Endoparasites of Red Deer (Cervus elaphus L.) and Roe Deer (Capreolus capreolus L.) in Serbian Hunting Grounds
<p>Map of Serbia with administrative districts where the survey was conducted. The map was generated by using QGIS v3.36 [<a href="#B20-animals-14-03120" class="html-bibr">20</a>].</p> "> Figure 2
<p>Parasitic elements detected in fecal samples: (<b>A</b>) <span class="html-italic">Müellerius</span> spp. (100×); (<b>B</b>) <span class="html-italic">Dictyocaulus</span> spp. (100×); (<b>C</b>) coccidia oocyst (400×); (<b>D</b>) <span class="html-italic">Buxtonella sulcata</span> cyst (100×); (<b>E</b>) Strongylidae egg (400×); (<b>F</b>) <span class="html-italic">Trichuris</span> spp. eggs (400×); (<b>G</b>) <span class="html-italic">Capillaria</span> spp. egg (400×); (<b>H</b>) <span class="html-italic">Moniezia</span> spp. egg (400×); (<b>I</b>) <span class="html-italic">Fasciola hepatica</span> egg (100×); (<b>J</b>) <span class="html-italic">Paramphistomum</span> spp. egg (100×); (<b>K</b>) <span class="html-italic">Fascioloides magna</span> egg (100×); (<b>L</b>) <span class="html-italic">Dicrocoelium dendrticum</span> egg (400×).</p> "> Figure 3
<p>The third-stage larvae (L3) recovered using the corpoculture method (40×, 100×). (<b>A</b>,<b>B</b>) <span class="html-italic">Haemonchus contortus</span>; (<b>C</b>,<b>D</b>) <span class="html-italic">Chabertia ovina</span>; (<b>E</b>,<b>F</b>) <span class="html-italic">Oesophagostomum columbianum</span>; (<b>G</b>,<b>H</b>) <span class="html-italic">Trichostrongylus axei</span>. Morphological identification was performed according to total length, esophagus length, tail sheath length, and the number of intestinal cells [<a href="#B21-animals-14-03120" class="html-bibr">21</a>].</p> ">
1. Introduction
2. Materials and Methods
2.1. Characteristics of Study Area and Hunting Grounds
2.2. Sample Collection
2.3. Parasitological Methods
2.4. Statistical Analyses
3. Results
3.1. Prevalence of Endoparasites in Red Deer
3.2. Prevalence of Endoparasites in Roe Deer
3.3. Coproculture
4. Discussion
4.1. Protozoa
4.2. Nematoda
4.3. Cestoda
4.4. Trematoda
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ilić, T.; Stojanov, I.; Dimitrijević, S. Parasitic infections in wild ruminants and wild boar. Vet. Glas. 2011, 65, 419–431. [Google Scholar] [CrossRef]
- Razmaitė, V.; Šiukščius, A.; Pileckas, V.; Švirmickas, G.J. Effect of different roe deer muscles on fatty acid composition in intramuscular fat. Ann. Anim. Sci. 2015, 15, 775–784. [Google Scholar] [CrossRef]
- Jones, K.R. Trichuriasis in selected deer (Cervidae) species: A geographical perspective. Ruminants 2021, 1, 178–190. [Google Scholar] [CrossRef]
- Figueiredo, A.M.; Valente, A.M.; Fonseca, C.; de Carvalho, L.M.; Torres, R.T. Endoparasite diversity of the main wild ungulates in Portugal. Wildl. Biol. 2020, 1, 1–7. [Google Scholar] [CrossRef]
- Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Emerging infectious diseases of wildlife-threats to biodiversity and human health. Science 2000, 287, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Cleaveland, S.; Laurenson, M.K.; Taylor, L.H. Diseases of humans and their domestic mammals: Pathogen characteristics, host range and the risk of emergence. Phil. Trans. R. Soc. B 2001, 356, 991–999. [Google Scholar] [CrossRef]
- Hassell, J.M.; Begon, M.; Ward, M.J.; Fèvre, E.M. Urbanization and disease emergence: Dynamics at the wildlife–livestock–human interface. Trends Ecol. Evol. 2017, 32, 55–67. [Google Scholar] [CrossRef]
- Thompson, R.C.; Kutz, S.J.; Smith, A. Parasite zoonoses and wildlife: Emerging issues. Int. J. Environ. Res. Public Health 2009, 6, 678–693. [Google Scholar] [CrossRef]
- Côté, S.D.; Rooney, T.P.; Tremblay, J.P.; Dussault, C.; Waller, D.M. Ecological impacts of deer overabundance. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 113–147. [Google Scholar] [CrossRef]
- Gill, R.M.A.; Morgan, G. The effects of varying deer density on natural regeneration in woodlands in lowland Britain. Forestry 2010, 83, 53–63. [Google Scholar] [CrossRef]
- Lagos, L.; Picos, J.; Valero, E. Temporal pattern of wild ungulate-related traffic accidents in northwest Spain. Eur. J. Wildl. Res. 2012, 58, 661–668. [Google Scholar] [CrossRef]
- Popović, Z.; Davidović, V.; Božičković, I.; Stojanović, B.; Ivanović, B.; Bojanić Rašović, M. Change of antlers morpho-metric parameters and total trophy score in roe deer (Capreolus capreolus L.) in relation to age. Biotechnol. Anim. Husb. 2020, 36, 225–237. [Google Scholar] [CrossRef]
- Milosević-Zlatanović, S.; Crnobrnja-Isailović, J.; Stamenković, S. Allozyme variability and differentiation in Serbian roe deer populations Capreolus capreolus. Acta Theriol. 2005, 50, 429–444. [Google Scholar] [CrossRef]
- Žele Vengušt, D.; Kuhar, U.; Jerina, K.; Vengušt, G. Twenty years of passive disease surveillance of roe deer (Capreolus capreolus) in Slovenia. Animals 2021, 11, 407. [Google Scholar] [CrossRef]
- Body, G.; Ferte, H.; Gaillard, J.M.; Delorme, D.; Klein, F.; Gilot-Fromont, E. Population density and phenotypic attributes influence the level of nematode parasitism in deer. Oecologia 2011, 167, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Hoberg, E.P.; Kocan, A.A.; Rickard, L.G. Parasitic diseases of wild mammals. In Gastrointestinal Strongyles in Wild Ruminants; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001; pp. 193–227. [Google Scholar] [CrossRef]
- Albon, S.D.; Stien, A.; Irvine, R.J.; Langvatn, R.; Ropstad, E.; Halvorsen, O. The role of parasites in the dynamics of a reindeer population. Proc. R. Soc. London Ser. B Biol. Sci. 2002, 269, 1625–1632. [Google Scholar] [CrossRef]
- Mirčeta, J.; Pelić, M.; Božić, B.; Petrović, J.; Urošević, M.; Stankov, B.; Bugarski, D. Prevalence of the giant liver fluke (Fascioloides magna, Bassi, 1875) in red deer (Cervus elaphus) in the region of floodplain forests of northern Serbia. Arch. Vet. Med. 2018, 11, 17–26. [Google Scholar] [CrossRef]
- Pavlović, I.; Savić, B.; Ivanović, S.; Ćirović, D. First occurrence of Paramphistomum microbothrium (Fischoeder, 1901) in roe deer (Capreolus capreolus) in Serbia. J. Wildl. Dis. 2012, 48, 520–552. [Google Scholar] [CrossRef] [PubMed]
- QGIS Geographic Information System (Version 3.36). Open-Source Geospatial Foundation Project. 2024. Available online: http://qgis.org (accessed on 23 February 2024).
- Van Wyk, J.A.; Mayhew, E. Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: A practical lab guide. Onderstepoort J. Vet. Res. 2013, 80, 1–14. Available online: https://hdl.handle.net/10520/EJC134539 (accessed on 1 January 2013). [CrossRef]
- Santín-Durán, M.; Alunda, J.M.; Hoberg, E.P.; de la Fuente, C. Abomasal parasites in wild sympatric Cervids, red deer, Cervus elaphus and fallow deer, Dama dama, from three localities across central and western Spain: Relationship to host density and park management. J. Parasitol. 2004, 90, 1378–1386. [Google Scholar] [CrossRef]
- Kaczyk, J.; Górski, P.; Łojek, J.; Bartosik, J. Internal parasites of wild ruminants living in the Kampinoski National Park. Sylwan 2017, 161, 334–340. [Google Scholar]
- Tomczuk, K.; Szczepaniak, O.K.; Grzybek, M.; Bojar, W. Internal parasites in roe deer of the Lubartów Forest Division in postmortem studies. Med. Weter. 2017, 73, 726–730. [Google Scholar] [CrossRef]
- Hines, M.A.; Ezenwa, O.V.; Cross, P.; Rogerson, D.J. Effects of supplemental feeding on gastrointestinal parasite infection in elk (Cervus elaphus): Preliminary observations. Vet. Parasitol. 2007, 148, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, A.K.; Srivastava, A.; Sudan, V.; Singh, R.; Shanker, D.; Parashar, R. Prevalence of endoparasitic infections in wild cervids of Army Golf Course, Mathura. J. Parasit. Dis. 2014, 38, 358–360. [Google Scholar] [CrossRef]
- Pilarczyk, B.; Balicka-Ramisz, A.; Ramisz, A.; Lachowska, S. Występowanie pasożytów przewodu pokarmowego u saren i jeleni na terenie województwa zachodniopomorskiego. Wiad. Parazytol. 2005, 51, 307–310. [Google Scholar]
- van Beest, F.M.; Petersen, H.H.; Krogh, A.K.H.; Frederiksen, M.L.; Schmidt, N.M.; Hansson, S.V. Estimating parasite-condition relationships and potential health effects for fallow deer (Dama dama) and red deer (Cervus elaphus) in Denmark. Int. J. Parasitol. Parasites Wildl. 2023, 21, 143–152. [Google Scholar] [CrossRef]
- Pacini, M.I.; Bonelli, F.; Briganti, A.; Citi, S.; Perrucci, S.; Papini, R.A.; Sgorbini, M. Wildlife ungulate rescue and emergency services in the Pisa area (Tuscany, Italy): Evaluation of a 9-years period (2010–2018). Front. Vet. Sci. 2020, 7, 626. [Google Scholar] [CrossRef] [PubMed]
- Morrondo, M.P.; Pérez-Creo, A.; Prieto, A.; Cabanelas, E.; Díaz-Cao, J.M.; Arias, M.S.; Díaz Fernández, P.; Pajares, G.; Remesar, S.; López-Sández, C.M.; et al. Prevalence and distribution of infectious and parasitic agents in roe deer from Spain and their possible role as reservoirs. Ital. J. Anim. Sci. 2017, 16, 266–274. [Google Scholar] [CrossRef]
- Bilal, C.Q.; Kahn, M.S.; Aviaz, M.; Ijaz, M.; Khan, J.A. Prevalence and chemotherapy of Balantidium coli in cattle in the River Ravi reigon, Lahore (Pakistan). Vet. Parasitol. 2009, 163, 15–17. [Google Scholar] [CrossRef]
- Tomczuk, K.; Kurek, L.; Stec, A.; Studzinska, M.; Mochol, J. Incidence and clinical aspects of colon ciliates Buxtonella sulcata infection in cattle. Bull. Vet. Inst. Pulway 2005, 49, 29–33. [Google Scholar]
- Goz, Y.; Altug, N.; Yuksek, N.; Zkan, C. Parasites detected in neonatal and young calves with diarrhoea. Bull. Vet. Inst. Pulway 2006, 50, 345–348. [Google Scholar]
- Al-Saffar, T.M.; Suliman, E.G.; Al-Bakri, H.S. Prevalence of intestinal ciliate Buxtonella sulcata in cattle in Mosul. Iraqi J. Vet. Med. 2010, 24, 27–30. [Google Scholar]
- Sultan, K.; Khalafalla, R.E.; Elseify, M.A. Preliminary investigation on Buxtonella sulcata (Jameson, 1926) (Ciliphora: Trichostomatidae) in Egyptian ruminants. J. Vet. Med. Res. 2013, 22, 91–94. [Google Scholar] [CrossRef]
- Ponce-Gordo, F.; Jimenez-Ruiz, E.; Martínez-Díaz, R.A. Tentative identification of the species of Balantidium from ostriches (Struthio camelus) as Balantidium coli-like by analysis of polymorphic DNA. Vet. Parasitol. 2008, 157, 41–49. [Google Scholar] [CrossRef]
- Hora, F.S.; Genchi, C.; Ferrari, N.; Morariu, S.; Mederle, N.; Dărăbuș, G. Frequency of gastrointestinal and pulmonary helminth infections in wild deer from western Romania. Vet. Parasitol. Reg. Stud. Rep. 2017, 8, 75–77. [Google Scholar] [CrossRef]
- Valcárcel, F.; Corchero, J.; Olmeda, A.S.; Rojo Vázquez, F.A.; García Romero, C. Gastrointestinal nematode infections of Cervus elaphus in Castilla-La Mancha (central Spain). Rev. Iber. Parasitol. 2002, 62, 108–113. [Google Scholar]
- Rehbein, S.; Lutz, W.; Visser, M.; Winter, R. Investigation of the parasite fauna of game animals of Northrhine-Westfalia. 3. Endoparasites of red deer. Eur. J. Wildl. Res. 2002, 48, 69–93. [Google Scholar] [CrossRef]
- Davidson, R.K.; Licina, T.; Gorini, L.; Milner, J.S. Endoparasites in a Norwegian moose (Alces alces) population—Faunal diversity abundance and body condition. Int. J. Parasitol. Parasites Wildl. 2015, 4, 29–36. [Google Scholar] [CrossRef]
- Milner, J.M.; Wedul, S.J.; Laaksonen, S.; Oksanen, A. Gastrointestinal nematodes of moose (Alces alces) in relation to supplementary feeding. J. Wildl. Dis. 2015, 49, 69–79. [Google Scholar] [CrossRef]
- Shimalov, V.V.; Shimalov, V.T. Helminth fauna of Cervids in Belorussian Polesie. Parasitol. Res. 2003, 89, 75–76. [Google Scholar] [CrossRef]
- Grandi, G.; Uhlhorn, H.; Agren, E.; Morner, T.; Righi, F.; Osterman-Lind, E.; Neimanis, A. Gastrointestinal parasitic infection in dead or debilitated mose (Alces alces) in Sweden. J. Wildl. Dis. 2018, 54, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, D.N.; Romashova, N.B.; Ramashov, B.V. Gastrointestinal nematodes of European roe deer (Capreolus capreolus) in Russia. Russ. J. Theriol. 2020, 19, 85–93. [Google Scholar] [CrossRef]
- Pato, F.J.; Vazquez, L.; Diez-Banos, N.; Lopez, C.; Sanchez-Andrade, R.; Fernandez, G.; Diez-Banos, P.; Panadero, R.; Diaz, P.; Morrondo, P. Gastrointestinal nematode infections in roe deer (Capreolus capreolus) from the NW of the Iberian Peninsula: Assessment of some risk factors. Vet. Parasitol. 2013, 196, 136–142. [Google Scholar] [CrossRef]
- Segonds-Pichon, A.; Ferte, H.; Gaillard, J.M.; Lamarque, F.; Duncan, P. Nematode Infestation and body condition in roe deer (Capreolus capreolus). Game Wildl. Sci. 2000, 17, 241–258. [Google Scholar]
- Filip-Hutsch, K.; Czopowicz, M.; Barc, A.; Demiaszkiewicz, A.W. Gastrointestinal helminths of a European moose population in Poland. Pathogens 2021, 10, 456. [Google Scholar] [CrossRef] [PubMed]
- Goossens, E.; Vercruysse, J.; Boomker, J.; Vercammen, F.; Dorny, P. A 12-month survey of gastrointestinal helminth infections of Cervids kept in two zoos in Belgium. J. Zoo Wildl. Med. 2005, 36, 470–478. [Google Scholar] [CrossRef]
- Bolukbas, C.S.; Gurler, A.T.; Beyhan, Y.E.; Acici, M.; Umar, S. Helminths of roe deer (Capreolus capreolus) in the Middle Black Sea region of Turkey. Parasitol. Int. 2012, 61, 729–730. [Google Scholar] [CrossRef] [PubMed]
- Rehbein, S.; Visser, M.; Jekel, I.; Silaghi, C. Endoparasites of fallow deer (Dama dama) of the Antheringer Au in Salzburg, Austria. Weir. Kin. Wochenschr. 2014, 126, 37–41. [Google Scholar] [CrossRef]
- Davidson, R.K.; Kutz, S.; Madsilen, K.; Hoberg, E.; Handeland, K. Gastrointestinal parasites in an isolated Norwegian population of wild red deer (Cervus elaphus). Acta Vet. Scand. 2014, 56, 59. [Google Scholar] [CrossRef]
- Vengust, G.; Bidovec, A. Parasites of fallow deer (Dama dama) in Slovenia. Helminthologia 2003, 40, 161–164. [Google Scholar]
- Burlinski, P.; Janiszewski, P.; Kroll, A.; Gonkowski, S. Parasitofauna in the gastrointestinal tract of the Cervids (Cervidae) in Northern Poland. Acta Vet. 2011, 61, 269–282. [Google Scholar] [CrossRef]
- Kusak, R.R.; Spicic, S.; Slijepcevic, V.; Bosnic, S.; Janje, R.R.; Duvnjak, S.; Sindicic, M.; Majnaric, D.; Cvetnic, Z.; Huber, D. Health status of roe and red deer in Gorski kotar, Croatia. Vet. Arh. 2012, 82, 59–73. [Google Scholar]
- Stevanović, O.; Nikolić, S.; Nedić, D.; Zuko, A.; Sladojević, Ž. Capillaria bovis (Schnyder, 1906) in farmed fallow deer (Dama dama): First record in Bosnia and Herzegovina. In Proceedings of the 20th Symposium of epizootiologist and epidemiologist, Vrnjačka Banja, Serbia, 18–20 April 2018; pp. 180–181. [Google Scholar]
- Pybus, M.J. Survey of hepatic and pulmonary helminths of wild cervids in Alberta, Canada. J. Wild. Dis. 1990, 26, 453–459. [Google Scholar] [CrossRef]
- Divina, B.P.; Höglund, J. Heterologous transmission with Dictyocaulus capreolus from roe deer (Capreolus capreolus) to cattle (Bos taurus). J. Helminthol. 2002, 76, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Carreno, R.A.; Diez-Banos, N.; del Rosario Hidalgo-Arguello, M.; Nadler, S.A. Characterisation of Dictyocaulus species (Nematoda: Trichostrongyloidea) from three species of wild ruminants. J. Parasitol. 2009, 95, 966–970. [Google Scholar] [CrossRef] [PubMed]
- Jurankova, J.; Jirsova, D.; Pafco, B.; Forejtek, P. The molecular and morphometric identification of Dictyocaulus capreolus in clinically affected roe deer (Capreolus capreolus L.). Vet. Med. 2019, 64, 386–391. [Google Scholar] [CrossRef]
- Panayotova-Pencheva, M.S. New records of protostrongylid lungworms from wild ruminants in Bulgaria. Vet. Med. 2006, 51, 477–484. [Google Scholar] [CrossRef]
- Panayotova-Pencheva, M.S.; Alexandrov, M. Etiopathological aspects of Elaphostrongylus cervi and Varestrongylus sagittatus infections in red deer in Bulgaria. Acta Vet. Brno 2011, 80, 349–352. [Google Scholar] [CrossRef]
- Simpson, V.R.; Blake, D. Parasitic pneumonia in roe deer (Capreolus capreolus) in Cornwall, Great Britain, caused by Varestrongylus capreoli (Protostrongylidae). BMC Vet. Res. 2018, 14, 198. [Google Scholar] [CrossRef]
- Diop, G.; Yanagida, T.; Hailemariam, Z.; Menkir, S.; Nakao, M.; Sako, Y.; Ba, C.T.; Ito, A. Genetic characterization of Moniezia species in Senegal and Ethiopia. Parasitol. Int. 2015, 64, 256–260. [Google Scholar] [CrossRef]
- Foryet, J.W.; Drew, L.M. Experimental infection in liver flukes, Fasciola hepatica and Fascioloides magna, in bison (Bison bison). J. Wildl. Dis. 2010, 46, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Konjević, D.; Bujanić, M.; Beck, A.; Beck, R.; Martinković, F.; Janicki, Z. First record of chronic Fascioloides magna infection in roe deer (Capreolus capreolus). Int. J. Parasitol. Parasites Wildl. 2021, 15, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Otranto, D.; Rehbein, S.; Weigl, S.; Cantacessi, C.; Parisi, A.; Paolo, L.R.; Olson, D.P. Morphological and molecular differentiation betwen Dicrocoelium dendriticum (Rudolphi, 1819) and Dicrocoelium chinensis (Sudarikov and Ryjikov, 1951) tang and tang, 1978 (Platyhelminthes: Diginea). Acta Trop. 2007, 104, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Nikander, S.; Saari, S. Natable seasonal variation observed in the morphology of the reindeer rumen fluke (Paramphistomum leydeni) in Finland. Rangifer 2007, 27, 47–57. [Google Scholar] [CrossRef]
Hunting Ground 1 | Hunting Ground 2 | Total Prevalence | χ2 | p | ||||
---|---|---|---|---|---|---|---|---|
n | 88 | 74 | 162 | |||||
Endoparasites | N | % (CI 95%) | N | % (CI 95%) | N | % | ||
Coc | 11 | 12.50 | 8 | 10.80 | 19 | 11.73 | 0.11 | 0.74 |
(5.59–19.41) | (3.73–17.87) | |||||||
BS | 26 | 29.5 | 26 | 35.10 | 52 | 32.10 | 0.58 | 0.55 |
(19.97–39.02) | (24.23–45.97) | |||||||
Cap | 19 | 21.60 | 11 | 14.90 | 30 | 18.52 | 1.21 | 0.27 |
(8.60–30.19) | (6.79–23.01) | |||||||
Str | 64 | 72.70 | 39 | 52.70 | 103 | 63.58 | 6.96 | *** |
(63.39–82.01) | (41.32–64.08) | |||||||
Mon | 3 | 3.40 | 0 | 0.0 | 3 | 1.85 | 2.57 | 0.11 |
(1.47–5.33) | ||||||||
Dic | 19 | 21.60 | 17 | 23.00 | 36 | 22.22 | 0.04 | 0.83 |
(8.60–30.19) | (13.41–32.59) | |||||||
FH | 15 | 17.00 | 5 | 6.80 | 20 | 12.35 | 3.93 | * |
(9.15–24.85) | (1.06–12.54) | |||||||
DD | 4 | 4.50 | 4 | 5.40 | 8 | 4.94 | 0.06 | 0.80 |
(0.17–8.83) | (0.25–10.55) | |||||||
Par | 20 | 22.70 | 7 | 9.50 | 27 | 16.67 | 5.10 | * |
(13.95–31.45) | (2.82–16.18) | |||||||
FM | 33 | 37.50 | 22 | 29.70 | 55 | 33.95 | 1.08 | 0.30 |
(27.38–47.62) | (19.29–40.11) | |||||||
Mixed infections | ||||||||
with one parasite | 9 | 10.20 | 7 | 9.50 | 16 | 9.88 | 0.03 | 0.87 |
(3.88–16.52) | (2.82–16.18) | |||||||
with two parasites | 24 | 27.30 | 13 | 17.60 | 37 | 22.84 | 2.15 | 0.14 |
(18.00–36.60) | (8.92–26.28) | |||||||
with three parasites | 28 | 31.80 | 29 | 39.20 | 57 | 35.19 | 0.96 | 0.33 |
(22.07–41.53) | (28.09–50.31) | |||||||
with four parasites | 13 | 14.80 | 5 | 6.80 | 18 | 11.11 | 2.62 | 0.11 |
(7.38–22.22) | (1.06–12.54) | |||||||
with five parasites | 4 | 4.50 | 0 | 0 | 4 | 2.47 | 3.45 | 0.06 |
(0.17–8.83) |
Intensity of Infection (Quantitative FEC Method) | Endoparasites | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Coc | BS | Cap | Str | Mon | FH | DD | Par | FM | |||
HG1 | N | 11 | 26 | 19 | 64 | 3 | 15 | 4 | 20 | 33 | |
Low | n | 0 | 7 | 16 | 19 | 1 | 13 | 0 | 13 | 9 | |
% | 0 | 26.92 | 84.21 | 29.69 | 33.33 | 86.67 | 0 | 65 | 27.27 | ||
Mean ± SD | 0 | 128.6 ± 48.80 | 87.50 ± 56.27 | 131.6 ± 67.10 | 50 | 84.62 ± 51.58 | 0 | 107.7 ± 70.26 | 144.4 ± 63.46 | ||
Moderate | n | 5 | 9 | 3 | 20 | 2 | 2 | 3 | 7 | 17 | |
% | 45.45 | 34.62 | 15.79 | 31.25 | 66.67 | 13.33 | 75 | 35 | 51.51 | ||
Mean ± SD | 510 ± 185.1 | 527.85 ± 201.7 | 266.7 ± 28.87 | 480 ± 182.4 | 375 ± 106.1 | 350 | 650 ± 217.9 | 478.6 ± 223.3 | 567.6 ± 153 | ||
High | n | 6 | 10 | 0 | 25 | 0 | 0 | 1 | 0 | 7 | |
% | 54.54 | 38.46 | 0 | 39.06 | 0 | 0 | 25 | 0 | 21.21 | ||
Mean ± SD | 1025 ± 196.9 | 1040 ± 201.1 | 0 | 1090 ± 325 | 0 | 0 | 850 | 0 | 992.9 ± 139.7 | ||
HG2 | N | 8 | 26 | 11 | 39 | 0 | 5 | 4 | 7 | 22 | |
Low | n | 0 | 10 | 11 | 5 | 0 | 5 | 4 | 7 | 12 | |
% | 0 | 38.46 | 100 | 12.82 | 0 | 100 | 100 | 100 | 54.55 | ||
Mean ± SD | 0 | 135 ± 66.87 | 77.27 ± 51.79 | 110 ± 65.19 | 0 | 110 ± 65.19 | 137.5 ± 110.9 | 107.1 ± 53.45 | 83.33 ± 53.65 | ||
Moderate | n | 4 | 11 | 0 | 17 | 0 | 0 | 0 | 0 | 6 | |
% | 50 | 42.31 | 0 | 43.59 | 0 | 0 | 0 | 0 | 27.27 | ||
Mean ± SD | 537.5 ± 149.3 | 454.5 ± 192.9 | 0 | 541.2 ± 187.3 | 0 | 0 | 0 | 0 | 541.7 ± 159.4 | ||
High | n | 4 | 5 | 0 | 17 | 0 | 0 | 0 | 0 | 4 | |
% | 50 | 19.23 | 0 | 43.59 | 0 | 0 | 0 | 0 | 18.18 | ||
Mean ± SD | 1250 ± 219.8 | 1140 ± 350.7 | 0 | 1544 ± 469.3 | 0 | 0 | 0 | 0 | 1238 ± 349.7 |
Hunting Ground 1 | Hunting Ground 2 | Total Prevalence | χ2 | p | ||||
---|---|---|---|---|---|---|---|---|
n | 70 | 57 | 127 | |||||
Endoparasites | N | % (CI 95%) | N | % (CI 95%) | N | % | ||
Coc | 40 | 57.10 | 30 | 52.6 | 70 | 55.12 | 0.26 | 0.61 |
(45.50–68.70) | (39.64–65.66) | |||||||
BS | 7 | 10.00 | 4 | 7.0 | 11 | 8.66 | 0.35 | 0.55 |
(2.97–17.03) | (0.38–13.62) | |||||||
Tri | 29 | 41.40 | 19 | 33.3 | 48 | 37.80 | 0.87 | 0.35 |
(29.86–52.94) | (21.07–45.53) | |||||||
Str | 44 | 62.90 | 32 | 56.1 | 76 | 59.84 | 0.59 | 0.44 |
(51.58–74.22) | (43.22–68.98) | |||||||
Mon | 51 | 72.90 | 18 | 31.6 | 69 | 54.33 | 21.58 | *** |
(62.49–83.31) | (19.53–43.67) | |||||||
Müe | 12 | 17.10 | 14 | 24.6 | 26 | 20.47 | 1.06 | 0.30 |
(8.82–25.92) | (13.42–35.78) | |||||||
FH | 14 | 20.00 | 2 | 3.5 | 16 | 12.60 | 7.76 | *** |
(10.63–29.37) | (0–8.27) | |||||||
DD | 6 | 8.60 | 0 | 0.0 | 6 | 4.72 | 5.13 | * |
(2.03–15.17) | ||||||||
Par | 17 | 24.30 | 7 | 12.3 | 24 | 18.90 | 2.95 | 0.09 |
(14.25–34.35) | (3.77–20.83) | |||||||
FM | 12 | 17.10 | 9 | 15.8 | 21 | 16.53 | 0.04 | 0.84 |
(8.82–25.92) | (6.33–25.27) | |||||||
Mixed infections | ||||||||
with one parasite | 1 | 1.40 | 4 | 7.0 | 5 | 3.94 | 2.60 | 0.11 |
(0–4.15) | (0.38–13.62) | |||||||
with two parasites | 7 | 10.00 | 12 | 21.1 | 19 | 14.96 | 3.02 | 0.08 |
(2.97–17.03) | (10.51–31.69) | |||||||
with three parasites | 21 | 30.00 | 25 | 43.9 | 46 | 36.22 | 2.61 | 0.11 |
(19.26–40.74) | (31.02–56.78) | |||||||
with four parasites | 27 | 38.60 | 8 | 14.0 | 38 | 29.92 | 9.47 | *** |
(27.20–50.00) | (5.00–23.00) | |||||||
with five parasites | 8 | 11.40 | 0 | 0 | 8 | 6.30 | 6.95 | *** |
(3.95–18.85) | ||||||||
with six parasites | 1 | 1.40 | 0 | 0 | 1 | 0.79 | 0.82 | 0.36 |
(0–4.15) |
Intensity of Infection (Quantitative FEC Method) | Endoparasites | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Coc | BS | Tri | Str | Mon | FH | DD | Par | FM | |||
HG1 | N | 40 | 7 | 29 | 44 | 51 | 14 | 6 | 17 | 12 | |
Low | n | 0 | 3 | 23 | 9 | 25 | 14 | 0 | 13 | 4 | |
% | 0 | 42.86 | 79.31 | 20.45 | 49.02 | 100 | 0 | 76.47 | 33.33 | ||
Mean ± SD | 0 | 183.3 ± 28.87 | 91.30 ± 51.46 | 155.6 ± 52.70 | 96 ± 61.10 | 78.57 ± 57.89 | 0 | 96.15 ± 55.76 | 125 ± 64.5 | ||
Moderate | n | 26 | 2 | 6 | 23 | 26 | 0 | 6 | 4 | 8 | |
% | 65 | 28.57 | 20.69 | 52.27 | 50.98 | 0 | 100 | 23.53 | |||
Mean ± SD | 598.1 ± 181.9 | 275 ± 35.36 | 258.3 ± 20.41 | 493.5 ± 172.7 | 475 ± 159.5 | 0 | 425 ± 140.50 | 350 ± 70.71 | 618.75 ± 155.7 | ||
High | n | 14 | 2 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | |
% | 35 | 28.57 | 0 | 27.27 | 0 | 0 | 0 | 0 | 0 | ||
Mean ± SD | 1057 ± 195 | 1050 ± 70.71 | 0 | 979.2 ± 123.3 | 0 | 0 | 0 | 0 | 0 | ||
HG2 | N | 30 | 4 | 19 | 32 | 18 | 2 | 0 | 7 | 9 | |
Low | n | 7 | 2 | 19 | 7 | 14 | 2 | 0 | 6 | 2 | |
% | 23.33 | 50 | 100 | 21.88 | 77.78 | 100 | 0 | 85.71 | 22.22 | ||
Mean ± SD | 150 ± 50 | 50 | 76.32 ± 45.24 | 128.6 ± 39.34 | 78.57 ± 50.82 | 175 ± 35.36 | 0 | 75 ± 41.83 | 50 | ||
Moderate | n | 14 | 2 | 0 | 12 | 4 | 0 | 0 | 1 | 5 | |
% | 46.67 | 50 | 0 | 37.5 | 22.22 | 0 | 0 | 14.29 | 55.56 | ||
Mean ± SD | 525 ± 180.5 | 550 ± 141.4 | 0 | 483.3 ± 192.3 | 362.5 ± 131.5 | 0 | 0 | 350 | 440 ± 185.1 | ||
High | n | 9 | 0 | 0 | 13 | 0 | 0 | 0 | 0 | 2 | |
% | 30 | 0 | 0 | 40.63 | 0 | 0 | 0 | 0 | 22.22 | ||
Mean ± SD | 1272 ± 327 | 0 | 0 | 1381 ± 428.4 | 0 | 0 | 0 | 0 | 1000 ± 70.71 |
Red dear | ||||||||
---|---|---|---|---|---|---|---|---|
Hunting Ground 1 | Hunting Ground 2 | Total | χ2 | p | ||||
n | 64 | 39 | 103 | |||||
Strongylidae | N | % | N | % | N | % | ||
TriA | 13 | 20.31 | 18 | 46.15 | 31 | 30.10 | 7.69 | *** |
(10.45–30.17) | (30.50–61.80) | |||||||
HaeC + ChaO | 10 | 15.63 | 5 | 12.82 | 15 | 14.56 | 0.15 | 0.71 |
(6.73–24.53) | (2.33–23.31) | |||||||
TriA+ HaeC + ChaO | 41 | 64.06 | 16 | 41.03 | 57 | 55.34 | 5.20 | * |
(52.28–75.82) | (25.59–56.47) | |||||||
Roe deer | ||||||||
Hunting ground 1 | Hunting ground 2 | Total | χ2 | p | ||||
n | 44 | 32 | 76 | |||||
Strongylidae | N | % | N | % | N | % | ||
ChaO | 4 | 9.09 | 0 | 0 | 4 | 5.26 | 3.07 | 0.08 |
(0.60–17.58) | ||||||||
ChaO + TriA+ HaeC | 31 | 70.45 | 26 | 81.25 | 57 | 75 | 1.15 | 0.28 |
(56.97–83.93) | (67.73–94.77) | |||||||
ChaO + TriA + HaeC + OesC | 9 | 20.45 | 6 | 18.75 | 15 | 19.74 | 0.03 | 0.85 |
(8.53–32.37) | (5.23–32.27) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovanovic, N.M.; Petrović, T.; Katarina, N.; Bugarski, D.; Stanimirovic, Z.; Rajkovic, M.; Ristic, M.; Mirceta, J.; Ilic, T. Endoparasites of Red Deer (Cervus elaphus L.) and Roe Deer (Capreolus capreolus L.) in Serbian Hunting Grounds. Animals 2024, 14, 3120. https://doi.org/10.3390/ani14213120
Jovanovic NM, Petrović T, Katarina N, Bugarski D, Stanimirovic Z, Rajkovic M, Ristic M, Mirceta J, Ilic T. Endoparasites of Red Deer (Cervus elaphus L.) and Roe Deer (Capreolus capreolus L.) in Serbian Hunting Grounds. Animals. 2024; 14(21):3120. https://doi.org/10.3390/ani14213120
Chicago/Turabian StyleJovanovic, Nemanja M., Tamas Petrović, Nenadovic Katarina, Dejan Bugarski, Zoran Stanimirovic, Milan Rajkovic, Marko Ristic, Jovan Mirceta, and Tamara Ilic. 2024. "Endoparasites of Red Deer (Cervus elaphus L.) and Roe Deer (Capreolus capreolus L.) in Serbian Hunting Grounds" Animals 14, no. 21: 3120. https://doi.org/10.3390/ani14213120
APA StyleJovanovic, N. M., Petrović, T., Katarina, N., Bugarski, D., Stanimirovic, Z., Rajkovic, M., Ristic, M., Mirceta, J., & Ilic, T. (2024). Endoparasites of Red Deer (Cervus elaphus L.) and Roe Deer (Capreolus capreolus L.) in Serbian Hunting Grounds. Animals, 14(21), 3120. https://doi.org/10.3390/ani14213120