Reassortants of the Highly Pathogenic Influenza Virus A/H5N1 Causing Mass Swan Mortality in Kazakhstan from 2023 to 2024
<p>Wild bird death site in the winter of 2023/2024.</p> "> Figure 2
<p>Dynamics of swan mortality on Lake Karakol in the winter of 2023/2024 (according to data from the veterinary service of the Mangystau region).</p> "> Figure 3
<p>Remains of a swan’s corpse.</p> "> Figure 4
<p>Swan corpse with signs of diarrhea and without a right leg (with a gnawed leg).</p> "> Figure 5
<p>Stray dog on the shore of Lake Karakol.</p> "> Figure 6
<p>Whooper swan (<span class="html-italic">Cygnus cygnus</span>) (an adult).</p> "> Figure 7
<p>Whooper swan (<span class="html-italic">Cygnus olor</span>) (a cygnet).</p> "> Figure 8
<p>Sick bird (a cygnet).</p> "> Figure 9
<p>Heart. Haemorrhages in the myocard.</p> "> Figure 10
<p>Haemorrhages in the liver.</p> "> Figure 11
<p>Lung edema.</p> "> Figure 12
<p>Phylogenetic trees, including complete PB2 (<b>A</b>), PB1 (<b>B</b>), PA (<b>C</b>), HA (<b>D</b>), NP (<b>E</b>), NA (<b>F</b>), M (<b>G</b>), and NS (<b>H</b>) genes, of Kazakhstani HPAIV H5N1 strains isolated from swans on the coast of Lake Karakol, located on the eastern shore of the Kazakhstani part of the Caspian Sea from 2023 to 2024 and publicly available sequences (GenBank). The strains investigated in this study are marked with triangles, squares, and circles: <span class="html-fig-inline" id="animals-14-03211-i001"><img alt="Animals 14 03211 i001" src="/animals/animals-14-03211/article_deploy/html/images/animals-14-03211-i001.png"/></span>—A/<span class="html-italic">Mute swan</span>/Mangystau/9809/2023(H5N1); <span class="html-fig-inline" id="animals-14-03211-i002"><img alt="Animals 14 03211 i002" src="/animals/animals-14-03211/article_deploy/html/images/animals-14-03211-i002.png"/></span>—A/<span class="html-italic">Cygnus cygnus</span>/Karakol lake/01/2024(H5N1); <span class="html-fig-inline" id="animals-14-03211-i003"><img alt="Animals 14 03211 i003" src="/animals/animals-14-03211/article_deploy/html/images/animals-14-03211-i003.png"/></span>—A/Mute swan/Karakol lake/02/2024(H5N1); <span class="html-fig-inline" id="animals-14-03211-i004"><img alt="Animals 14 03211 i004" src="/animals/animals-14-03211/article_deploy/html/images/animals-14-03211-i004.png"/></span>—A/mute swan/Mangystau/1-S24R-2/2024(H5N1) (virus isolated at NVRC and KazNARU by Tabynov K et al. in 2024 [<a href="#B27-animals-14-03211" class="html-bibr">27</a>]).</p> "> Figure 12 Cont.
<p>Phylogenetic trees, including complete PB2 (<b>A</b>), PB1 (<b>B</b>), PA (<b>C</b>), HA (<b>D</b>), NP (<b>E</b>), NA (<b>F</b>), M (<b>G</b>), and NS (<b>H</b>) genes, of Kazakhstani HPAIV H5N1 strains isolated from swans on the coast of Lake Karakol, located on the eastern shore of the Kazakhstani part of the Caspian Sea from 2023 to 2024 and publicly available sequences (GenBank). The strains investigated in this study are marked with triangles, squares, and circles: <span class="html-fig-inline" id="animals-14-03211-i001"><img alt="Animals 14 03211 i001" src="/animals/animals-14-03211/article_deploy/html/images/animals-14-03211-i001.png"/></span>—A/<span class="html-italic">Mute swan</span>/Mangystau/9809/2023(H5N1); <span class="html-fig-inline" id="animals-14-03211-i002"><img alt="Animals 14 03211 i002" src="/animals/animals-14-03211/article_deploy/html/images/animals-14-03211-i002.png"/></span>—A/<span class="html-italic">Cygnus cygnus</span>/Karakol lake/01/2024(H5N1); <span class="html-fig-inline" id="animals-14-03211-i003"><img alt="Animals 14 03211 i003" src="/animals/animals-14-03211/article_deploy/html/images/animals-14-03211-i003.png"/></span>—A/Mute swan/Karakol lake/02/2024(H5N1); <span class="html-fig-inline" id="animals-14-03211-i004"><img alt="Animals 14 03211 i004" src="/animals/animals-14-03211/article_deploy/html/images/animals-14-03211-i004.png"/></span>—A/mute swan/Mangystau/1-S24R-2/2024(H5N1) (virus isolated at NVRC and KazNARU by Tabynov K et al. in 2024 [<a href="#B27-animals-14-03211" class="html-bibr">27</a>]).</p> "> Figure 12 Cont.
<p>Phylogenetic trees, including complete PB2 (<b>A</b>), PB1 (<b>B</b>), PA (<b>C</b>), HA (<b>D</b>), NP (<b>E</b>), NA (<b>F</b>), M (<b>G</b>), and NS (<b>H</b>) genes, of Kazakhstani HPAIV H5N1 strains isolated from swans on the coast of Lake Karakol, located on the eastern shore of the Kazakhstani part of the Caspian Sea from 2023 to 2024 and publicly available sequences (GenBank). The strains investigated in this study are marked with triangles, squares, and circles: <span class="html-fig-inline" id="animals-14-03211-i001"><img alt="Animals 14 03211 i001" src="/animals/animals-14-03211/article_deploy/html/images/animals-14-03211-i001.png"/></span>—A/<span class="html-italic">Mute swan</span>/Mangystau/9809/2023(H5N1); <span class="html-fig-inline" id="animals-14-03211-i002"><img alt="Animals 14 03211 i002" src="/animals/animals-14-03211/article_deploy/html/images/animals-14-03211-i002.png"/></span>—A/<span class="html-italic">Cygnus cygnus</span>/Karakol lake/01/2024(H5N1); <span class="html-fig-inline" id="animals-14-03211-i003"><img alt="Animals 14 03211 i003" src="/animals/animals-14-03211/article_deploy/html/images/animals-14-03211-i003.png"/></span>—A/Mute swan/Karakol lake/02/2024(H5N1); <span class="html-fig-inline" id="animals-14-03211-i004"><img alt="Animals 14 03211 i004" src="/animals/animals-14-03211/article_deploy/html/images/animals-14-03211-i004.png"/></span>—A/mute swan/Mangystau/1-S24R-2/2024(H5N1) (virus isolated at NVRC and KazNARU by Tabynov K et al. in 2024 [<a href="#B27-animals-14-03211" class="html-bibr">27</a>]).</p> "> Figure 12 Cont.
<p>Phylogenetic trees, including complete PB2 (<b>A</b>), PB1 (<b>B</b>), PA (<b>C</b>), HA (<b>D</b>), NP (<b>E</b>), NA (<b>F</b>), M (<b>G</b>), and NS (<b>H</b>) genes, of Kazakhstani HPAIV H5N1 strains isolated from swans on the coast of Lake Karakol, located on the eastern shore of the Kazakhstani part of the Caspian Sea from 2023 to 2024 and publicly available sequences (GenBank). The strains investigated in this study are marked with triangles, squares, and circles: <span class="html-fig-inline" id="animals-14-03211-i001"><img alt="Animals 14 03211 i001" src="/animals/animals-14-03211/article_deploy/html/images/animals-14-03211-i001.png"/></span>—A/<span class="html-italic">Mute swan</span>/Mangystau/9809/2023(H5N1); <span class="html-fig-inline" id="animals-14-03211-i002"><img alt="Animals 14 03211 i002" src="/animals/animals-14-03211/article_deploy/html/images/animals-14-03211-i002.png"/></span>—A/<span class="html-italic">Cygnus cygnus</span>/Karakol lake/01/2024(H5N1); <span class="html-fig-inline" id="animals-14-03211-i003"><img alt="Animals 14 03211 i003" src="/animals/animals-14-03211/article_deploy/html/images/animals-14-03211-i003.png"/></span>—A/Mute swan/Karakol lake/02/2024(H5N1); <span class="html-fig-inline" id="animals-14-03211-i004"><img alt="Animals 14 03211 i004" src="/animals/animals-14-03211/article_deploy/html/images/animals-14-03211-i004.png"/></span>—A/mute swan/Mangystau/1-S24R-2/2024(H5N1) (virus isolated at NVRC and KazNARU by Tabynov K et al. in 2024 [<a href="#B27-animals-14-03211" class="html-bibr">27</a>]).</p> "> Figure 13
<p>Hypothetical reassortment events of the A/<span class="html-italic">Cygnus cygnus</span>/Karakol lake/01/2024(H5N1) viruses. The eight genes are shown in <a href="#animals-14-03211-t001" class="html-table">Table 1</a> and are as follows: PB2, PB1, PA, HA, NP, NA, M, and NS. The colors of the bars indicate the different sources of the gene segments.</p> "> Figure 14
<p>Hypothetical reassortment events of the A/<span class="html-italic">mute swan</span>/Mangystau/1-S24R-2/2024(H5N1) viruses.</p> "> Figure 15
<p>Hypothetical reassortment events of the A/<span class="html-italic">Mute swan</span>/Mangystau/9809/2023(H5N1) viruses.</p> ">
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Ecological Features of the Study Area
2.3. Sampling
2.4. Virus Isolation and Characterization
2.5. RNA Extraction
2.6. Real-Time RT-PCR for Primary Detection of Influenza A Viruses
2.7. Determination of the Influenza Virus Subtype
2.8. RT-PCR Reaction
2.9. Sequencing and Phylogenetic Analysis
3. Results
3.1. Clinical and Epidemiologic Features of the Avian Influenza Outbreak at Lake Karakol in the Winter of 2023/2024
3.2. AIV Detection and Characterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexander, D.J. An overview of the epidemiology of avian influenza. Vaccine 2007, 25, 5637–5644. [Google Scholar] [CrossRef] [PubMed]
- Kaleta, E.F.; Hergarten, G.; Yilmaz, A. Avian influenza A viruses in birds—An ecological, ornithological and virological view. Dtsch. Tierarztl. Wochenschr. 2005, 112, 448–456. [Google Scholar] [PubMed]
- Chen, H.; Deng, G.; Li, Z.; Tian, G.; Li, Y.; Jiao, P.; Zhang, L.; Liu, Z.; Webster, R.H.; Yu, K. The evolution of H5N1 influenza viruses in ducks in southern China. Proc. Natl. Acad. Sci. USA 2004, 101, 10452–10457. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Subbarao, K.; Cox, N.J.; Guo, Y. Genetic characterization of the pathogenic influenza A/goose/Guandong/1/96 (H5N1) virus: Similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 1999, 261, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Smith, G.J.; Zhang, S.Y.; Qin, K.; Wang, J.; Li, K.S.; Webster, R.G.; Peiris, J.S.; Guan, Y. Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature 2005, 436, 191–192. [Google Scholar] [CrossRef]
- Alexander, D.; Brown, I. History of highly pathogenic avian influenza. Rev. Sci. Tech. 2009, 28, 19–38. [Google Scholar] [CrossRef]
- Meade, P.S.; Bandawane, P.; Bushfield, K.; Hoxie, I.; Azcona, K.R.; Burgos, D.; Choudhury, S.; Diaby, A.; Diallo, M.; Gaynor, K.; et al. Detection of clade 2.3.4.4b highly pathogenic H5N1 influenza virus in New York City. J. Virol. 2024, 98, e00626-24. [Google Scholar] [CrossRef]
- World Health Organization. Cumulative Number of Confirmed Human Cases for Avian Influenza A(H5N1) Reported to WHO, 2003–2024, 3 May 2024. Available online: https://www.who.int/publications/m/item/cumulative-number-of-confirmed-human-cases-for-avian-influenza-a(h5n1)-reported-to-who--2003-2024-3-may-2024 (accessed on 3 May 2024).
- Sturm-Ramirez, K.M.; Ellis, T.; Bousfield, B.; Bissett, L.; Dyrting, K.; Rehg, J.E.; Poon, L.; Guan, Y.; Peiris, M.; Webster, R.G. Reemerging H5N1 influenza viruses in Hong Kong in 2002 are highly pathogenic to ducks. J. Virol. 2004, 78, 4892–4901. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, H.; Lei, F.; Zhu, Q.; Qin, K.; Zhang, X.W.; Zhang, X.L.; Zhao, D.; Wang, G.; Feng, Y.; et al. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science 2005, 309, 1206. [Google Scholar] [CrossRef]
- Newman, S.H.; Iverson, S.A.; Takekawa, J.Y.; Gilbert, M.; Prosser, D.J.; Batbayar, N.; Natsagdorj, T.; Douglas, D.C. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in eastern Asia. PLoS ONE 2009, 28, e5729. [Google Scholar] [CrossRef]
- Hars, J.; Ruette, S.; Benmergui, M.; Fouque, C.; Fournier, J.Y.; Legouge, A.; Cherbonnel, M.; Daniel, B.; Dupuy, C.; Jestin, V. The epidemiology of the highly pathogenic H5N1 avian influenza in Mute Swan (Cygnus olor) and other Anatidae in the Dombes region (France), 2006. J. Wildl. Dis. 2008, 44, 811–823. [Google Scholar] [CrossRef] [PubMed]
- Terregino, C.; Milani, A.; Capua, I.; Marino, A.M.; Cavaliere, N. Highly pathogenic avian influenza H5N1 subtype in mute swans in Italy. Vet. Rec. 2006, 158, 491. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Machova, J.; Hornickova, J.; Tomci, M.; Nagl, I.; Horyna, B.; Holko, I. Highly pathogenic avian influenza virus subtype H5N1 in mute swans in the Czech Republic. Vet. Microbiol. 2007, 120, 9–16. [Google Scholar] [CrossRef]
- Caliendo, V.; Lewis, N.S.; Pohlmann, A.; Baillie, S.R.; Banyard, A.C.; Beer, M.; Brown, I.H.; Fouchier, R.A.M.; Hansen, R.D.E.; Lameris, T.K.; et al. Transatlantic spread of highly pathogenic avian influenza H5N1 by wild birds from Europe to North America in 2021. Sci. Rep. 2022, 12, 11729. [Google Scholar] [CrossRef]
- Sobolev, I.; Gadzhiev, A.; Sharshov, K.; Ohlopkova, O.; Stolbunova, K.; Fadeev, A.; Dubovitskiy, N.; Glushchenko, A.; Irza, V.; Perkovsky, M.; et al. Highly Pathogenic Avian Influenza A(H5N1) Virus-Induced Mass Death of Wild Birds, Caspian Sea, Russia, 2022. Emerg. Infect. Dis. 2023, 29, 2528–2532. [Google Scholar] [CrossRef]
- Danilenko, E.A.; Soldatov, M.S. 2017 Bird migrations in the Caspian region. In Electronic Atlas of the Caspian Sea; Russian Geographical Society, Faculty of Geography, Lomonosov Moscow State University: Moscow, Russia, 2017. [Google Scholar]
- L’vov, D.K.; Shchelkanov, M.Y.; Deriabin, D.P.G.; Burtseva, E.I.; Galkina, I.V.; Grebennikova, T.V.; Prilipov, A.G.; Usachev, E.V.; Liapina, O.V.; Shliapnikova, O.V.; et al. Highly Pathogenic Influenza A/H5N1 Virus-Caused Epizooty among Mute Swans (Cygnus Olor) in the Lower Estuary of the Volga River (November 2005). Vopr. Virusol. 2006, 51, 10–16. [Google Scholar]
- WHO. Manual 011 Animal Influenza Diagnosis and Surveillance/R.Webster, N. Cox, K. Stohr—Global Influenza Programmer; World Health Organization: Geneva, Switzerland, 2010; 99p. [Google Scholar]
- WHO. Manual for the Laboratory Diagnosis and Virological Surveillance of Influenza; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- World Organisation for Animal Health. OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/3.03.04_AI.pdf (accessed on 17 October 2023).
- Tsukamoto, K.; Ashizawa, T.; Nakanishi, K.; Kaji, N.; Suzuki, K.; Okamatsu, M.; Yamaguchi, S.; Mase, M. All Rights Reserved. Subtyping of Avian Influenza Viruses H1 to H15 on the Basis of Hemagglutinin Genes by PCR Assay and Molecular Determination of Pathogenic Potential. J. Clin. Microbiol. 2008, 46, 3048–3055. [Google Scholar] [CrossRef]
- Spackman, E.; Senne, D.A.; Myers, T.J.; Bulaga, L.L.; Garber, L.P.; Perdue, M.L.; Lohman, K.; Daum, L.T.; Suarez, D.L. Development of a real-time 630 reverse transcriptase PCR assay for type A influenza virus and the 631 avian H5 and H7 hemagglutinin subtypes. J. Clin. Microbiol. 2002, 40, 3256–3260. [Google Scholar] [CrossRef]
- Tsukamoto, K.; Ashizawa, T.; Nakanishi, K. Use of Reverse Transcriptase PCR To Subtype N1 to N9 Neuraminidase Genes of Avian Influenza Viruses. J. Clin. Microbiol. 2009, 47, 2301–2303. [Google Scholar] [CrossRef]
- Hoffmann, E.; Stech, J.; Guan, Y.; Webster, R.G.; Perez, D.R. Universal primer set for the full-length amplification of all influenza A viruses. Arch. Virol. 2001, 146, 2275–2289. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Tabynov, K.; Strochkov, V.; Sandybayev, N.; Karibayev, T.; Berdikulov, M.; Yelchibayeva, L.; Zharmambet, K.; Kuanyshbek, A.; Zhumadilova, Z.; Tabynov, K. Detection and genomic characterization of an avian influenza virus A/mute swan/Mangystau/1-S24R-2/2024 (H5N1; clade 2.3.4.4b) strain isolated from the lung of a dead swan in Kazakhstan. Microbiol. Resour. Announc. 2024, 13, 00260-24. [Google Scholar] [CrossRef]
- Luczo, J.M.; Stambas, J.; Durr, P.A.; Michalski, W.P.; Bingham, J. Molecular pathogenesis of H5 highly pathogenic avian infuenza: The role of the haemagglutinin cleavage site motif. Rev. Med. Virol. 2015, 25, 406–430. [Google Scholar] [CrossRef]
- Cho, A.Y.; Si, Y.-J.; Lee, D.-Y.; Kim, D.-J.; Kim, D.; Jeong, H.; Song, C.-S.; Lee, D.-H. Index case of H5N1 clade 2.3.4.4b highly pathogenic avian influenza virus in wild birds, South Korea, November 2023. Front. Vet. Sci. 2024, 11, 1366082. [Google Scholar] [CrossRef]
- Li, J.; Ishaq, M.; Prudence, M.; Xi, X.; Hu, T.; Liu, Q.; Guo, D. Single mutation at the amino acid position 627 of PB2 that leads to increased virulence of an H5N1 avian influenza virus during adaptation in mice can be compensated by multiple mutations at other sites of PB2. Virus Res. 2009, 144, 123–129. [Google Scholar] [CrossRef]
- Horimoto, T.; Kawaoka, Y. Pandemic threat posed by avian influenza—A viruses. Clin. Microbiol. Rev. 2001, 14, 129–149. [Google Scholar] [CrossRef]
- Gabriel, G.; Herwig, A.; Klenk, H.-D. Interaction of Polymerase Subunit PB2 and NP with Importin α1 Is a Determinant of Host Range of Influenza A Virus. PLoS Pathog. 2008, 4, e11. [Google Scholar] [CrossRef]
- de Jong, M.D.; Simmons, C.P.; Thanh, T.T.; Hien, V.M.; Smith, G.J.; Chau, T.N.; Hoang, D.M.; Chau, N.V.; Khanh, T.H.; Dong, V.C.; et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat. Med. 2006, 12, 1203–1207. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, Y.; Jiao, P.; Wang, A.; Zhao, F.; Tian, G.; Wang, X.; Yu, K.; Bu, Z.; Chen, H. The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J. Virol. 2006, 80, 11115–11123. [Google Scholar] [CrossRef]
- Jackson, D.; Hossain, M.J.; Hickman, D. A new influenza virus virulence determinant: The NS1 protein four C-terminal residues modulate pathogenicity. Biol. Sci. 2008, 105, 4381–4386. [Google Scholar] [CrossRef]
- Sultankulova, K.T.; Dzhekebekov, K.; Orynbayev, M.B.; Burashev, Y.D.; Melisbek, A.M.; Barmak, S.M.; Kozhabergenov, N.; Issabek, A.U.; Chervyakova, O.V.; Namet, A.M.; et al. Evidence for flock transmission of individual subtypes and strains of avian influenza viruses: A monitoring study of wild birds in Kazakhstan. Virus Res. 2022, 320, 198898. [Google Scholar] [CrossRef]
# | Strain Name | Sampling Date | Originating Lab | Bird Species | Genbank (Access Numbers) |
---|---|---|---|---|---|
1 | A/Mute swan/Mangystau/9809/2023(H5N1) | 26 December 2023 | IMV | Mute swan | PQ151799.1 PB2 PQ151800.1 PB1 PQ151801.1 PA PP346196.1 HA PQ151802.1 NP PP346197.1 NA PP346198.1 M PP346199.1 NS |
2 | A/Cygnus cygnus/Karakol lake/01/2024(H5N1) | 10 January 2024 | RIBSP | Whooper swan | P348302 PB2 PP348303 PB1 PP348304 PA PP348305 HA PP348306 NP PP348307 NA PP348308 M PP348309 NS |
3 | A/Mute swan/Karakol lake/02/2024(H5N1) | 10 January 2024 | RIBSP | Mute swan | PP989359 PB2 PP989360 PB1 PP989361 PA PP989362 HA PP989363 NP PP989364 NA PP989365 M PP989366 NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultankulova, K.T.; Argimbayeva, T.U.; Aubakir, N.A.; Bopi, A.; Omarova, Z.D.; Melisbek, A.M.; Karamendin, K.; Kydyrmanov, A.; Chervyakova, O.V.; Kerimbayev, A.A.; et al. Reassortants of the Highly Pathogenic Influenza Virus A/H5N1 Causing Mass Swan Mortality in Kazakhstan from 2023 to 2024. Animals 2024, 14, 3211. https://doi.org/10.3390/ani14223211
Sultankulova KT, Argimbayeva TU, Aubakir NA, Bopi A, Omarova ZD, Melisbek AM, Karamendin K, Kydyrmanov A, Chervyakova OV, Kerimbayev AA, et al. Reassortants of the Highly Pathogenic Influenza Virus A/H5N1 Causing Mass Swan Mortality in Kazakhstan from 2023 to 2024. Animals. 2024; 14(22):3211. https://doi.org/10.3390/ani14223211
Chicago/Turabian StyleSultankulova, Kulyaisan T., Takhmina U. Argimbayeva, Nurdos A. Aubakir, Arailym Bopi, Zamira D. Omarova, Aibarys M. Melisbek, Kobey Karamendin, Aidyn Kydyrmanov, Olga V. Chervyakova, Aslan A. Kerimbayev, and et al. 2024. "Reassortants of the Highly Pathogenic Influenza Virus A/H5N1 Causing Mass Swan Mortality in Kazakhstan from 2023 to 2024" Animals 14, no. 22: 3211. https://doi.org/10.3390/ani14223211
APA StyleSultankulova, K. T., Argimbayeva, T. U., Aubakir, N. A., Bopi, A., Omarova, Z. D., Melisbek, A. M., Karamendin, K., Kydyrmanov, A., Chervyakova, O. V., Kerimbayev, A. A., Burashev, Y. D., Kasymbekov, Y. T., & Orynbayev, M. B. (2024). Reassortants of the Highly Pathogenic Influenza Virus A/H5N1 Causing Mass Swan Mortality in Kazakhstan from 2023 to 2024. Animals, 14(22), 3211. https://doi.org/10.3390/ani14223211