Changes in Expression of Key Genes in Ceca of Chicken Broilers as Affected by Glyphosate, Antibiotics and a Coccidiostat
<p>The dynamics of expression levels of key genes in the cecal tissue of Ross 308 broiler chicken groups: (<b>a</b>) at the age of 7 days; (<b>b</b>) 14 days; and (<b>c</b>) 40 days. Red and blue bars on the graphs, respectively, indicate the fold downregulation or upregulation in the level of gene expression in the experimental groups (GLY, GLY+ANT, GLY+CS) relative to Group CONT. * Significant difference compared to Group CONT.</p> "> Figure 1 Cont.
<p>The dynamics of expression levels of key genes in the cecal tissue of Ross 308 broiler chicken groups: (<b>a</b>) at the age of 7 days; (<b>b</b>) 14 days; and (<b>c</b>) 40 days. Red and blue bars on the graphs, respectively, indicate the fold downregulation or upregulation in the level of gene expression in the experimental groups (GLY, GLY+ANT, GLY+CS) relative to Group CONT. * Significant difference compared to Group CONT.</p> ">
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, Diets, and Zootechnical Analyses
2.2. Gene Expression Analysis
2.3. Statistical Analyses
3. Results
3.1. Analyses of Zootechnical Characteristics
3.2. Alterations in Gene Expression in Cecum
4. Discussion
4.1. Changes in BW and Expression of Broiler Performance-Related Genes
4.2. Genes Associated with the Barrier Function of the Digestive System
4.3. Immunity-Related Genes
4.4. Genes Associated with Antioxidant Defense
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dayan, F.E.; Barker, A.; Takano, H.; Bough, R.; Ortiz, M.; Duke, S.O. 4.04—Herbicide mechanism of action and resistance. In Reference Module in Life Sciences, Comprehensive Biotechnology, 3rd ed.; Moo-Young, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 4, pp. 36–48. [Google Scholar] [CrossRef]
- Klümper, W.; Qaim, M. A meta-analysis of the impacts of genetically modified crops. PLoS ONE 2014, 9, e111629. [Google Scholar] [CrossRef]
- Kochish, I.I.; Romanov, M.N.; Myasnikova, O.V.; Smolensky, V.I.; Martynov, V.V.; Nikonov, I.N.; Selina, M.V.; Kolesnikova, R.R.; Bernikova, K.E.; Motin, M.S. Practical Recommendations for the Use of Feed Additives to Improve the Productivity and Stress Resistance of Egg Poultry; Sel’skokhozyaistvennye tekhnologii: Moscow, Russia, 2019; ISBN 978-5-6043642-9-1. Available online: https://www.researchgate.net/publication/371539983 (accessed on 28 September 2024). (In Russian)
- Bratishko, N.I.; Gaviley, E.V.; Pritulenko, O.V.; Tereshchenko, A.V. Triticale in feeding meat-egg chickens. Pticevod. Poult. Farm. 2012, 4, 41–43. Available online: https://www.elibrary.ru/item.asp?id=17668326 (accessed on 28 September 2024). (In Russian).
- Gaviley, O.V.; Katerynych, O.O.; Ionov, I.A.; Dekhtiarova, O.O.; Griffin, D.K.; Romanov, M.N. Triticale: A general overview of its use in poultry production. Encyclopedia 2024, 4, 395–414. [Google Scholar] [CrossRef]
- Duke, S.O. The history and current status of glyphosate. Pest Manag. Sci. 2018, 74, 1027–1034. [Google Scholar] [CrossRef]
- de Morais Valentim, J.M.B.; Coradi, C.; Viana, N.P.; Fagundes, T.R.; Micheletti, P.L.; Gaboardi, S.C.; Fadel, B.; Pizzatti, L.; Candiotto, L.Z.P.; Panis, C. Glyphosate as a food contaminant: Main sources, detection levels, and implications for human and public health. Foods 2024, 13, 1697. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.P.; Tsutsui, K.; Mohanty, B. Endocrine disrupting pesticides impair the neuroendocrine regulation of reproductive behaviors and secondary sexual characters of red munia (Amandava amandava). Physiol. Behav. 2017, 173, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Cattani, D.; Cesconetto, P.A.; Tavares, M.K.; Parisotto, E.B.; De Oliveira, P.A.; Rieg, C.E.H.; Leite, M.C.; Prediger, R.D.S.; Wendt, N.C.; Razzera, G.; et al. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: Implication of glutamate excitotoxicity and oxidative stress. Toxicology 2017, 387, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Fréville, M.; Estienne, A.; Ramé, C.; Lefort, G.; Chahnamian, M.; Staub, C.; Venturi, E.; Lemarchand, J.; Maximin, E.; Hondelatte, A.; et al. Chronic dietary exposure to a glyphosate-based herbicide results in total or partial reversibility of plasma oxidative stress, cecal microbiota abundance and short-chain fatty acid composition in broiler hens. Front. Physiol. 2022, 13, 974688. [Google Scholar] [CrossRef]
- Martínez, M.-A.; Ares, I.; Rodríguez, J.-L.; Martínez, M.; Martínez-Larrañaga, M.-R.; Anadón, A. Neurotransmitter changes in rat brain regions following glyphosate exposure. Environ. Res. 2018, 161, 212–219. [Google Scholar] [CrossRef]
- Agostini, L.P.; Dettogni, R.S.; dos Reis, R.S.; Stur, E.; dos Santos, E.V.W.; Ventorim, D.P.; Garcia, F.M.; Cardoso, R.C.; Graceli, J.B.; Louro, I.D. Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies. Sci. Total Environ. 2020, 705, 135808. [Google Scholar] [CrossRef]
- Yildirim, E.A.; Laptev, G.Y.; Tiurina, D.G.; Gorfunkel, E.P.; Ilina, L.A.; Filippova, V.A.; Dubrovin, A.V.; Brazhnik, E.A.; Novikova, N.I.; Melikidi, V.K.; et al. Investigating adverse effects of chronic dietary exposure to herbicide glyphosate on zootechnical characteristics and clinical, biochemical and immunological blood parameters in broiler chickens. Vet. Res. Commun. 2024, 48, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, X. Alteration in the cytokine levels and histopathological damage in common carp induced by glyphosate. Chemosphere 2015, 128, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.P.K.; Sethi, N.; Mohan, A.; Datta, S.; Girdhar, M. Glyphosate toxicity for animals. Environ. Chem. Lett. 2018, 16, 401–426. [Google Scholar] [CrossRef]
- Moreau, J.; Monceau, K.; Crépin, M.; Tochon, F.D.; Mondet, C.; Fraikin, M.; Teixeira, M.; Bretagnolle, V. Feeding partridges with organic or conventional grain triggers cascading effects in life-history traits. Environ. Pollut. 2021, 278, 116851. [Google Scholar] [CrossRef] [PubMed]
- Laptev, G.Y.; Tiurina, D.G.; Yildirim, E.A.; Gorfunkel, E.P.; Ilina, L.A.; Filippova, V.A.; Dubrovin, A.V.; Dubrovina, A.S.; Brazhnik, E.A.; Novikova, N.I.; et al. Effects of glyphosate, antibiotics and an anticoccidial drug on pancreatic gene expression and blood physiology in broilers. J. Zhejiang Univ. Sci. B, 2024; in press. [Google Scholar] [CrossRef]
- Fisinin, V.I.; Surai, P. Gut immunity in birds: Facts and reflections (review). Sel’skokhozyaistvennaya Biol. Agric. Biol. 2013, 48, 3–25. Available online: http://www.agrobiology.ru/4-2013fisinin.html (accessed on 28 September 2024). (In Russian with English summary). [CrossRef]
- Yang, X.; Tai, Y.; Ma, Y.; Xu, Z.; Hao, J.; Han, D.; Li, J.; Deng, X. Cecum microbiome and metabolism characteristics of Silky Fowl and White Leghorn chicken in late laying stages. Front. Microbiol. 2022, 13, 984654. [Google Scholar] [CrossRef]
- Videnska, P.; Sedlar, K.; Lukac, M.; Faldynova, M.; Gerzova, L.; Cejkova, D.; Sisak, F.; Rychlik, I. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS ONE 2014, 9, e115142. [Google Scholar] [CrossRef]
- Tyurina, D.G.; Laptev, G.Y.; Yildirim, E.A.; Ilyina, L.A.; Filippova, V.A.; Brazhnik, E.A.; Tarlavin, N.V.; Kalitkina, K.A.; Ponomareva, E.S.; Dubrovin, A.V.; et al. Influence of antibiotics, glyphosate and a Bacillus sp. strain on productivity performance and gene expression in cross Ross 308 broiler chickens (Gallus gallus L.). Sel’skokhozyaistvennaya Biol. [Agric. Biol.] 2022, 57, 1147–1165. [Google Scholar] [CrossRef]
- Bondarenko, Y.V.; Ostapenko, V.I.; Ali, O.H.; Bulchenko, I.A.; Shubin, P.I. Sexual dimorphism and sex determination of broilers of the Ross 308 cross. Ptakhivnytstvo [Poult. Farm.] 2013, 69, 51–54, (In Russian with English summary). [Google Scholar]
- Egorov, I.A.; Manukyan, V.A.; Lenkova, T.N.; Okolelova, T.M.; Lukashenko, V.S.; Shevyakov, A.N.; Ignatova, G.V.; Egorova, T.V.; Andrianova, E.N.; Rozanov, B.L.; et al. Methodology for Scientific and Production Research on Poultry Feeding. Molecular Genetic Methods for Determining Gut Microflora; Fisinin, V.I., Ed.; Russian Academy of Agricultural Sciences, State Scientific Institution All-Russian Research and Technological Institute of Poultry Farming: Sergiev Posad, Russia, 2013; Available online: https://www.elibrary.ru/item.asp?id=21548916 (accessed on 28 September 2024). (In Russian)
- Sapra, R.L. How to calculate an adequate sample size? In How to Practice Academic Medicine and Publish from Developing Countries? Springer: Singapore, 2022; pp. 81–93. ISBN 9789811652479/9789811652486. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Chen, S.; Chen, H. Cohen’s f statistic. In Encyclopedia of Research Design; Salkind, N.J., Ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2010; pp. 186–188. ISBN 9781412961271/9781412961288. [Google Scholar] [CrossRef]
- SanPiN. [Sanitary Rules and Norms: SanPiN 1.2.3685-21 “Hygienic Standards and Requirements for Ensuring the Safety and (or) Harmlessness of Environmental Factors for Humans”], 2021. Registered with the Ministry of Justice of the Russian Federation on January 29, 2021, Registration No. 62296. Approved by the Decree of the Chief State Sanitary Physician of the Russian Federation on January 28, 2021, No. 2. Available online: https://www.rospotrebnadzor.ru/files/news/GN_sreda%20_obitaniya_compressed.pdf (accessed on 28 September 2024). (In Russian).
- Laptev, G.Y.; Yyldyrym, E.A.; Tyurina, D.G.; Ilina, L.A.; Filippova, V.A.; Dubrovin, A.V.; Melikidi, V.K.; Gorfunkel, E.P.; Gromov, D.N.; Ponomareva, E.S. Studying Toxic Effect of Glyphosates on Broiler Meat Productivity and Transcriptome. In Agrarian Science—For Agriculture, Collection of Materials of the XVIII International Scientific and Practical Conference Dedicated to the 80th Anniversary of the Altai State Agrarian University, Barnaul, Russia, 9–10 February 2023; In 2 Books; Altai State Agrarian University: Barnaul, Russia, 2023; Volume 2, pp. 163–164. Available online: https://elibrary.ru/item.asp?id=53796145 (accessed on 28 September 2024).
- Tereshchenko, O.V.; Ryabinin, S.V. Method of enzyme immunoassay and its use in practice. Ptakhivnytstvo Poult. Farm. 2009, 63, 274–278. (In Ukrainian) [Google Scholar]
- Koressaar, T.; Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [PubMed]
- Okonechnikov, K.; Golosova, O.; Fursov, M.; Ugene Team. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef] [PubMed]
- Sreedharan, S.P.; Kumar, A.; Giridhar, P. Primer design and amplification efficiencies are crucial for reliability of quantitative PCR studies of caffeine biosynthetic N-methyltransferases in coffee. 3 Biotech 2018, 8, 467. [Google Scholar] [CrossRef]
- Cerda, M.I.M.; Gray, R.; Higgins, D.P. Cytokine RT-qPCR and ddPCR for immunological investigations of the endangered Australian sea lion (Neophoca cinerea) and other mammals. PeerJ 2020, 8, e10306. [Google Scholar] [CrossRef]
- Laptev, G.Y.; Filippova, V.A.; Kochish, I.I.; Yildirim, E.A.; Ilina, L.A.; Dubrovin, A.V.; Brazhnik, E.A.; Novikova, N.I.; Novikova, O.B.; Dmitrieva, M.E.; et al. Examination of the expression of immunity genes and bacterial profiles in the caecum of growing chickens infected with Salmonella Enteritidis and fed a phytobiotic. Animals 2019, 9, 615. [Google Scholar] [CrossRef]
- Laptev, G.Y.; Yildirim, E.A.; Ilina, L.A.; Filippova, V.A.; Kochish, I.I.; Gorfunkel, E.P.; Dubrovin, A.V.; Brazhnik, E.A.; Narushin, V.G.; Novikova, N.I.; et al. Effects of essential oils-based supplement and Salmonella infection on gene expression, blood parameters, cecal microbiome, and egg production in laying hens. Animals 2021, 11, 360. [Google Scholar] [CrossRef]
- Mogilicherla, K.; Athe, R.P.; Chatterjee, R.N.; Bhattacharya, T.K. Identification of suitable reference genes for normalization of quantitative real-time PCR-based gene expression in chicken (Gallus gallus). Anim. Genet. 2022, 53, 881–887. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Gertel, S.; Karmon, G.; Szarka, E.; Shovman, O.; Houri-Levi, E.; Mozes, E.; Shoenfeld, Y.; Amital, H. Anticitrullinated protein antibodies induce inflammatory gene expression profile in peripheral blood cells from CCP-positive patients with RA. J. Rheumatol. 2018, 45, 310–319. [Google Scholar] [CrossRef]
- D’Agostino, A.; Stellavato, A.; Busico, T.; Papa, A.; Tirino, V.; Papaccio, G.; La Gatta, A.; De Rosa, M.; Schiraldi, C. In vitro analysis of the effects on wound healing of high-and low-molecular weight chains of hyaluronan and their hybrid H-HA/L-HA complexes. BMC Cell Biol. 2015, 16, 19. [Google Scholar] [CrossRef] [PubMed]
- Rstudio, Version 1.1.453; Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2018. Npackd. Available online: https://www.npackd.org/p/rstudio/1.1.453 (accessed on 28 September 2024).
- Bao, H.-W.-S. Multi-Factor ANOVA (MANOVA). Package bruceR, Version 2024.6; R Documentation; The Comprehensive R Archive Network (CRAN); Institute for Statistics and Mathematics, Vienna University of Economics and Business: Vienna, Austria, 2024. Available online: https://search.r-project.org/CRAN/refmans/bruceR/html/MANOVA.html (accessed on 28 September 2024).
- Bao, H.-W.-S. bruceR, Version 2024.6; Broadly Useful Convenient and Efficient R Functions; The Comprehensive R Archive Network (CRAN); Institute for Statistics and Mathematics, Vienna University of Economics and Business: Vienna, Austria, 2024. [CrossRef]
- R, Version 4.4.2; The R Project for Statistical Computing; R Foundation for Statistical Computing; Institute for Statistics and Mathematics, Vienna University of Economics and Business: Vienna, Austria, 2024. Available online: https://www.r-project.org/ (accessed on 28 September 2024).
- R Core Team. Compute Tukey Honest Significant Differences (TukeyHSD). Package Stats, Version 4.4.1; R Documentation; The Comprehensive R Archive Network (CRAN); Institute for Statistics and Mathematics, Vienna University of Economics and Business: Vienna, Austria, 2024. Available online: https://search.r-project.org/R/refmans/stats/html/TukeyHSD.html (accessed on 28 September 2024).
- Chu, T.T.; Madsen, P.; Norberg, E.; Wang, L.; Marois, D.; Henshall, J.; Jensen, J. Genetic analysis on body weight at different ages in broiler chicken raised in commercial environment. J. Anim. Breed. Genet. 2020, 137, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Sazanov, A.A.; Tzareva, V.A.; Smirnov, A.F.; Wardecka, B.; Korczak, M.; Jaszczak, K.; Romanov, M.N. Positional Cloning of Quantitative Trait Loci in the Domestic Fowl. In Concluding Seminar on Physics and Astronomy Grant Competition Results of Young St Petersburg Scientists in 2003; Abstracts of Reports; St Petersburg, Russia, 26 April 2004; A.F. Ioffe Physico-Technical Institute: St. Petersburg, Russia, 2004; p. 42. Available online: https://web.archive.org/web/20170917171419/http://archive.physica.spb.ru/archive/ismu04.pdf#page=42 (accessed on 17 September 2017). (In Russian)
- Moiseyeva, I.G.; Volokhovich, V.A. Quantitative trait variability in the domestic fowl. In Selection and Technological Processes in Poultry Industry; Stiintsa: Chisinau, USSR, 1987; pp. 70–74. (In Russian) [Google Scholar]
- Dunn, I.C.; Miao, Y.-W.; Morris, A.; Romanov, M.N.; Wilson, P.W.; Waddington, D.; Sharp, P.J. Candidate genes and reproductive traits in a commercial broiler breeder population, an association study. J. Anim. Sci. 2001, 79 (Suppl. S1), 43. Available online: http://www.jtmtg.org/JAM/2001/jointabs/iaafsc18.pdf (accessed on 28 September 2024).
- Tůmová, E.; Chodová, D.; Skřivanová, E.; Laloučková, K.; Šubrtová-Salmonová, H.; Ketta, M.; Machander, V.; Cotozzolo, E. Research Note: The effects of genotype, sex, and feeding regime on performance, carcasses characteristic, and microbiota in chickens. Poult. Sci. 2021, 100, 760–764. [Google Scholar] [CrossRef]
- Kanakachari, M.; Ashwini, R.; Chatterjee, R.N.; Bhattacharya, T.K. Embryonic transcriptome unravels mechanisms and pathways underlying embryonic development with respect to muscle growth, egg production, and plumage formation in native and broiler chickens. Front. Genet. 2022, 13, 990849. [Google Scholar] [CrossRef]
- Vakhrameev, A.B.; Narushin, V.G.; Larkina, T.A.; Barkova, O.Y.; Peglivanyan, G.K.; Dysin, A.P.; Dementieva, N.V.; Shcherbakov, Y.S.; Pozovnikova, M.V.; Griffin, D.K.; et al. Pectoral angle: A glance at a traditional phenotypic trait in chickens from a new perspective. J. Agric. Sci. 2023, 161, 606–615. [Google Scholar] [CrossRef]
- Romanov, M.N.; Shakhin, A.V.; Abdelmanova, A.S.; Volkova, N.A.; Efimov, D.N.; Fisinin, V.I.; Korshunova, L.G.; Anshakov, D.V.; Dotsev, A.V.; Griffin, D.K.; et al. Dissecting selective signatures and candidate genes in grandparent lines subject to high selection pressure for broiler production and in a local Russian chicken breed of Ushanka. Genes 2024, 15, 524. [Google Scholar] [CrossRef]
- Laptev, G.; Turina, D.; Yildirim, E.; Ilina, L.; Gorfunkel, E.; Filippova, V.; Dubrovin, A.; Melikidi, V.; Novikova, N.; Kalitkina, K.; et al. Analysis of changes in broiler microbiome biodiversity parameters due to intake of glyphosate and probiotic Bacillus sp. GL-8 using next-generation sequencing. In Agriculture Digitalization and Organic Production, Proceedings of the Third International Conference on Agriculture Digitalization and Organic Production (ADOP 2023), St. Petersburg, Russia, 5–7 June 2023; Ronzhin, A., Kostyaev, A., Eds.; Smart Innovation, Systems and Technologies; Springer Nature: Singapore, 2023; Volume 362, pp. 161–170. [Google Scholar] [CrossRef]
- Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell 2012, 148, 1258–1270. [Google Scholar] [CrossRef]
- Shehata, A.A.; Schrödl, W.; Schledorn, P.; Krüger, M. Distribution of glyphosate in chicken organs and its reduction by humic acid supplementation. J. Poult. Sci. 2014, 51, 333–337. [Google Scholar] [CrossRef]
- Shehata, A.A.; Schrödl, W.; Aldin, A.A.; Hafez, H.M.; Krüger, M. The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. Curr. Microbiol. 2013, 66, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Anh, N.T.L.; Kunhareang, S.; Duangjinda, M. Association of chicken growth hormones and insulin-like growth factor gene polymorphisms with growth performance and carcass traits in Thai broilers. Asian-Australas. J. Anim. Sci. 2015, 28, 1686–1695. [Google Scholar] [CrossRef] [PubMed]
- Schiaffino, S.; Mammucari, C. Regulation of skeletal muscle growth by the IGF1-akt/PKB pathway: Insights from genetic models. Skelet. Muscle 2011, 1, 4. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Ma, J.; Wang, N.; Wang, D.; Xu, G. Molecular cloning and characterization of different expression of MYOZ2 and MYOZ3 in Tianfu goat. PLoS ONE 2013, 8, e82550. [Google Scholar] [CrossRef]
- Augustin, R. The protein family of glucose transport facilitators: It’s not only about glucose after all. IUBMB Life 2010, 62, 315–333. [Google Scholar] [CrossRef]
- Romanov, M.N.; Abdelmanova, A.S.; Fisinin, V.I.; Gladyr, E.A.; Volkova, N.A.; Koshkina, O.A.; Rodionov, A.N.; Vetokh, A.N.; Gusev, I.V.; Anshakov, D.V.; et al. Selective footprints and genes relevant to cold adaptation and other phenotypic traits are unscrambled in the genomes of divergently selected chicken breeds. J. Anim. Sci. Biotechnol. 2023, 14, 35. [Google Scholar] [CrossRef]
- Kochish, I.I.; Titov, V.Y.; Nikonov, I.N.; Brazhnik, E.A.; Vorobyov, N.I.; Korenyuga, M.V.; Myasnikova, O.V.; Dolgorukova, A.M.; Griffin, D.K.; Romanov, M.N. Unraveling signatures of chicken genetic diversity and divergent selection in breed-specific patterns of early myogenesis, nitric oxide metabolism and post-hatch growth. Front. Genet. 2023, 13, 1092242. [Google Scholar] [CrossRef]
- Lassiter, K.; Kong, B.C.; Piekarski-Welsher, A.; Dridi, S.; Bottje, W.G. Gene expression essential for myostatin signaling and skeletal muscle development is associated with divergent feed efficiency in pedigree male broilers. Front. Physiol. 2019, 10, 126. [Google Scholar] [CrossRef]
- Bhattacharya, T.K.; Shukla, R.; Chatterjee, R.N.; Bhanja, S.K. Comparative analysis of silencing expression of myostatin (MSTN) and its two receptors (ACVR2A and ACVR2B) genes affecting growth traits in knockdown chicken. Sci. Rep. 2019, 9, 7789. [Google Scholar] [CrossRef]
- Ravindran, V.; Abdollahi, M.R. Nutrition and digestive physiology of the broiler chick: State of the art and outlook. Animals 2021, 11, 2795. [Google Scholar] [CrossRef] [PubMed]
- Sklan, D. Development of the digestive tract of poultry. Worlds Poult. Sci. J. 2001, 57, 415–428. [Google Scholar] [CrossRef]
- Coudert, E.; Praud, C.; Dupont, J.; Crochet, S.; Cailleau-Audouin, E.; Bordeau, T.; Godet, E.; Collin, A.; Berri, C.; Tesseraud, S.; et al. Expression of glucose transporters SLC2A1, SLC2A8, and SLC2A12 in different chicken muscles during ontogenesis. J. Anim. Sci. 2018, 96, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Pulikanti, R.; Peebles, E.D.; Keirs, R.W.; Bennett, L.W.; Keralapurath, M.M.; Gerard, P.D. Pipping muscle and liver metabolic profile changes and relationships in broiler embryos on days 15 and 19 of incubation. Poult. Sci. 2010, 89, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.-H.; Corless, A.; Sell, J.L. Digestive system development in post-hatch poultry. Worlds Poult. Sci. J. 1998, 54, 335–345. [Google Scholar] [CrossRef]
- Rinttila, T.; Apajalahti, J. Intestinal microbiota and metabolites—Implications for broiler chickens. J. Appl. Poult. Res. 2013, 22, 647–658. [Google Scholar] [CrossRef]
- Castelino, J.M.; Routledge, M.N.; Wilson, S.; Dunne, D.W.; Mwatha, J.K.; Gachuhi, K.; Wild, C.P.; Gong, Y.Y. Aflatoxin exposure is inversely associated with IGF1 and IGFBP3 levels in vitro and in Kenyan schoolchildren. Mol. Nutr. Food Res. 2015, 59, 574–581. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Han, Q.; Guo, Y.; Zhang, B.; D’inca, R. Dietary live yeast and mannan-oligosaccharide supplementation attenuate intestinal inflammation and barrier dysfunction induced by Escherichia coli in broilers. Br. J. Nutr. 2016, 116, 1878–1888. [Google Scholar] [CrossRef]
- Zhen, W.; Shao, Y.; Gong, X.; Wu, Y.; Geng, Y.; Wang, Z.; Guo, Y. Effect of dietary Bacillus coagulans supplementation on growth performance and immune responses of broiler chickens challenged by Salmonella enteritidis. Poult. Sci. 2018, 97, 2654–2666. [Google Scholar] [CrossRef]
- Shao, Y.; Guo, Y.; Wang, Z. β-1,3/1,6-Glucan alleviated intestinal mucosal barrier impairment of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Poult. Sci. 2013, 92, 1764–1773. [Google Scholar] [CrossRef]
- Pan, D.; Yu, Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 2014, 5, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.M.; Soratto, T.A.T.; Cardinal, K.M.; Wagner, G.; Hauptli, L.; Lima, A.L.F.; Dahlke, F.; Peres Netto, D.; Moraes, P.D.O.; Ribeiro, A.M.L. Modulation of the intestinal microbiota of broilers supplemented with monensin or functional oils in response to challenge by Eimeria spp. PLoS ONE 2020, 15, e0237118. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Nie, K.; Huang, Q.; Li, K.; Sun, Y.; Zhou, R.; Wang, Z.; Hu, S. Changes of cecal microflora in chickens following Eimeria tenella challenge and regulating effect of coated sodium butyrate. Exp. Parasitol. 2017, 177, 73–81. [Google Scholar] [CrossRef]
- Dibner, J.J.; Richards, J.D.; Knight, C.D. Microbial imprinting in gut development and health. J. Appl. Poult. Res. 2008, 17, 174–188. [Google Scholar] [CrossRef]
- Lee, K.W.; Lillehoj, H.S.; Lee, S.H.; Jang, S.I.; Park, M.S.; Bautista, D.A.; Ritter, G.D.; Hong, Y.H.; Siragusa, G.R.; Lillehoj, E.P. Effect of dietary antimicrobials on immune status in broiler chickens. Asian-Australas. J. Anim. Sci. 2012, 25, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Halper, J.; Burt, D.W.; Romanov, M.N. On reassessment of the chicken TGFB4 gene as TGFB1. Growth Factors 2004, 22, 121–122. [Google Scholar] [CrossRef]
- Krishnan, J.; Selvarajoo, K.; Tsuchiya, M.; Lee, G.; Choi, S. Toll-like receptor signal transduction. Exp. Mol. Med. 2007, 39, 421–438. [Google Scholar] [CrossRef]
- Temperley, N.D.; Berlin, S.; Paton, I.R.; Griffin, D.K.; Burt, D.W. Evolution of the chicken Toll-like receptor gene family: A story of gene gain and gene loss. BMC Genom. 2008, 9, 62. [Google Scholar] [CrossRef]
- Koshkina, O.A.; Deniskova, T.E.; Romanov, M.N.; Zinovieva, N.A. Genomic studies in domestic goats (Capra hircus L.): Current advances and prospects (review). Sel’skokhozyaistvennaya Biol. Agric. Biol. 2024, 59, 587–604. [Google Scholar] [CrossRef]
- El-Zayat, S.R.; Sibaii, H.; Mannaa, F.A. Toll-like receptors activation, signaling, and targeting: An overview. Bull. Natl. Res. Cent. 2019, 43, 187. [Google Scholar] [CrossRef]
- Shibahara, S.; Sato, M.; Muller, R.M.; Yoshida, T. Structural organization of the human heme oxygenase gene and the function of its promoter. Eur. J. Biochem. 1989, 179, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Brennan, K.M.; Oh, S.-Y.; Yiannikouris, A.; Graugnard, D.E.; Karrow, N.A. Differential gene expression analysis of bovine macrophages after exposure to the Penicillium mycotoxins citrinin and/or ochratoxin A. Toxins 2017, 9, 366. [Google Scholar] [CrossRef]
- Choi, J.H.; Lee, K.; Kim, D.W.; Kil, D.Y.; Kim, G.B.; Cha, C.J. Influence of dietary avilamycin on ileal and cecal microbiota in broiler chickens. Poult. Sci. 2018, 97, 970–979. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Sar, A.; Misra, A.; Pal, S.; Chakraborty, A.; Dam, B. Increased productivity in poultry birds by sub-lethal dose of antibiotics is arbitrated by selective enrichment of gut microbiota, particularly short-chain fatty acid producers. Microbiology 2018, 164, 142–153. [Google Scholar] [CrossRef]
- Robinson, K.; Becker, S.; Xiao, Y.; Lyu, W.; Yang, Q.; Zhu, H.; Yang, H.; Zhao, J.; Zhang, G. Differential impact of subtherapeutic antibiotics and ionophores on intestinal microbiota of broilers. Microorganisms 2019, 7, 282. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Mazmanian, S.K. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 2010, 330, 1768–1773. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Lei, F.; Zhu, L.; Li, S.; Wu, Z.; Zhang, R.; Gao, G.F.; Zhu, B.; Wang, X. Exposure of different bacterial inocula to newborn chicken affects gut microbiota development and ileum gene expression. ISME J. 2010, 4, 367–376. [Google Scholar] [CrossRef]
- Morikawa, K.; Watabe, H.; Araake, M.; Morikawa, S. Modulatory effect of antibiotics on cytokine production by human monocytes in vitro. Antimicrob Agents Chemother. 1996, 40, 1366–1370. [Google Scholar] [CrossRef]
- Reato, G.; Cuffini, A.M.; Tullio, V.; Mandras, N.; Roana, J.; Banche, G.; Foa, R.; Carlone, N.A. Immunomodulating effect of antimicrobial agents on cytokine production by human polymorphonuclear neutrophils. Int. J. Antimicrob. Agents 2004, 23, 150–154. [Google Scholar] [CrossRef]
- Romanov, M.N.; Grozina, A.A.; Ilina, L.A.; Laptev, G.Y.; Yildirim, E.A.; Filippova, V.A.; Tyurina, D.G.; Fisinin, V.I.; Kochish, I.I.; Griffin, D.K.; et al. From Feed Regulation to Regulated Feeding: Intestinal Microbiome and Performance Optimization in Broiler Chickens in Response to Antibiotic and Probiotic Treatment. In Life of Genomes, Abstracts of the International Conference, Kazan, Russia, 23–24 November 2022; Research Center “Regulatory Genomics”, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University: Kazan, Russia, 2022; pp. 44–45. Available online: https://www.researchgate.net/publication/369506397 (accessed on 28 September 2024).
- Grozina, A.A.; Ilina, L.A.; Laptev, G.Y.; Yildirim, E.A.; Ponomareva, E.S.; Filippova, V.A.; Tyurina, D.G.; Fisinin, V.I.; Kochish, I.I.; Griffin, D.K. Probiotics as an alternative to antibiotics in modulating the intestinal microbiota and performance of broiler chickens. J. Appl. Microbiol. 2023, 134, lxad213. [Google Scholar] [CrossRef]
- Surai, P.F. Natural Antioxidants in Avian Nutrition and Reproduction; Nottingham University Press: Nottingham, UK, 2002; ISBN 1897676956/9781897676950. [Google Scholar]
- Surai, P.F.; Kochish, I.I.; Griffin, D.K.; Nikonov, I.N.; Romanov, M.N. Microbiome and antioxidant system of the gut in chicken: Food for thoughts. Insights Nutr. Metab. 2017, 1, 34. [Google Scholar]
- Adedosu, O.; Badmus, A.; Adeleke, G.; Raji, R. Telfairia occidentalis seed extract protects against oxidative stress, inflammation and some haematological disorders associated with atrazine-induced prostate cancer in rats. Eur. J. Cancer 2017, 72 (Suppl. 1), S94. [Google Scholar] [CrossRef]
- Lovaković, B.T.; Pizent, A.; Kašuba, V.; Kopjar, N.; Micek, V.; Mendaš, G.; Dvoršćak, M.; Mikolić, A.; Milić, M.; Žunec, S.; et al. Effects of sub-chronic exposure to terbuthylazine on DNA damage, oxidative stress and parent compound/metabolite levels in adult male rats. Food Chem. Toxicol. 2017, 108, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.; Cancian, G.; Neodini, D.N.; Mano, D.R.; Capucho, C.; Predes, F.S.; Barbieri, R.; Oliveira, C.A.; Pigoso, A.A.; Dolder, H.; et al. Toxicological evaluation of ametryn effects in Wistar rats. Exp. Toxicol. Pathol. 2015, 67, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Evrard, E.; Marchand, J.; Theron, M.; Pichavant-Rafini, K.; Durand, G.; Quiniou, L.; Laroche, J. Impacts of mixtures of herbicides on molecular and physiological responses of the European flounder Platichthys flesus. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2010, 152, 321–331. [Google Scholar] [CrossRef]
- Ma, J.; Bu, Y.; Li, X. Immunological and histopathological responses of the kidney of common carp (Cyprinus carpio L.) sublethally exposed to glyphosate. Environ. Toxicol. Pharmacol. 2015, 39, 1–8. [Google Scholar] [CrossRef]
- Tereshchenko, A.V.; Artemenko, A.B.; Pudov, V.Y. Skrytyj istocnik uvelicenia proizvodstva cyplat-brojlerov [A hidden source of increasing the production of broiler chickens]. Eksklyuziv Agro [Exclus. Agro] 2007, 4, 64–65. Available online: https://www.researchgate.net/publication/342764349_Teresenko_AV_Artemenko_AB_Pudov_VA_Skrytyj_istocnik_uvelicenia_proizvodstva_cyplat-brojlerov_Ekskluziv_Agro_-_2007_-_No_4_-_S_64-65 (accessed on 28 September 2024). (In Russian).
- Pandey, A.; Dabhade, P.; Kumarasamy, A. Inflammatory effects of subacute exposure of Roundup in rat liver and adipose tissue. Dose Response 2019, 17, 1559325819843380. [Google Scholar] [CrossRef]
- Kumoglu, G.O.; Sendemir, A.; Tanyolac, M.B.; Bilir, B.; Kucuk, O.; Missirlis, Y.F. Epigenetic mechanisms in cancer. Longhua Chin. Med. 2022, 5, 4. [Google Scholar] [CrossRef]
- Rossetti, M.F.; Canesini, G.; Lorenz, V.; Milesi, M.M.; Varayoud, J.; Ramos, J.G. Epigenetic changes associated with exposure to glyphosate-based herbicides in mammals. Front. Endocrinol. 2021, 12, 671991. [Google Scholar] [CrossRef]
- Ergun, H.; Cayir, A. Exposure to glyphosate and tetrachlorvinphos induces cytotoxicity and global DNA methylation in human cells. Toxicol. Ind. Health 2021, 37, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Kurenbach, B.; Hill, A.M.; Godsoe, W.; Van Hamelsveld, S.; Heinemann, J.A. Agrichemicals and antibiotics in combination increase antibiotic resistance evolution. PeerJ 2018, 6, e5801. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Li, X.; Yang, Q.; Bai, Y.; Cui, P.; Wen, C.; Liu, C.; Chen, Z.; Tang, J.; Che, J.; et al. Herbicide selection promotes antibiotic resistance in soil microbiomes. Mol. Biol. Evol. 2021, 38, 2337–2350. [Google Scholar] [CrossRef] [PubMed]
- Kurenbach, B.; Marjoshi, D.; Amábile-Cuevas, C.F.; Ferguson, G.C.; Godsoe, W.; Gibson, P.; Heinemann, J.A. Sublethal exposure to commercial formulations of the herbicides dicamba, 2, 4-dichlorophenoxyacetic acid, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium. mBio 2015, 6, e00009-15. [Google Scholar] [CrossRef] [PubMed]
- Kurenbach, B.; Gibson, P.S.; Hill, A.M.; Bitzer, A.S.; Silby, M.W.; Godsoe, W.; Heinemann, J.A. Herbicide ingredients change Salmonella enterica sv. Typhimurium and Escherichia coli antibiotic responses. Microbiology 2017, 163, 1791–1801. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Wang, L.; Zhai, Z. Glyphosate escalates horizontal transfer of conjugative plasmid harboring antibiotic resistance genes. Bioengineered 2021, 12, 63–69. [Google Scholar] [CrossRef]
Gene and Protein Produced | Forward (F) and Reverse (R) Primer Sequence (5’→3’) |
---|---|
Productivity-related genes | |
IGF1, insulin like growth factor 1 (Gene ID: 418090) | F: GCTGCCGGCCCAGAA R: ACGAACTGAAGAGCATCAACCA |
IGF2, insulin like growth factor 2 (Gene ID: 395097) | F: GGCGGCAGGCACCATCA R: CCCGGCAGCAAAAAGTTCAAG |
MYOG, myogenin (Gene ID: 374004) | F: GGAGAAGCGGAGGCTGAAG R: GCAGAGTGCTGCGTTTCAGA |
MYOZ2, myozenin 2 (Gene ID: 422682) | F: CAACACTCAGCAACAGAGGC R: GTATGGGCTCTCCACGATTTCT |
SLC2A1, solute carrier family 1 member 1 (glucose transporter 2) (Gene ID: 396130) | F: AGATGACAGCTCGCCTGATG R: GTCTTCAATCACCTTCTGCGG |
SLC2A2, solute carrier family 2 member 2 (glucose transporter 2) (Gene ID: 396272) | F: GGAGAAGCACCTCACAGGAA R: CAGGCTGTAACCGTACTGGA |
MSTN, myostatin (Gene ID: 373964) | F: ATGCAGATCGCGGTTGATC R: GCGTTCTCTGTGGGCTGACT |
Genes associated with the barrier function of the digestive system | |
MUC2, mucin 2, oligomeric mucus/gel-forming (Gene ID: 423101) | F: CTGGCTCCTTGTGGCTCCTC R: AGCTGCATGACTGGAGACAACTG |
OCLN, occluding (Gene ID: 396026) | F: ACGGCAGCACCTACCTCAA R: GGGCGAAGAAGCAGATGAG |
CLDN1, claudin 1 (Gene ID: 424910) | F: CATACTCCTGGGTCTGGTTGGT R: GACAGCCATCCGCATCTTCT |
Immunity-related genes | |
TLR2, Toll-like receptor 2 (or TLR2A, Toll-like receptor 2A) (Gene ID: 769014) | F: CGCTTAGGAGAGACAATCTGTGAA R: GCCTGTTTTAGGGATTTCAGAGAGATTT |
TLR4, Toll-like receptor 4 (Gene ID: 417241) | F: AGTCTGAAATTGCTGAGCTCAAAT R: GCGACGTTAAGCCATGGAAG |
Genes associated with antioxidant defense | |
CAT, catalase (Gene ID: 423600) | F: ACCAAGTACTGCAAGGCGAA R: TGAGGGTTCCTCTTCTGGCT |
SOD1, superoxide dismutase 1, soluble (Gene ID: 395938) | F: CGGGCCAGTAAAGGTTACTGGAA R: TGTTGTCTCCAAATTCATGCACATG |
PRDX6, peroxiredoxin 6 (Gene ID: 429062) | F: GCATCCGCTTCCACGACTTCCT R: CCGCTCATCCGGGTCCAACAT |
HMOX1, heme oxygenase 1 (Gene ID: 396287) | F: GGTCCCGAATGAATGCCCTTG R: ACCGTTCTCCTGGCTCTTGG |
Gene used as reference control | |
ACTB, beta actin (Gene ID: 396526) | F: CTGTGCCCATCTATGAAGGCTA R: ATTTCTCTCTCGGCTGTGGTG |
Body Weight, g | Groups | |||
---|---|---|---|---|
CONT | GLY | GLY+ANT | GLY+CS | |
at 7 days of age | 134.10 ± 7.52 | 141.20 ± 6.05 * | 134.70 ± 7.87 | 134.50 ± 7.47 |
at 14 days of age | 349.80 ± 19.42 | 366.00 ± 20.00 | 352.80 ± 21.63 | 362.40 ± 38.00 |
at 21 days of age | 756.80 ± 50.10 | 771.90 ± 63.12 | 760.70 ± 69.00 | 767.40 ± 91.02 |
at 28 days of age | 1311.20 ± 74.67 | 1324.80 ± 82.04 | 1258.60 ± 97.07 | 1330.30 ± 69.44 |
at 35 days of age | 2087.40 ± 122.36 | 2044.90 ± 119.19 | 2053.70 ± 116.56 | 2067.90 ± 123.53 |
at 40 days of age | 2567.90 ± 142.90 | 2514.10 ± 150.78 | 2506.00 ± 164.11 | 2556.50 ± 128.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laptev, G.Y.; Turina, D.G.; Morozov, V.Y.; Yildirim, E.A.; Gorfunkel, E.P.; Ilina, L.A.; Filippova, V.A.; Brazhnik, E.A.; Novikova, N.I.; Melikidi, V.K.; et al. Changes in Expression of Key Genes in Ceca of Chicken Broilers as Affected by Glyphosate, Antibiotics and a Coccidiostat. Animals 2024, 14, 3544. https://doi.org/10.3390/ani14233544
Laptev GY, Turina DG, Morozov VY, Yildirim EA, Gorfunkel EP, Ilina LA, Filippova VA, Brazhnik EA, Novikova NI, Melikidi VK, et al. Changes in Expression of Key Genes in Ceca of Chicken Broilers as Affected by Glyphosate, Antibiotics and a Coccidiostat. Animals. 2024; 14(23):3544. https://doi.org/10.3390/ani14233544
Chicago/Turabian StyleLaptev, Georgi Y., Daria G. Turina, Vitali Y. Morozov, Elena A. Yildirim, Elena P. Gorfunkel, Larisa A. Ilina, Valentina A. Filippova, Evgeni A. Brazhnik, Natalia I. Novikova, Veronika K. Melikidi, and et al. 2024. "Changes in Expression of Key Genes in Ceca of Chicken Broilers as Affected by Glyphosate, Antibiotics and a Coccidiostat" Animals 14, no. 23: 3544. https://doi.org/10.3390/ani14233544
APA StyleLaptev, G. Y., Turina, D. G., Morozov, V. Y., Yildirim, E. A., Gorfunkel, E. P., Ilina, L. A., Filippova, V. A., Brazhnik, E. A., Novikova, N. I., Melikidi, V. K., Sokolova, K. A., Ponomareva, E. S., Zaikin, V. A., Dubrovin, A. V., Surai, P. F., Griffin, D. K., & Romanov, M. N. (2024). Changes in Expression of Key Genes in Ceca of Chicken Broilers as Affected by Glyphosate, Antibiotics and a Coccidiostat. Animals, 14(23), 3544. https://doi.org/10.3390/ani14233544