.R.S.; Gomes, D.; Mezzomo, R. Body Composition and Energy and Protein Nutritional Requirements for Weight Gain in Santa Ines Crossbred Sheep. Trop. Anim. Health Prod. 2016, 48, 683–688. [Google Scholar] [CrossRef] [PubMed]
- China’s feeding standard (NY/T816-2021). Available online: https://www.chinesestandard.net/PDF/English.aspx/NYT816-2021 (accessed on 22 December 2024).
- Cui, X.; Wang, Z.; Yan, T.; Chang, S.; Hou, F. Modulation of Feed Digestibility, Nitrogen Metabolism, Energy Utilisation and Serum Biochemical Indices by Dietary Ligularia virgaurea Supplementation in Tibetan Sheep. Animal 2023, 17, 100910. [Google Scholar] [CrossRef]
- Mohammed, A.; Dei, H.K.; Wesseh, A.; Roessler, R.; Schlecht, E. Processed False Yam Seed Meals in Broiler Chicken Diets: Effects on Feed Preference and Apparent Nutrient Digestibility. Trop. Anim. Health Prod. 2020, 52, 3621–3629. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Zhou, J.; Wang, W.; Degen, A.; Guo, Y.; Kang, J.; Xu, W.; Liu, P.; Yang, C.; Shi, F.; et al. Tibetan Sheep Are Better Able to Cope with Low Energy Intake Than Small-Tailed Han Sheep Due to Lower Maintenance Energy Requirements and Higher Nutrient Digestibilities. Anim. Feed. Sci. Technol. 2019, 254, 114200. [Google Scholar] [CrossRef]
- Blaxter, K.L.; Clapperton, J.L. Prediction of the Amount of Methane Produced by Ruminants. Br. J. Nutr. 1965, 19, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yan, T.; Xie, K.; Chang, S.; Zhang, C.; Hou, F. Determination of Maintenance Energy Requirement and Responses of Dry Ewes to Dietary Inclusion of Lucerne Versus Concentrate Meal. Animal 2021, 15, 100200. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Author Correction: Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using Qiime 2. Nat. Biotechnol. 2019, 37, 1091. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The Silva Ribosomal Rna Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, L.; Li, Y.; Wu, H.; Lu, L.; Zang, R.; Xu, H. Effects of Tail Vegetable Fermented Feed on the Growth and Rumen Microbiota of Lambs. Animals 2024, 14, 303. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.; Knight, R. Unifrac: A New Phylogenetic Method for Comparing Microbial Communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Xu, W.; Wei, C.; Zhang, Z.; Jiang, C.; Chen, X. Effects of Decreasing Dietary Crude Protein Level on Growth Performance, Nutrient Digestion, Serum Metabolites, and Nitrogen Utilization in Growing Goat Kids (Capra hircus). Animals 2020, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kim, S.J.; Kim, N.Y.; Jang, S.Y.; Lee, J.W.; Yun, Y.S.; Moon, S.H. Effects of Dietary Crude Protein Levels on Intake, Digestibility, and Crude Protein Balance of Growing Korean Native Goats (Capra hircus coreanae). J. Anim. Plant Sci. 2018, 28, 981–988. [Google Scholar]
- Lee, C.; Hristov, A.N.; Heyler, K.S.; Cassidy, T.W.; Long, M.; Corl, B.A.; Karnati, S.K.R. Effects of Dietary Protein Concentration and Coconut Oil Supplementation on Nitrogen Utilization and Production in Dairy Cows. J. Dairy Sci. 2011, 94, 5544–5557. [Google Scholar] [CrossRef]
- Sniffen, C.; Robinson, P. Protein and Fiber Digestion, Passage, and Utilization in Lactating Cows. Microbial Growth and Flow as Influenced by Dietary Manipulations. J. Dairy Sci. 1987, 70, 425–441. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Li, Q.; Li, F.; Ma, Z.; Li, F.; Wang, Z.; Chen, L.; Yang, X.; Wang, X.; et al. Effects of Dietary Forage Neutral Detergent Fiber and Rumen Degradable Starch Ratios on Chewing Activity, Ruminal Fermentation, Ruminal Microbes and Nutrient Digestibility of Hu Sheep Fed a Pelleted Total Mixed Ration. J. Anim. Sci. 2024, 102, skae100. [Google Scholar] [CrossRef]
- Yurtman, I.Y.; Savas, T.; Karaagac, F.; Coskuntuna, L. Effects of Daily Protein Intake Levels on the Oral Stereotypic Behaviours in Energy Restricted Lambs. Appl. Anim. Behav. Sci. 2002, 77, 77–88. [Google Scholar] [CrossRef]
- Pereira, E.S.; Lima, F.W.R.; Marcondes, M.I.; Rodrigues, J.P.P.; Campos, A.C.N.; Silva, L.P.; Bezerra, L.R.; Pereira, M.W.F.; Oliveira, R.L. Energy and Protein Requirements of Santa Ines Lambs, a Breed of Hair Sheep. Animal 2017, 11, 2165–2174. [Google Scholar] [CrossRef] [PubMed]
- Tyrrell, H.; Moe, P. Effect of Intake on Digestive Efficiency. J. Dairy Sci. 1975, 58, 1151–1163. [Google Scholar] [CrossRef]
- Holter, J.; Young, A. Methane Prediction in Dry and Lactating Holstein Cows. J. Dairy Sci. 1992, 75, 2165–2175. [Google Scholar] [CrossRef]
- Yang, Z.B.; Yang, W.R.; Zhang, C.Y.; Song, J.L.; Jiang, S.Z.; Li, S.Q. Tudy on the Correlation between Urinary Energy and Urinary Nitrogen Excretion of Qingshan Sheep. China Herbiv. Sci. 2000, 6, 9–10. [Google Scholar]
- Wang, S.Y.; Zhao, X.Q.; Liang, J.C.; Ouyang, Y.N.; Li, Y.J.; Xue, B.; Hong, Q.H.; Li, W.J. Effect of Dietary Protein Level on Energy Metabolism of Yunnan Semi-Fine Wool Sheep with Empty Pregnancy. China Feed 2021, 7, 87–91. [Google Scholar]
- Hoffman, P.; Esser, N.; Bauman, L.; Denzine, S.; Engstrom, M.; Chester-Jones, H. Short Communication: Effect of Dietary Protein on Growth and Nitrogen Balance of Holstein Heifers. J. Dairy Sci. 2001, 84, 843–847. [Google Scholar] [CrossRef]
- Bezerra, L.R.; Oliveira, W.D.; Silva, T.P.; Torreão, J.N.; Marques, C.A.; Araújo, M.J.; Oliveira, R.L. Comparative Hematological Analysis of Morada Nova and Santa Inês Ewes in All Reproductive Stages. Pesqui. Veterinária Bras. 2017, 37, 408–414. [Google Scholar] [CrossRef]
- Cortese, M.; Segato, S.; Andrighetto, I.; Ughelini, N.; Chinello, M.; Schiavon, E.; Marchesini, G. The Effects of Decreasing Dietary Crude Protein on the Growth Performance, Feed Efficiency and Meat Quality of Finishing Charolais Bulls. Animals 2019, 9, 906. [Google Scholar] [CrossRef]
- Bilancio, G.; Cavallo, P.; Ciacci, C.; Cirillo, M. Dietary Protein, Kidney Function and Mortality: Review of the Evidence from Epidemiological Studies. Nutrients 2019, 11, 196. [Google Scholar] [CrossRef]
- Li, Z.J.; Sui, D.; Zhou, Y.X. Effect of Dietary Protein Level on Nutrient Digestion Metabolism and Serum Biochemical Indexes in Tan Sheep. Chin. J. Anim. Sci. 2014, 50, 39–43. [Google Scholar]
- Yuan, X.-L.; Cao, M.; Liu, X.-M.; Du, Y.-M.; Shen, G.-M.; Zhang, Z.-F.; Li, J.-H.; Zhang, P. Composition and Genetic Diversity of the Nicotiana Tabacum Microbiome in Different Topographic Areas and Growth Periods. Int. J. Mol. Sci. 2018, 19, 3421. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, T.; Wang, X.; Geng, Y.; Zhao, N.; Hu, L.; Liu, H.; Kang, S.; Xu, S. Effect of Dietary Protein Levels on Dynamic Changes and Interactions of Ruminal Microbiota and Metabolites in Yaks on the Qinghai-Tibetan Plateau. Front. Microbiol. 2021, 12, 684340. [Google Scholar] [CrossRef] [PubMed]
- Allan, K. What Is Microbial Community Ecology? ISME J. 2009, 3, 1223–1230. [Google Scholar]
- Yu, J.; Li, C.; Li, X.; Liu, K.; Liu, Z.; Ni, W.; Zhou, P.; Wang, L.; Hu, S. Isolation and Functional Analysis of Acid-Producing Bacteria from Bovine Rumen. PeerJ 2023, 11, e16294. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, H.; Hao, L.; Cao, X.; Degen, A.; Zhou, J.; Zhang, C. Rumen Bacterial Community of Grazing Lactating Yaks (Poephagus grunniens) Supplemented with Concentrate Feed and/or Rumen-Protected Lysine and Methionine. Animals 2021, 11, 2425. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.; Prewer, E.; Kutz, S.; Leclerc, L.M.; Vilaça, S.T.; Kyle, C.J. Geography, Seasonality, and Host-Associated Population Structure Influence the Fecal Microbiome of a Genetically Depauparate Arctic Mammal. Ecol. Evol. 2019, 9, 13202–13217. [Google Scholar] [CrossRef]
- Brulc, J.M.; Antonopoulos, D.A.; Berg Miller, M.E.; Wilson, M.K.; Yannarell, A.C.; Dinsdale, E.A.; Edwards, R.E.; Frank, E.D.; Emerson, J.B.; Wacklin, P.; et al. Gene-Centric Metagenomics of the Fiber-Adherent Bovine Rumen Microbiome Reveals Forage Specific Glycoside Hydrolases. Proc. Natl. Acad. Sci. USA 2009, 106, 1948–1953. [Google Scholar] [CrossRef] [PubMed]
- Fernando, S.C.; Purvis, H.T.; Najar, F.Z.; Sukharnikov, L.O.; Krehbiel, C.R.; Nagaraja, T.G.; Roe, B.A.; Desilva, U. Rumen Microbial Population Dynamics During Adaptation to a High-Grain Diet. Appl. Environ. Microbiol. 2010, 76, 7482–7490. [Google Scholar] [CrossRef] [PubMed]
- Jami, E.; White, B.A.; Mizrahi, I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS ONE 2014, 9, 1, e85423. [Google Scholar] [CrossRef]
- Khafipour, E.; Li, S.; Tun, H.M.; Derakhshani, H.; Moossavi, S.; Plaizier, J.C. Effects of Grain Feeding on Microbiota in the Digestive Tract of Cattle. Anim. Front. 2016, 6, 13–19. [Google Scholar] [CrossRef]
- Singh, K.M.; Reddy, B.; Patel, D.; Patel, A.K.; Parmar, N.; Patel, A.; Patel, J.B.; Joshi, C.G. High Potential Source for Biomass Degradation Enzyme Discovery and Environmental Aspects Revealed through Metagenomics of Indian Buffalo Rumen. Biomed Res. Int. 2014, 2014, 267189. [Google Scholar] [CrossRef]
- Bekele, A.Z.; Koike, S.; Kobayashi, Y. Genetic Diversity and Diet Specificity of Ruminal Prevotella Revealed by 16s Rrna Gene-Based Analysis. FEMS Microbiol. Lett. 2010, 305, 49–57. [Google Scholar] [CrossRef]
- Pohlin, F.; Frei, C.; Meyer, L.C.; Roch, F.F.; Quijada, N.M.; Conrady, B.; Neubauer, V.; Hofmeyr, M.; Cooper, D.; Stalder, G.; et al. Capture and Transport of White Rhinoceroses (Ceratotherium simum) Cause Shifts in Their Fecal Microbiota Composition Towards Dysbiosis. Conserv. Physiol. 2023, 11, coad089. [Google Scholar] [CrossRef] [PubMed]
- Reigstad, C.S.; Kashyap, P.C. Beyond Phylotyping: Understanding the Impact of Gut Microbiota on Host Biology. Neurogastroenterol. Motil. 2013, 25, 358–372. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, D.M.; Weimer, P.J. Dominance of Prevotella and Low Abundance of Classical Ruminal Bacterial Species in the Bovine Rumen Revealed by Relative Quantification Real-Time Pcr. Appl. Microbiol. Biotechnol. 2007, 75, 165–174. [Google Scholar] [CrossRef]
- Carberry, C.A.; Kenny, D.A.; Han, S.; McCabe, M.S.; Waters, S.M. Effect of Phenotypic Residual Feed Intake and Dietary Forage Content on the Rumen Microbial Community of Beef Cattle. Appl. Environ. Microbiol. 2012, 78, 4949–4958. [Google Scholar] [CrossRef] [PubMed]
- Ellison, M.; Conant, G.; Lamberson, W.; Cockrum, R.; Austin, K.; Rule, D.; Cammack, K. Diet and Feed Efficiency Status Affect Rumen Microbial Profiles of Sheep. Small Rumin. Res. 2017, 156, 12–19. [Google Scholar] [CrossRef]
- Pang, K.; Wang, J.; Chai, S.; Yang, Y.; Wang, X.; Liu, S.; Ding, C.; Wang, S. Ruminal Microbiota and Muscle Metabolome Characteristics of Tibetan Plateau Yaks Fed Different Dietary Protein Levels. Front. Microbiol. 2024, 15, 1275865. [Google Scholar] [CrossRef] [PubMed]
- An, D.; Dong, X.; Dong, Z. Prokaryote Diversity in the Rumen of Yak (Bos grunniens) and Jinnan Cattle (Bos taurus) Estimated by 16s Rdna Homology Analyses. Anaerobe 2005, 11, 207–215. [Google Scholar] [CrossRef]
- Ma, Y.; Deng, X.; Yang, X.; Wang, J.; Li, T.; Hua, G.; Han, D.; Da, L.; Li, R.; Rong, W.; et al. Characteristics of Bacterial Microbiota in Different Intestinal Segments of Aohan Fine-Wool Sheep. Front. Microbiol. 2022, 13, 874536. [Google Scholar] [CrossRef]
- He, Q.; Zou, T.; Chen, J.; He, J.; Jian, L.; Xie, F.; You, J.; Wang, Z. Methyl-Donor Micronutrient for Gestating Sows: Effects on Gut Microbiota and Metabolome in Offspring Piglets. Front. Nutr. 2021, 8, 675640. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, M.; Chen, Y.; Huang, Y.; Cheng, Z.; Datsomor, O.; Jama, S.M.; Zhu, L.; Li, Y.; Zhao, G.; et al. Changes in the Rumen Development, Rumen Fermentation, and Rumen Microbiota Community in Weaned Calves During Steviol Glycosides Treatment. Front. Microbiol. 2024, 15, 1395665. [Google Scholar] [CrossRef]
Item | Treatments | |||
---|---|---|---|---|
LP | MP | HP | EHP | |
Ingredients (%) | ||||
Wheat straw | 54.00 | 52.00 | 52.70 | 52.00 |
Alfalfa hay | 16.00 | 16.00 | 17.30 | 18.00 |
Corn | 18.30 | 13.60 | 15.00 | 9.50 |
Soybean meal | 4.60 | 6.00 | 9.70 | 11.50 |
wheat bran | 5.27 | 8.57 | 3.47 | 7.17 |
Premix | 1.00 | 1.00 | 1.00 | 1.00 |
Sodium bicarbonate | 0.07 | 0.07 | 0.07 | 0.07 |
Salt | 0.76 | 0.76 | 0.76 | 0.76 |
Nutrient level | ||||
ME MJ/d | 7.20 | 7.22 | 7.28 | 7.22 |
CP (%) | 9.47 | 10.53 | 11.56 | 12.61 |
RDP (%) | 5.89 | 6.84 | 7.34 | 8.17 |
RUP (%) | 3.58 | 3.69 | 4.22 | 4.44 |
EE (%) | 2.30 | 2.27 | 2.18 | 2.15 |
ADF (%) | 39.83 | 40.00 | 39.79 | 40.25 |
NDF (%) | 56.83 | 57.34 | 56.10 | 57.14 |
Calcium (%) | 0.60 | 0.64 | 0.64 | 0.66 |
Phosphorus (%) | 0.23 | 0.27 | 0.24 | 0.28 |
Item | Treatment | p-Value | |||
---|---|---|---|---|---|
LP | MP | HP | EHP | ||
Initial body weight (IBW), kg | 25.0 ± 1.9 | 25.3 ± 2.3 | 25.3 ± 2.9 | 25.0 ± 2.3 | 1.000 |
Final body weight (FBW), kg | 26.8 ± 2.2 | 25.9 ± 2.3 | 26.9 ± 2.7 | 26.5 ± 2.2 | 0.990 |
Live weight gain (LWG), g | 31.2 ± 6.7 | 47.8 ± 12.3 | 33.1 ± 11.2 | 26.7 ± 8.6 | 0.492 |
Dry matter intake (DMI), kg/d | 1.42 ± 0.02 | 1.36 ± 0.02 | 1.37 ± 0.02 | 1.40 ± 0.02 | 0.233 |
Digestibility (%) | |||||
DM | 55.75 ± 0.60 c | 59.96 ± 0.64 b | 63.89 ± 0.85 a | 64.40 ± 0.55 a | <0.001 |
CP | 56.71 ± 0.62 c | 60.52 ± 0.65 b | 63.92 ± 0.79 a | 64.02 ± 0.57 a | <0.001 |
ADF | 62.17 ± 0.48 c | 64.74 ± 0.65 b | 67.99 ± 0.96 a | 68.73 ± 0.77 a | <0.001 |
NDF | 65.54 ± 0.47 b | 66.32 ± 0.54 b | 68.64 ± 0.78 a | 68.29 ± 0.49 a | <0.001 |
Item | Treatment | p-Value | |||
---|---|---|---|---|---|
LP | MP | HP | EHP | ||
Nitrogen intake (NI), g/d | 10.04 ± 0.05 d | 11.80 ± 0.04 c | 13.15 ± 0.02 b | 15.22 ± 0.04 a | <0.001 |
Fecal nitrogen output (FN), g/d | 4.34 ± 0.06 c | 4.66 ± 0.08 b | 4.78 ± 0.11 b | 5.50 ± 0.09 a | <0.001 |
Urinary nitrogen output (UN), g/d | 0.82 ± 0.03 c | 0.91 ± 0.02 b | 1.00 ± 0.03 a | 1.06 ± 0.02 a | <0.001 |
Nitrogen retention (NR), g/d | 4.88 ± 0.08 d | 6.23 ± 0.08 c | 7.37 ± 0.11 b | 8.66 ± 0.10 a | <0.001 |
Efficiency | |||||
FN/NI | 0.43 ± 0.01 a | 0.39 ± 0.01 b | 0.36 ± 0.01 c | 0.36 ± 0.01 c | <0.001 |
UN/NI | 0.08 ± 0.00 a | 0.08 ± 0.00 a | 0.08 ± 0.00 a | 0.07 ± 0.00 b | 0.001 |
MN/NI | 0.51 ± 0.01 a | 0.47 ± 0.01 b | 0.44 ± 0.01 c | 0.43 ± 0.01 c | <0.001 |
Item | Treatment | p-Value | |||
---|---|---|---|---|---|
LP | MP | HP | EHP | ||
GE intake, MJ/d | 15.93 ± 0.08 | 15.99 ± 0.05 | 15.97 ± 0.02 | 15.84 ± 0.04 | 0.144 |
FE output, MJ/d | 6.01 ± 0.08 | 5.92 ± 0.10 | 5.80 ± 0.14 | 6.08 ± 0.10 | 0.250 |
UE output, MJ/d | 0.32 ± 0.00 c | 0.36 ± 0.00 b | 0.41 ± 0.00 a | 0.41 ± 0.00 a | <0.001 |
CH4-E, MJ/d | 1.37 ± 0.00 | 1.37 ± 0.00 | 1.37 ± 0.00 | 1.37 ± 0.00 | 0.415 |
DE, MJ/d | 9.92 ± 0.11 ab | 10.07 ± 0.10 ab | 10.18 ± 0.14 a | 9.75 ± 0.10 b | <0.001 |
ME, MJ/d | 8.23 ± 0.11 ab | 8.33 ± 0.10 a | 8.40 ± 0.14 a | 7.98 ± 0.10 b | 0.01 |
DE/GE, % | 62.24 ± 0.52 ab | 62.96 ± 0.59 ab | 63.70 ± 0.87 a | 61.57 ± 0.59 b | 0.02 |
ME/GE, % | 51.62 ± 0.54 ab | 52.11 ± 0.59 ab | 52.56 ± 0.87 a | 50.37 ± 0.59 b | 0.02 |
Item | Treatment | p-Value | |||
---|---|---|---|---|---|
LP | MP | HP | EHP | ||
Total protein, g/L | 71.24 ± 2.31 | 70.42 ± 2.52 | 66.36 ± 1.82 | 70.90 ± 1.05 | 0.314 |
Albumin, g/L | 25.04 ± 0.47 | 25.28 ± 0.61 | 23.56 ± 0.65 | 25.90 ± 1.12 | 0.202 |
Globulin, g/L | 46.20 ± 2.25 | 45.74 ± 1.83 | 42.20 ± 1.87 | 45.00 ± 1.57 | 0.466 |
White sphere ratio | 0.55 ± 0.03 | 0.55 ± 0.02 | 0.56 ± 0.04 | 0.58 ± 0.04 | 0.908 |
Urea, mmol/L | 3.30 ± 0.44 d | 4.62 ± 0.21 c | 6.85 ± 0.22 b | 8.06 ± 0.47 a | <0.001 |
Glucose, mmol/L | 2.07 ± 0.21 | 2.23 ± 0.18 | 2.05 ± 0.08 | 1.99 ± 0.22 | 0.805 |
Total cholesterol, mmol/L | 1.74 ± 0.11 | 1.92 ± 0.29 | 1.56 ± 0.16 | 1.83 ± 0.25 | 0.670 |
Triglycerides, mmol/L | 0.35 ± 0.01 | 0.36 ± 0.01 | 0.34 ± 0.01 | 0.32 ± 0.02 | 0.280 |
Phylum | LP | MP | HP | EHP | p-Value |
---|---|---|---|---|---|
Bacteroidota | 46.51 ± 2.25 | 45.39 ± 1.88 | 44.62 ± 3.28 | 46.45 ± 2.84 | 0.947 |
Firmicutes | 33.47 ± 2.38 | 33.85 ± 1.32 | 37.59 ± 4.91 | 32.68 ± 4.47 | 0.776 |
Verrucomicrobiota | 11.43 ± 0.49 | 14.84 ± 1.58 | 11.73 ± 1.32 | 13.30 ± 1.46 | 0.253 |
Proteobacteria | 4.16 ± 0.96 | 2.34 ± 0.73 | 1.71 ± 0.50 | 2.62 ± 0.66 | 0.152 |
Patescibacteria | 1.57 ± 0.23 | 1.30 ± 0.27 | 1.67 ± 0.23 | 2.44 ± 0.89 | 0.434 |
Cyanobacteria | 1.65 ± 0.34 | 0.78 ± 0.19 | 1.57 ± 0.52 | 1.42 ± 0.31 | 0.337 |
Actinobacteriota | 0.09 ± 0.05 | 0.92 ± 0.81 | 0.08 ± 0.05 | 0.23 ± 0.11 | 0.435 |
Spirochaetota | 0.46 ± 0.22 | 0.15 ± 0.05 | 0.25 ± 0.06 | 0.31 ± 0.10 | 0.408 |
Planctomycetota | 0.18 ± 0.09 | 0.21 ± 0.06 | 0.27 ± 0.10 | 0.17 ± 0.08 | 0.855 |
Elusimicrobiota | 0.14 ± 0.05 | 0.05 ± 0.03 | 0.10 ± 0.06 | 0.12 ± 0.06 | 0.662 |
Genus | LP | MP | HP | EHP | p-Value |
---|---|---|---|---|---|
Prevotella | 29.85 ± 3.45 | 32.74 ± 2.26 | 29.93 ± 1.45 | 32.90 ± 3.28 | 0.767 |
uncultured_rumen_bacterium | 20.20 ± 0.72 | 19.57 ± 2.27 | 16.07 ± 2.51 | 17.90 ± 1.29 | 0.415 |
Rikenellaceae_RC9_gut_group | 9.29 ± 2.55 | 5.77 ± 1.20 | 5.80 ± 1.35 | 6.96 ± 1.48 | 0.457 |
Christensenellaceae_R_7_group | 3.52 ± 0.89 b | 6.09 ± 0.56 ab | 5.25 ± 1.03 ab | 6.84 ± 1.31 a | 0.142 |
Lachnospiraceae_XPB1014_group | 1.70 ± 0.57 | 3.24 ± 0.98 | 2.25 ± 0.37 | 2.23 ± 0.43 | 0.405 |
Quinella | 0.38 ± 0.27 | 0.72 ± 0.30 | 7.61 ± 7.18 | 0.46 ± 0.39 | 0.431 |
Succiniclasticum | 2.08 ± 0.31 | 1.62 ± 0.17 | 2.30 ± 0.63 | 2.01 ± 0.65 | 0.799 |
Prevotellaceae_UCG_001 | 1.66 ± 0.23 | 1.61 ± 0.21 | 1.84 ± 0.52 | 1.76 ± 0.33 | 0.962 |
Lachnospiraceae_AC2044_group | 1.52 ± 0.30 | 1.90 ± 0.31 | 1.09 ± 0.27 | 1.82 ± 0.59 | 0.474 |
Saccharofermentans | 1.41 ± 0.32 | 1.51 ± 0.14 | 1.39 ± 0.37 | 1.68 ± 0.28 | 0.896 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, N.; Feng, W.; Ma, C.; Li, H.; Zhang, J.; Zheng, J.; Guo, P. Effects of Dietary Protein Levels on Digestion, Metabolism, Serum Biochemical Indexes, and Rumen Microflora of Lanzhou Fat-Tailed Sheep. Animals 2025, 15, 25. https://doi.org/10.3390/ani15010025
Jiao N, Feng W, Ma C, Li H, Zhang J, Zheng J, Guo P. Effects of Dietary Protein Levels on Digestion, Metabolism, Serum Biochemical Indexes, and Rumen Microflora of Lanzhou Fat-Tailed Sheep. Animals. 2025; 15(1):25. https://doi.org/10.3390/ani15010025
Chicago/Turabian StyleJiao, Na, Wangmei Feng, Chi Ma, Honghe Li, Junsong Zhang, Juanshan Zheng, and Penghui Guo. 2025. "Effects of Dietary Protein Levels on Digestion, Metabolism, Serum Biochemical Indexes, and Rumen Microflora of Lanzhou Fat-Tailed Sheep" Animals 15, no. 1: 25. https://doi.org/10.3390/ani15010025
APA StyleJiao, N., Feng, W., Ma, C., Li, H., Zhang, J., Zheng, J., & Guo, P. (2025). Effects of Dietary Protein Levels on Digestion, Metabolism, Serum Biochemical Indexes, and Rumen Microflora of Lanzhou Fat-Tailed Sheep. Animals, 15(1), 25. https://doi.org/10.3390/ani15010025