Analysis of Growth Models in Galician × Nelore Crossbred Cattle in the First Year of Life
<p>Growth curves for intact male and female crosses between Galician Blond and Nelore. Growth projection after 12 months and up to 18 months is represented in lighter colors.</p> "> Figure 2
<p>Growth velocity or relative growth rate over time for Galician Blond × Nelore crosses. The projection of growth after 12 months of age and up to 18 months is represented in lighter colors.</p> "> Figure 3
<p>Growth acceleration or instantaneous growth rate over time for Galician Blond × Nelore crosses. The projection of growth after 12 months of age and up to 18 months is represented in lighter colors.</p> "> Figure A1
<p>Brody model for males. (<b>A</b>) Ordered residual plot, (<b>B</b>) residuals versus predicted value plot, (<b>C</b>) standardized residual Q-Q plot.</p> "> Figure A2
<p>Logistic model for males. (<b>A</b>) Ordered residual plot, (<b>B</b>) residuals versus predicted value plot, (<b>C</b>) standardized residual Q-Q plot.</p> "> Figure A3
<p>Gompertz model for males. (<b>A</b>) Ordered residual plot, (<b>B</b>) residuals versus predicted value plot, (<b>C</b>) standardized residual Q-Q plot.</p> "> Figure A4
<p>Von Bertalanffy 2/3 model for males. (<b>A</b>) Ordered residual plot, (<b>B</b>) residuals versus predicted value plot, (<b>C</b>) standardized residual Q-Q plot.</p> "> Figure A5
<p>Brody + constant model for males. (<b>A</b>) Ordered residual plot, (<b>B</b>) residuals versus predicted value plot, (<b>C</b>) standardized residual Q-Q plot.</p> "> Figure A6
<p>Logistic + constant model for males. (<b>A</b>) Ordered residual plot, (<b>B</b>) residuals versus predicted value plot, (<b>C</b>) standardized residual Q-Q plot.</p> "> Figure A7
<p>Gompertz + constant model for males. (<b>A</b>) Ordered residual plot, (<b>B</b>) residuals versus predicted value plot, (<b>C</b>) standardized residual Q-Q plot.</p> "> Figure A8
<p>Bertalanffy 2/3 + constant model for males. (<b>A</b>) Ordered residual plot, (<b>B</b>) residuals versus predicted value plot, (<b>C</b>) standardized residual Q-Q plot.</p> "> Figure A9
<p>Brody model for females. (<b>A</b>) Ordered residual plot, (<b>B</b>) residuals versus predicted value plot, (<b>C</b>) standardized residual Q-Q plot.</p> "> Figure A10
<p>Logistic model for females. (<b>A</b>) Ordered residual plot, (<b>B</b>) residuals versus predicted value plot, (<b>C</b>) standardized residual Q-Q plot.</p> "> Figure A11
<p>Gompertz model for females. (<b>A</b>) Ordered residual plot, (<b>B</b>) residuals versus predicted value plot, (<b>C</b>) standardized residual Q-Q plot.</p> "> Figure A12
<p>Brody + constant model for females. (<b>A</b>) Ordered residual plot, (<b>B</b>) residuals versus predicted value plot, (<b>C</b>) standardized residual Q-Q plot.</p> "> Figure A13
<p>Gompertz + constant model for females. (<b>A</b>) Ordered residual plot, (<b>B</b>) residuals versus predicted value plot, (<b>C</b>) standardized residual Q-Q plot.</p> "> Figure A14
<p>Bertalanffy + constant model for females. (A) Ordered residual plot, (<b>B</b>) residuals versus predicted value plot, (<b>C</b>) standardized residual Q-Q plot.</p> ">
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Growth Functions Studied
2.3. Statistical Procedure
- The regression model exhibits linearity in the residuals, as guaranteed by the Q-Q plots.
- The error term possesses a population mean of zero, which was confirmed through a one-sample t-test.
- The independent variable ‘time’ demonstrates no correlation with the residuals, verified using Spearman’s correlation test.
- The residuals do not exhibit autocorrelation, as assessed through the randomness of an ordered residual plot.
- The residuals display constant variance, indicating the absence of heteroscedasticity. This assessment was made via residuals versus predicted values plot.
- The independent variables are not correlated, which is ensured by the presence of a single independent variable, ‘time’, across all models.
- The residuals exhibit a normal distribution, determined through a standardized residuals Q-Q plot, with mean rank assigned to ties and using Blom’s fractional rank estimation method.
- The plots in Appendix A were used to check these prerequisites.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Al-Atiyat, R.M.; Aljumaah, R.S.; Abudabos, A.M.; Alghamdi, A.A.; Alharthi, A.S.; AlJooan, H.S.; Alotybi, M.N. Current Situation and Diversity of Indigenous Cattle Breeds of Saudi Arabia. Anim. Genet. Resour. Resour. Génétiques Anim. Recur. Genéticos Anim. 2015, 57, 39–49. [Google Scholar] [CrossRef]
- Gebrehiwot, N.Z.; Strucken, E.M.; Aliloo, H.; Marshall, K.; Gibson, J.P. The Patterns of Admixture, Divergence, and Ancestry of African Cattle Populations Determined from Genome-Wide SNP Data. BMC Genom. 2020, 21, 869. [Google Scholar] [CrossRef]
- Faria, F.J.C.; Filho, A.E.V.; Madalena, F.E.; Josahkian, L.A. Pedigree Analysis in the Brazilian Zebu Breeds. J. Anim. Breed. Genet. 2009, 126, 148–153. [Google Scholar] [CrossRef]
- Ferraz, J.B.S.; Felício, P.E.d. Production Systems—An Example from Brazil. Meat Sci. 2010, 84, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Fernandes Júnior, G.A.; de Oliveira, H.N.; Carvalheiro, R.; Cardoso, D.F.; Fonseca, L.F.S.; Ventura, R.V.; de Albuquerque, L.G. Whole-Genome Sequencing Provides New Insights into Genetic Mechanisms of Tropical Adaptation in Nellore (Bos Primigenius Indicus). Sci. Rep. 2020, 10, 9412. [Google Scholar] [CrossRef]
- Goulart, R.S.; Caetano, M.; Pott, E.B.; da Cruz, G.M.; Tullio, R.R.; de Alencar, M.M.; Bertho, R.D.M.; Lanna, D.P.D. Comparison of Nellore and Bos Taurus× Nellore Beef Crosses at the Same Age on Performance, Carcass Characteristics, and Fecal Starch Content. Appl. Anim. Sci. 2020, 36, 430–436. [Google Scholar] [CrossRef]
- Favero, R.; Menezes, G.R.O.; Torres, R.A.A.; Silva, L.O.C.; Bonin, M.N.; Feijó, G.L.D.; Altrak, G.; Niwa, M.V.G.; Kazama, R.; Mizubuti, I.Y. Crossbreeding Applied to Systems of Beef Cattle Production to Improve Performance Traits and Carcass Quality. Animal 2019, 13, 2679–2686. [Google Scholar] [CrossRef] [PubMed]
- Rezende, M.P.G.; Conde, E.A.S.L.; Borges, A.C.; Carneiro, P.L.S.; Martins Filho, R.; Malhado, C.H.M. Population Structure of the Nellore Herd Reared in the Brazilian Northeast Semi-Arid. Ciência Anim. Bras. 2017, 18, e38048. [Google Scholar]
- Rezende, F.M.; Rodriguez, E.; Leal-Gutiérrez, J.D.; Elzo, M.A.; Johnson, D.D.; Carr, C.; Mateescu, R.G. Genomic Approaches Reveal Pleiotropic Effects in Crossbred Beef Cattle. Front. Genet. 2021, 12, 627055. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, L.; Cantalapiedra, J.A.; Carril, J.A.; Iglesias, A. Analysis of Growth Curve of Crosses Rubia Gallega× Nellore by Means of Michaelis-Menten Equation. In Proceedings of the XVI Congress of the Mediterranean Federation for Health and Production of Ruminants, Zadar, Croatia, 26 April 2008. [Google Scholar]
- Monserrat Bermejo, L.; Sánchez García, L. Sistemas de Producción de Carne En Pastoreo Con Rubia Gallega. Bovis 2000, 92, 23–34. [Google Scholar]
- Pateiro, M.; Lorenzo, J.M.; Díaz, S.; Gende, J.A.; Fernández, M.; González, J.; García, L.; Rial, F.J.; Franco, D. Meat Quality of Veal: Discriminatory Ability of Weaning Status. Span. J. Agric. Res. 2013, 11, 1044–1056. [Google Scholar] [CrossRef]
- Becerra, A.I.; González, J.J.B.; Bermejo, L.M.; García, L.S. Valoración Del Crecimiento En Animales Cruzados de Rubia Gallega Con Nelore. Arch. Zootec. 2005, 54, 497–500. [Google Scholar]
- Skidmore, M.E.; Sims, K.M.; Rausch, L.L.; Gibbs, H.K. Sustainable Intensification in the Brazilian Cattle Industry: The Role for Reduced Slaughter Age. Environ. Res. Lett. 2022, 17, 064026. [Google Scholar] [CrossRef]
- Iglesias, A.; Sánchez, L.; Carril, J.A.; Cantalapiedra, J.A. Evaluation of Quality Characteristics of Meat of Rubia Gallega x Nelore Crossbreeds by Principal Components Analysis. In Proceedings of the Congreso Nacional de Zootecnia, 1., Madrid, España, 25–26 October 2007. [Google Scholar]
- Mendonça, F.S.; MacNeil, M.D.; Nalerio, E.; Cardoso, L.L.; Giongo, C.; Cardoso, F.F. Breed Direct, Maternal and Heteros Is Effects Due to Angus, Caracu, Hereford and Nelore on Carcass and Meat Quality Traits of Cull Cows. Livest. Sci. 2021, 243, 104374. [Google Scholar] [CrossRef]
- Akanno, E.C.; Abo-Ismail, M.K.; Chen, L.; Crowley, J.J.; Wang, Z.; Li, C.; Basarab, J.A.; MacNeil, M.D.; Plastow, G.S. Modeling Heterotic Effects in Beef Cattle Using Genome-Wide SNP-Marker Genotypes. J. Anim. Sci. 2018, 96, 830–845. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhang, J. The Optimal Mating Distance Resulting from Heterosis and Genetic Incompatibility. Sci. Adv. 2018, 4, eaau5518. [Google Scholar] [CrossRef]
- Davidian, M. Nonlinear Models for Repeated Measurement Data; Routledge: London, UK, 2017; ISBN 0203745507. [Google Scholar]
- Fitzhugh Jr, H.A. Analysis of Growth Curves and Strategies for Altering Their Shape. J. Anim. Sci. 1976, 42, 1036–1051. [Google Scholar] [CrossRef] [PubMed]
- Revilla, M.; Friggens, N.C.; Broudiscou, L.P.; Lemonnier, G.; Blanc, F.; Ravon, L.; Mercat, M.-J.; Billon, Y.; Rogel-Gaillard, C.; Le Floch, N. Towards the Quantitative Characterisation of Piglets’ Robustness to Weaning: A Modelling Approach. Animal 2019, 13, 2536–2546. [Google Scholar] [CrossRef] [PubMed]
- Lupi, T.M.; Nogales, S.; León, J.M.; Barba, C.; Delgado, J.V. Characterization of Commercial and Biological Growth Curves in the Segureña Sheep Breed. Animal 2015, 9, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.J.; Kuehn, L.A.; Spangler, M.L.; Thallman, R.M.; Snelling, W.M.; Lewis, R.M. Comparison of Different Functions to Describe Growth from Weaning to Maturity in Crossbred Beef Cattle. J. Anim. Sci. 2019, 97, 1523–1533. [Google Scholar] [CrossRef]
- Cattelan, L.G.; Mattos, C.R.C.; Pamplona, M.B.; Hirota, M. Mapping Climatic Regions of the Cerrado: General Patterns and Future Change. Int. J. Climatol. 2024, 44, 5857–5872. [Google Scholar] [CrossRef]
- Brown, J.E.; Fitzhugh, H.A.; Cartwright, T.C. A Comparison of Nonlinear Models for Describing Weight-Age Relationships in Cattle1. J. Anim. Sci. 1976, 42, 810–818. [Google Scholar] [CrossRef]
- Marinho, K.N.D.S.; de Freitas, A.R.; Falcão, A.J.D.S.; Dias, F.E.F. Nonlinear Models for Fitting Growth Curves of Nellore Cows Reared in the Amazon Biome. Rev. Bras. Zootec. 2013, 42, 645–650. [Google Scholar] [CrossRef]
- Brody, S. Bioenergetics and Growth, with Special Reference to the Efficiency Complex in Domestic Animals; Hafner Publishing Company, Inc.: New York, NY, USA, 1945. [Google Scholar]
- Verhulst, P.-F. Notice Sur La Loi Que La Population Suit Dans Son Accroissement. Corresp. Math. Phys. 1838, 10, 113–129. [Google Scholar]
- Winsor, C.P. The Gompertz Curve as a Growth Curve. Proc. Natl. Acad. Sci. USA 1932, 18, 1–8. [Google Scholar] [CrossRef]
- Von Bertalanffy, L. Quantitative Laws in Metabolism and Growth. Q. Rev. Biol. 1957, 32, 217–231. [Google Scholar] [CrossRef]
- RICHARDS, F.J. A Flexible Growth Function for Empirical Use. J. Exp. Bot. 1959, 10, 290–301. [Google Scholar] [CrossRef]
- Tjørve, E.; Tjørve, K.M.C. A Unified Approach to the Richards-Model Family for Use in Growth Analyses: Why We Need Only Two Model Forms. J. Theor. Biol. 2010, 267, 417–425. [Google Scholar] [CrossRef]
- Beltran, J.J.; Butts Jr, W.T.; Olson, T.A.; Koger, M. Growth Patterns of Two Lines of Angus Cattle Selected Using Predicted Growth Parameters. J. Anim. Sci. 1992, 70, 734–741. [Google Scholar] [CrossRef]
- Crispim, A.C.; Kelly, M.J.; Guimarães, S.E.F.; e Silva, F.F.; Fortes, M.R.S.; Wenceslau, R.R.; Moore, S. Multi-Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle. PLoS ONE 2015, 10, e0139906. [Google Scholar] [CrossRef]
- McCormick, K.; Salcedo, J. SPSS Statistics for Data Analysis and Visualization; John Wiley & Sons: Hoboken, NJ, USA, 2017. ISBN 111900 3555.
- Frost, J. Regression Analysis: An Intuitive Guide for Using and Interpreting Linear Models; Jim Publishing: Costa Mesa, CA, USA, 2019. ISBN 173543 1184.
- Forni, S.; Piles, M.; Blasco, A.; Varona, L.; de Oliveira, H.N.; Lôbo, R.B.; Albuquerque, L.G.d. Comparison of Different Nonlinear Functions to Describe Nelore Cattle Growth. J. Anim. Sci. 2009, 87, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.R.d. Curvas de Crescimento Na Produção Animal. Rev. Bras. Zootec. 2005, 34, 786–795. [Google Scholar] [CrossRef]
- Hozáková, K.; Vavrišínová, K.; Neirurerová, P.; Bujko, J. Growth of Beef Cattle as Prediction for Meat Production: A Review. Acta Fytotech. Zootech. 2020, 23, 58–69. [Google Scholar] [CrossRef]
- Coyne, J.M.; Evans, R.D.; Berry, D.P. Dressing Percentage and the Differential between Live Weight and Carcass Weight in Cattle Are Influenced by Both Genetic and Non-Genetic Factors. J. Anim. Sci. 2019, 97, 1501–1512. [Google Scholar] [CrossRef] [PubMed]
- Plouzek, C.A.; Trenkle, A. Growth Hormone Parameters at Four Ages in Intact and Castrated Male and Female Cattle. Domest. Anim. Endocrinol. 1991, 8, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Purwin, C.; Wyżlic, I.; Pogorzelska-Przybyłek, P.; Nogalski, Z.; Białobrzewski, I. Influence of Gender Status and Feeding Intensity on the Growth Curves of Body Weight, Dry Matter Intake and Feed Efficiency in Crossbred Beef Cattle. J. Anim. Feed. Sci. 2024, 33, 101–110. [Google Scholar] [CrossRef]
- Pogorzelska-Przybyłek, P.; Nogalski, Z.; Sobczuk-Szul, M.; Momot, M. The Effect of Gender Status on the Growth Performance, Carcass and Meat Quality Traits of Young Crossbred Holstein-Friesian× Limousin Cattle. Anim. Biosci. 2020, 34, 914. [Google Scholar] [CrossRef]
- Mueller, L.F.; Balieiro, J.C.C.; Ferrinho, A.M.; Martins, T.D.S.; da Silva Corte, R.R.P.; de Amorim, T.R.; de Jesus Mangini Furlan, J.; Baldi, F.; Pereira, A.S.C. Gender Status Effect on Carcass and Meat Quality Traits of Feedlot Angus× Nellore Cattle. Anim. Sci. J. 2019, 90, 1078–1089. [Google Scholar] [CrossRef] [PubMed]
- Owens, F.N.; Gill, D.R.; Secrist, D.S.; Coleman, S.W. Review of Some Aspects of Growth and Development of Feedlot Cattle. J. Anim. Sci. 1995, 73, 3152–3172. [Google Scholar] [CrossRef]
- Júnior, R.N.C.C.; de Araújo, C.V.; da Silva, W.C.; de Araújo, S.I.; Lôbo, R.B.; Nakabashi, L.R.M.; de Castro, L.M.; Menezes, F.L.; Maciel e Silva, A.G.; Silva, L.K.X. Mixed Models in Nonlinear Regression for Description of the Growth of Nelore Cattle. Animals 2022, 13, 101. [Google Scholar] [CrossRef] [PubMed]
- Bongiorni, S.; Valentini, A.; Chillemi, G. Structural and Dynamic Characterization of the C313Y Mutation in Myostatin Dimeric Protein, Responsible for the “Double Muscle” Phenotype in Piedmontese Cattle. Front. Genet. 2016, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Grobet, L.; Royo Martin, L.J.; Poncelet, D.; Pirottin, D.; Brouwers, B.; Riquet, J.; Schoeberlein, A.; Dunner, S.; Ménissier, F.; Massabanda, J.; et al. A Deletion in the Bovine Myostatin Gene Causes the Double–Muscled Phenotype in Cattle. Nat. Genet. 1997, 17, 71–74. [Google Scholar] [CrossRef]
- Ceccobelli, S.; Perini, F.; Trombetta, M.F.; Tavoletti, S.; Lasagna, E.; Pasquini, M. Effect of Myostatin Gene Mutation on Slaughtering Performance and Meat Quality in Marchigiana Bulls. Animals 2022, 12, 518. [Google Scholar] [CrossRef]
- Bellinge, R.H.S.; Liberles, D.A.; Iaschi, S.P.A.; O’brien, P.A.; Tay, G.K. Myostatin and Its Implications on Animal Breeding: A Review. Anim. Genet. 2005, 36, 1–6. [Google Scholar] [CrossRef]
- Ferrinho, A.M.; de Moura, G.V.; Martins, T.D.S.; Muñoz, J.; Mueller, L.F.; Garbossa, P.L.M.; de Amorim, T.R.; Gemelli, J.L.; Fuzikawa, I.H.D.S.; Prado, C.; et al. Rubia Gallega x Nelore Crossbred Cattle Improve Beef Tenderness through Changes in Protein Abundance and Gene Expression. Livest. Sci. 2021, 251, 104634. [Google Scholar] [CrossRef]
- Chen, P.R.; Lee, K. INVITED REVIEW: Inhibitors of Myostatin as Methods of Enhancing Muscle Growth and Development. J. Anim. Sci. 2016, 94, 3125–3134. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, U.N.; Meng, G.Y. Raising Double-Muscled Breed Cattle and Their Crossbreds in the Tropics: Insight from Growth Models. Vet. World 2024, 17, 1504. [Google Scholar] [CrossRef]
- Wheeler, T.L.; Savell, J.W.; Cross, H.R.; Lunt, D.K.; Smith, S.B. Mechanisms Associated with the Variation in Tenderness of Meat from Brahman and Hereford Cattle. J. Anim. Sci. 1990, 68, 4206–4220. [Google Scholar] [CrossRef]
- Ferrinho, A.M. Expressão de Genes Envolvidos No Perfil de Ácidos Graxos e Proteólise Post Mortem de Bovinos Nelore e Rubia Gallega x Nelore. Ph.D. Thesis, Universidade de São Paulo, Pirassununga, Brazil, 2020. [Google Scholar]
- Moreira, P.S.A.; El Farra, A.; Guimarães, L.V.G.; Lorenço, F.J.; Neto, A.P.; Palhari, C.; Berber, R.C.A. Performance and Carcass Traits of Heifers Rubia Gallega x Nellore Supplemented with Chromium Picolinate. Comun. Sci. 2019, 10, 278–285. [Google Scholar] [CrossRef]
- Klein, H.S.; Luna, F.V. Cattle. In Brazilian Crops in the Global Market: The Emergence of Brazil as a World Agribusiness Exporter Since 1950; Klein, H.S., Luna, F.V., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 295–323. ISBN 978-3-031-38589-6. [Google Scholar]
Model | Equation |
---|---|
Brody | |
Gompertz | |
Logistic | |
von Bertalanffy | |
Richards |
Functions for Males | Parameter | |||
---|---|---|---|---|
a | b | c | Constant (C) | |
Brody | 1851.0 | 0.997 | 7.2 × 10−4 | |
Logistic | 504.65 | 8.426 | 0.0105 | |
Gompertz | 595.32 | 2.747 | 5.81 × 10−3 | |
von Bertalanffy 2/3 | 26.225 | 5.642 | 4.24 × 10−3 | |
Brody + C | 305.42 | 6.045 | 7.2 × 10−4 | 1546.05 |
Logistic + C | 638.55 | 3.778 | 7.34 × 10−3 | −113.91 |
Gompertz + C | 635.29 | 2.487 | 5.4 × 10−3 | −0.922 |
von Bertalanffy 2/3 + C | 25.896 | 5.811 | 4.42 × 10−3 | 10.936 |
Richards | Did not converge |
Functions for Females | Parameter | |||
---|---|---|---|---|
a | b | c | Constant (C) | |
Brody | 16,843 | 0.999 | 5.54 × 10−5 | |
Logistic | 432.14 | 7.630 | 957 × 10−3 | |
Gompertz | 561.14 | 2.610 | 4.75 × 10−3 | |
von Bertalanffy 2/3 | 237.02 | 2.0000 | 5.85 × 10−3 | |
Brody + C | 6716.49 | 1.615 | 8.64 × 10−5 | 4152.78 |
Logistic + C | 266.60 | −0.096 | −7.06 × 10−7 | −240.99 |
Gompertz + C | 638 | 2.310 | 4.12 × 10−3 | −26.913 |
von Bertalanffy 2/3 + C | 705.77 | 5.462 | 5.06 × 10−3 | −5.015 |
Richards | Did not converge |
Male Model | RMS | r2 | Cp | ρEt | |
---|---|---|---|---|---|
Brody | 557 | 0.96 | 1.03 | 0 NS | 0.011 NS |
Logistic | 545 | 0.96 | 1.02 | 0 NS | 0.008 NS |
Gompertz | 521 | 0.96 | 1.02 | 0 NS | −0.022 NS |
von Bertalanffy 2/3 | 690 | 0.96 | 1.02 | 0 NS | −0.022 NS |
Logistic + C | 536 | 0.96 | 2.00 | 0 NS | −0.031 NS |
Gompertz + C | 534 | 0.96 | 1.99 | 0 NS | −0.012 NS |
von Bertalanffy 2/3 + C | 533 | 0.96 | 2.02 | 0 NS | −0.020 NS |
Richards | Did not converge |
Female Model | RMS | r2 | Cp | ρEt | |
---|---|---|---|---|---|
Brody | 794 | 0.91 | 3.99 | 0 NS | 0.057 NS |
Logistic | 791 | 0.91 | 3.99 | 0 NS | 0.065 NS |
Gompertz | 787 | 0.91 | 4.00 | 0 NS | 0.074 NS |
von Bertalanffy 2/3 | 5706 | 0.35 | 4.00 | 0 NS | 0.866 NS |
Brody + C | 814 | 0.91 | 4.98 | 0 NS | 0.060 NS |
Logistic + C | 1826 | 0.80 | 5.00 | 0 NS | 0.506 NS |
Gompertz + C | 805 | 0.91 | 5.02 | 0 NS | 0.070 NS |
von Bertalanffy 2/3 + C | 806 | 0.91 | 5.00 | 0 NS | 0.068 NS |
Richards | Did not converge |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iglesias, A.; Mata, F.; Cerqueira, J.L.; Kowalczyk, A.; Cantalapiedra, J.; Ferreiro, J.; Araújo, J. Analysis of Growth Models in Galician × Nelore Crossbred Cattle in the First Year of Life. Animals 2024, 14, 3698. https://doi.org/10.3390/ani14243698
Iglesias A, Mata F, Cerqueira JL, Kowalczyk A, Cantalapiedra J, Ferreiro J, Araújo J. Analysis of Growth Models in Galician × Nelore Crossbred Cattle in the First Year of Life. Animals. 2024; 14(24):3698. https://doi.org/10.3390/ani14243698
Chicago/Turabian StyleIglesias, Antonio, Fernando Mata, Joaquim Lima Cerqueira, Alicja Kowalczyk, Jesús Cantalapiedra, José Ferreiro, and José Araújo. 2024. "Analysis of Growth Models in Galician × Nelore Crossbred Cattle in the First Year of Life" Animals 14, no. 24: 3698. https://doi.org/10.3390/ani14243698
APA StyleIglesias, A., Mata, F., Cerqueira, J. L., Kowalczyk, A., Cantalapiedra, J., Ferreiro, J., & Araújo, J. (2024). Analysis of Growth Models in Galician × Nelore Crossbred Cattle in the First Year of Life. Animals, 14(24), 3698. https://doi.org/10.3390/ani14243698