Discovery of Potential Candidate Genes for Coat Colour in Wuzhishan Pigs by Integrating SNPs and mRNA Expression Analysis
<p>Three coat colour phenotypes in Wuzhishan pigs. (<b>A</b>) white, (<b>B</b>) black-back/white-belly, (<b>C</b>) black.</p> "> Figure 2
<p>(<b>A</b>) Manhattan plot showing results from the genome-wide association study for coat colour traits in Wuzhishan pigs. (<b>B</b>) Quantile–quantile plot showing observed (black line) versus expected (blue points) log10 (<span class="html-italic">p</span>-values). The null hypothesis (no association between SNPs and coat colour) is represented by the red line.</p> "> Figure 3
<p>Fixation index (FST) plots generated using average FST values, with 500 Kb windows and 200 Kb overlap between adjacent windows. (<b>A</b>) FST plot for white vs. black. (<b>B</b>) FST plot for white vs. black-back/white-belly. (<b>C</b>) FST plot for black vs. black-back/white-belly. The horizontal red line indicates the top 1% FST values. SNPs with values above this threshold were considered to be selective sweep loci.</p> "> Figure 4
<p>Linkage disequilibrium (LD) plot generated by Haploview4.2 for SNPs in the 10.1 Mb region between the two most significant SNPs (DRGA0008593 and ALGA0047848) in SSC8. SNP IDs are indicated horizontally across the top. The black lines indicate the identified haplotype blocks containing significant SNPs with complete linkage disequilibrium. Red diamonds represent LD between two SNPs with r<sup>2</sup> values lower than 100% when labelled but that are equal to 100% when unlabelled.</p> "> Figure 5
<p>Expression of (<b>A</b>) <span class="html-italic">RAPGEF2</span> and (<b>B</b>) <span class="html-italic">PDGFRA</span> in skin tissues from Wuzhishan pigs exhibiting one of the three possible coat colours. Results are shown as means ± SD of triplicate measurements. * indicates <span class="html-italic">p</span> < 0.05, ** indicates <span class="html-italic">p</span> < 0.01. White belly and black back are both samples from black-back/white-belly pigs.</p> "> Figure 6
<p>The G to A mutation located at the first nucleotide in intron 17 of <span class="html-italic">KIT</span>, which causes alternative splicing, was detected through sequencing and restriction digestion. (<b>A</b>) Sequence alignment of data obtained from pooled DNA samples (from 30 individuals) shows the mutation in <span class="html-italic">KIT</span> intron 17. The red column highlights the mutation site (93G > A); Yorkshire and white Wuzhishan pigs exhibit double peaks, indicating nucleotides G and A at that location, while all the other pigs showed single peaks at this location, indicating the presence of only G nucleotide. (<b>B</b>) Agarose gel displaying the PCR product from <span class="html-italic">KIT</span> intron 17 of Wuzhishan pigs after digestion with NlaIII. Lanes 1–3 contain DNA from white pigs, 4–6 from black-back/white-belly pigs, and 7–9 from black pigs. The three bands in the Yorkshire and white pig lanes are diagnostic of the splice mutation, while the double bands are wild type. The Yorkshire and Rongchang pigs served as positive and negative controls, respectively.</p> ">
1. Introduction
2. Materials and Methods
2.1. Animal Sampling and Phenotyping
2.2. Genotyping and Quality Control
2.3. Genome-Wide Association Study
2.4. Gene Ontology Analysis
2.5. Detection of Duplications and Splice Mutations in the KIT Gene
2.6. Real-Time Quantitative PCR (RT-qPCR) Analysis
2.7. Statistical Analysis
3. Results
3.1. Descriptive Statistics for SNPs
3.2. GWAS
3.3. SNPs Genotyping Adjacent to RAPGEF2 and PDGFRA
3.4. Expression of RAPGEF2 and PDGFRA in Different Skins and Pigs
3.5. Detection of Duplication and Splice Mutation in KIT Gene
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Searle, A.G. Comparative Genetics of Coat Colour in Mammals; Academic Press: Cambridge, MA, USA, 1968. [Google Scholar]
- Barsh, G.S. The genetics of pigmentation: From fancy genes to complex traits. Trends Genet. 1996, 12, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.M.; Chaudhary, R.; Hellmen, E.; Hoyheim, B.; Chowdhary, B.; Andersson, L. Pigs with the dominant white coat color phenotype carry a duplication of the KIT gene encoding the mast/stem cell growth factor receptor. Mamm. Genome 1996, 7, 822–830. [Google Scholar]
- Fontanesi, L.; Russo, V. Molecular genetics of coat colour in pigs. Acta Argiculturae Slovenica. In Proceedings of the 8th International Symposium on the Mediterranean Pig, Slovenia, Ljubljana, 10–12 October 2013; pp. 15–20. [Google Scholar]
- Fang, M.; Larson, G.; Ribeiro, H.S.; Li, N.; Andersson, L. Contrasting mode of evolution at a coat color locus in wild and domestic pigs. PLoS Genet. 2009, 5, e1000341. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Yu, Y.; Feng, W.; Du, H.; Yu, J.; Kang, H.; Zheng, X.; Wang, Z.; Liu, G.E.; Ernst, C.W.; et al. Evidence of evolutionary history and selective sweeps in the genome of Meishan pig reveals its genetic and phenotypic characterization. GigaScience 2018, 7, giy058. [Google Scholar] [CrossRef]
- Xu, J.; Fu, Y.; Hu, Y.; Yin, L.; Tang, Z.; Yin, D.; Zhu, M.; Yu, M.; Li, X.; Zhou, Y.; et al. Whole genome variants across 57 pig breeds enable comprehensive identification of genetic signatures that underlie breed features. J. Anim. Sci. Biotechnol. 2020, 11, 115. [Google Scholar] [CrossRef]
- Lai, F.; Ren, J.; Ai, H.; Ding, N.; Ma, J.; Zeng, D.; Chen, C.; Guo, Y.; Huang, L. Chinese white Rongchang pig does not have the dominant white allele of KIT but has the dominant black allele of MC1R. J. Hered. 2007, 98, 84–87. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Zhang, Y.; Tang, Z.; Li, K.; Liu, B. Genome-wide analysis reveals artificial selection on coat colour and reproductive traits in Chinese domestic pigs. Mol. Ecol. Resour. 2015, 15, 414–424. [Google Scholar] [CrossRef]
- Ren, J.; Mao, H.; Zhang, Z.; Xiao, S.; Ding, N.; Huang, L. A 6-bp deletion in the TYRP1 gene causes the brown colouration phenotype in Chinese indigenous pigs. Heredity 2011, 106, 862–868. [Google Scholar] [CrossRef]
- Marklund, S.; Kijas, J.; Rodriguez-Martinez, H.; Ronnstrand, L.; Funa, K.; Moller, M.; Lange, D.; Edfors-Lilja, I.; Andersson, L. Molecular basis for the dominant white phenotype in the domestic pig. Genome Res. 1998, 8, 826–833. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, J.B.; Xue, Y.; Peng, Y.L.; Chen, G.; Fang, M.Y. Differential expression of CYB5A in Chinese and European pig breeds due to genetic variations in the promoter region. Anim. Genet. 2015, 46, 16–22. [Google Scholar] [CrossRef]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef] [PubMed]
- Weir, B.S.; Cockerham, C.C. Estimating f-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [CrossRef] [PubMed]
- Giuffra, E.; Tornsten, A.; Marklund, S.; Bongcam-Rudloff, E.; Chardon, P.; Kijas, J.M.; Anderson, S.I.; Archibald, A.L.; Andersson, L. A large duplication associated with dominant white color in pigs originated by homologous recombination between LINE elements flanking KIT. Mamm. Genome 2002, 13, 569–577. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, X.; Chao, Z.; Wang, K.; Wang, J.; Tang, Q.; Luo, Y.; Zheng, J.; Tan, S.F.; Fang, M. Transcriptomic Analysis of Coding Genes and Non-Coding RNAs Reveals Complex Regulatory Networks Underlying the Black Back and White Belly Coat Phenotype in Chinese Wuzhishan Pigs. Genes 2019, 10, 201. [Google Scholar] [CrossRef]
- Xu, Q.; Luo, Y.; Chao, Z.; Zhang, J.; Liu, X.; Tang, Q.; Wang, K.; Tan, S.; Fang, M. Integrated Analysis of Transcriptome Expression Profiles Reveals miRNA-326-NKX3.2-Regulated Porcine Chondrocyte Differentiation. Int. J. Mol. Sci. 2023, 24, 7257. [Google Scholar] [CrossRef]
- Fontanesi, L.; D’Alessandro, E.; Scotti, E.; Liotta, L.; Crovetti, A.; Chiofalo, V.; Russo, V. Genetic heterogeneity and selection signature at the KIT gene in pigs showing different coat colours and patterns. Anim. Genet. 2010, 41, 478–492. [Google Scholar] [CrossRef]
- Andersson, L. Genome-wide association analysis in domestic animals: A powerful approach for genetic dissection of trait loci. Genetica 2009, 136, 341–349. [Google Scholar] [CrossRef]
- Johansson, M.; Ellegren, H.; Marklund, L.; Gustavsson, U.; Ringmar-Cederberg, E.; Andersson, K.; Edfors-Lilja, I.; Andersson, L. The gene for dominant white color in the pig is closely linked to ALB and PDGRFRA on chromosome 8. Genomics 1992, 14, 965–969. [Google Scholar] [CrossRef]
- Busca, R.; Abbe, P.; Mantoux, F.; Aberdam, E.; Peyssonnaux, C.; Eychene, A.; Ortonne, J.P.; Ballotti, R. Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J. 2000, 19, 2900–2910. [Google Scholar] [CrossRef]
- Grüneberg, H.; Truslove, G.M. Two closely linked genes in the mouse. Genet. Res. 1960, 1, 69–90. [Google Scholar] [CrossRef]
- Busca, R.; Ballotti, R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment. Cell Melanoma Res. 2000, 13, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Rebhun, J.F.; Castro, A.F.; Quilliam, L.A. Identification of guanine nucleotide exchange factors (GEFs) for the Rap1 GTPase. Regulation of MR-GEF by M-Ras-GTP interaction. J. Biol. Chem. 2000, 275, 34901–34908. [Google Scholar] [CrossRef] [PubMed]
- Amsen, E.M.; Pham, N.; Pak, Y.; Rotin, D. The guanine nucleotide exchange factor CNrasGEF regulates melanogenesis and cell survival in melanoma cells. J. Biol. Chem. 2006, 281, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Hanna, L.L.H.; Sanders, J.O.; Riley, D.G.; Abbey, C.A.; Gill, C.A. Identification of a major locus interacting with MC1R and modifying black coat color in an F 2 Nellore-Angus population. Genet. Sel. Evol. 2014, 46, 4. [Google Scholar] [CrossRef]
- Betsholtz, C.; Karlsson, L.; Lindahl, P. Developmental roles of platelet-derived growth factors. Bioessays 2001, 23, 494–507. [Google Scholar] [CrossRef]
- Hirobe, T.; Shibata, T.; Fujiwara, R.; Sato, K. Platelet-derived growth factor regulates the proliferation and differentiation of human melanocytes in a differentiation-stage-specific manner. J. Dermatol. Sci. 2016, 83, 200–209. [Google Scholar] [CrossRef]
- Klinghoffer, R.A.; Hamilton, T.G.; Hoch, R.; Soriano, P. An allelic series at the PDGFalphaR locus indicates unequal contributions of distinct signaling pathways during development. Dev. Cell 2002, 2, 103–113. [Google Scholar] [CrossRef]
- Smith, C.L.; Tallquist, M.D. PDGF function in diverse neural crest cell populations. Cell Adhes. Migr. 2010, 4, 561–566. [Google Scholar] [CrossRef]
- Soriano, P. The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development 1997, 124, 2691–2700. [Google Scholar] [CrossRef]
- Illa, S.K.; Mukherjee, S.; Nath, S.; Mukherjee, A. Genome-Wide Scanning for Signatures of Selection Revealed the Putative Genomic Regions and Candidate Genes Controlling Milk Composition and Coat Color Traits in Sahiwal Cattle. Front. Genet. 2021, 12, 699422. [Google Scholar] [CrossRef]
- Maciel, S.; Oliveira, I.; Senes, B.B.; Silva, J.; Feitosa, F.; Alves, J.S.; Costa, R.B.; de Camargo, G. Genomic regions associated with coat color in Gir cattle. Genome 2024, 67, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Zhang, Y.; Gao, L.; Shi, W.; Liu, Z.; Guo, X.; Zhang, Y.; Li, B.; Li, G.; Cao, J.; et al. Selection signatures and landscape genomics analysis to reveal climate adaptation of goat breeds. BMC Genomics 2024, 25, 420. [Google Scholar] [CrossRef] [PubMed]
- Nazari-Ghadikolaei, A.; Mehrabani-Yeganeh, H.; Miarei-Aashtiani, S.R.; Staiger, E.A.; Rashidi, A.; Huson, H.J. Genome-Wide Association Studies Identify Candidate Genes for Coat Color and Mohair Traits in the Iranian Markhoz Goat. Front. Genet. 2018, 9, 105. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yin, H.; Bai, L.; Yao, W.; Tao, T.; Zhao, Q.; Gao, Y.; Teng, J.; Xu, Z.; Lin, Q.; et al. Mapping and functional characterization of structural variation in 1060 pig genomes. Genome Biol. 2024, 25, 116. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xu, M.; Yang, M.; Liao, A.; Lv, P.; Liu, X.; Chen, Y.; Liu, H.; He, Z. Efficient generation of cloned cats with altered coat colour by editing of the KIT gene. Theriogenology 2024, 222, 54–65. [Google Scholar] [CrossRef]
- Cooper, M.P.; Fretwell, N.; Bailey, S.J.; Lyons, L.A. White spotting in the domestic cat (Felis catus) maps near KIT on feline chromosome B1. Anim. Genet. 2006, 37, 163–165. [Google Scholar] [CrossRef]
- Jakaria, J.; Kholijah, K.; Darwati, S.; Rahman, Q.; Daulay, W.L.; Suhendro, I.; Londra, I.M.; Ulum, M.F.; Noor, R.R. Open AccessLack of association between coat color abnormalities in Bali cattle (Bos javanicus) and the coding regions of the MC1R and KIT genes. Vet. World 2023, 16, 1312–1318. [Google Scholar] [CrossRef]
- Murakami, S.; Tsuchiya, K.; Nakata, K.; Nishikata, M.; Kitada, K.; Suzuki, H. A Kit mutation associated with black-eyed white phenotype in the grey red-backed vole, Myodes rufocanus. Mammal Study 2022, 47, 235–247. [Google Scholar] [CrossRef]
- Sun, G.; Liang, X.; Qin, K.; Qin, Y.; Shi, X.; Cong, P.; Mo, D.; Liu, X.; Chen, Y.; He, Z. Functional Analysis of KIT Gene Structural Mutations Causing the Porcine Dominant White Phenotype Using Genome Edited Mouse Models. Front. Genet. 2020, 11, 138. [Google Scholar] [CrossRef]
- Saleh, A.A.; Rashad, A.; Hassanine, N.; Sharaby, M.A.; Zhao, Y. Assessment of hair and cashmere properties and their genetic background of several goat breeds in Southwest China. Sci. Rep. 2022, 12, 11135. [Google Scholar] [CrossRef]
- Liang, X.; Lan, J.; Xu, M.; Qin, K.; Liu, H.; Sun, G.; Liu, X.; Chen, Y.; He, Z. Impact of KIT Editing on Coat Pigmentation and Fresh Meat Color in Yorkshire Pigs. CRISPR J. 2022, 5, 825–842. [Google Scholar] [CrossRef] [PubMed]
- Hamada, T.; Yokoyama, S.; Akahane, T.; Matsuo, K.; Tanimoto, A. Genome Editing Using Cas9 Ribonucleoprotein Is Effective for Introducing PDGFRA Variant in Cultured Human Glioblastoma Cell Lines. Int. J. Mol. Sci. 2022, 24, 500. [Google Scholar] [CrossRef] [PubMed]
Gene | Length | Primers (5′-3′) | Annealing Temperature |
---|---|---|---|
KIT (PCR) | 152 bp | F: TAAGTGAAAGAAGTCAATCTGAG R: GGCAGTCATGTAACTATCACC | 55 °C |
KIT (PCR) | 175 bp | F: GTATTCACAGAGACTTGGCGGC R: AAACCTGCAAGGAAAATCCTTCACGG | 60 °C |
RAPGEF2 (RT-qPCR) | 223 bp | F: GCAGTCCCACCATCGCAT R: AGTCACAGCAAACTCCCG | 60 °C |
PDGFRA (RT-qPCR) | 151 bp | F: CTTGGGGTTGAGAGCCGA R: TTTCATACCTGGGTTTCTGTTTC | 60 °C |
GAPDH (RT-qPCR) | 170 bp | F: GGTCGGAGTGAACGGATTTG R: CCTTGACTGTGCCGTGGAAC | 60 °C |
SNP ID | SSC 1 & Position 2 | Closest Adjacent Gene | Genotype | White Number | BBWB 3 Number | Black Number |
---|---|---|---|---|---|---|
ASGA0038801 (G/A) | SSC8:48005002 | RAPGEF2 | AA | 20 | 0 | 0 |
GA | 41 | 0 | 0 | |||
GG | 0 | 96 | 58 | |||
H3GA0052920 (A/G) | SSC8:48096551 | RAPGEF2 | GG | 20 | 0 | 0 |
GA | 41 | 0 | 0 | |||
AA | 0 | 96 | 58 | |||
ASGA0038804 (C/T) | SSC8:48130141 | RAPGEF2 | TT | 20 | 0 | 0 |
TC | 41 | 0 | 0 | |||
CC | 0 | 96 | 58 | |||
MARC0007151 (T/C) | SSC8:48155658 | RAPGEF2 | CC | 20 | 0 | 0 |
CT | 40 | 0 | 0 | |||
TT | 0 | 96 | 58 | |||
ALGA0047859 (A/G) | SSC8:48209595 | RAPGEF2 | GG | 20 | 0 | 0 |
GA | 40 | 0 | 0 | |||
AA | 0 | 96 | 58 | |||
WU_10.2_8_43364095 (T/C) | SSC8:41273714 | PDGFRA | CC | 20 | 0 | 0 |
CT | 41 | 0 | 0 | |||
TT | 0 | 96 | 58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Luo, Y.; Chao, Z.; Zhang, J.; Liu, X.; Tu, D.; Guo, Q.; Sun, R.; Wang, F.; Fang, M. Discovery of Potential Candidate Genes for Coat Colour in Wuzhishan Pigs by Integrating SNPs and mRNA Expression Analysis. Animals 2024, 14, 3493. https://doi.org/10.3390/ani14233493
Xu Q, Luo Y, Chao Z, Zhang J, Liu X, Tu D, Guo Q, Sun R, Wang F, Fang M. Discovery of Potential Candidate Genes for Coat Colour in Wuzhishan Pigs by Integrating SNPs and mRNA Expression Analysis. Animals. 2024; 14(23):3493. https://doi.org/10.3390/ani14233493
Chicago/Turabian StyleXu, Qiao, Yabiao Luo, Zhe Chao, Jibin Zhang, Xiaolei Liu, Danqin Tu, Qin Guo, Ruiping Sun, Feng Wang, and Meiying Fang. 2024. "Discovery of Potential Candidate Genes for Coat Colour in Wuzhishan Pigs by Integrating SNPs and mRNA Expression Analysis" Animals 14, no. 23: 3493. https://doi.org/10.3390/ani14233493
APA StyleXu, Q., Luo, Y., Chao, Z., Zhang, J., Liu, X., Tu, D., Guo, Q., Sun, R., Wang, F., & Fang, M. (2024). Discovery of Potential Candidate Genes for Coat Colour in Wuzhishan Pigs by Integrating SNPs and mRNA Expression Analysis. Animals, 14(23), 3493. https://doi.org/10.3390/ani14233493