Ovine LncRSFD1 Mined from RNA-Seq: Identification, Expression Profile, Promotion of Preadipocyte Differentiation, Promoter Activity, and Its Polymorphisms Related to Phenotypic Traits
<p>Molecular characteristics, tissue expression, and its regulated neighboring genes of ovine <span class="html-italic">lncRSFD1</span>. (<b>A</b>) Genome location; (<b>B</b>) evaluating the protein coding capacity of <span class="html-italic">lncRSFD1</span> through CPC2 and CPAT; (<b>C</b>) subcellular location (lncLocator 1.0); (<b>D</b>) different tissues mRNA expression pattern of <span class="html-italic">lncRSFD1</span> in Lanzhou fat-tailed sheep (LFT); (<b>E</b>) comparison of the expression of <span class="html-italic">lncRSFD1</span> in different tissues of LFT and Tibetan (TS) sheep; (<b>F</b>) expression of <span class="html-italic">lncRSFD1</span> and PDE4DIP in the tail adipose of different sheep breeds; (<b>G</b>) the interaction between lncRSFD1 and PDE4DIP mRNA 3′UTR was predicted by IntaR-NA2.0. * <span class="html-italic">p</span> < 0.05, and different lowercase letters or indicated significant (<span class="html-italic">p</span> < 0.05) differences.</p> "> Figure 2
<p>Overexpression of <span class="html-italic">lncRSFD1</span> inhibited the proliferation of preadipocytes. (<b>A</b>) The construction and detection of <span class="html-italic">lncRSFD1</span> overexpression vector; the effect of the <span class="html-italic">lncRSFD1</span> overexpression on 3T3-L1 cell proliferation was detected by (<b>B</b>) CCK-8 and (<b>C</b>) EdU (magnification: 200×); (<b>D</b>) the expression of mRNA of cell proliferation genes. Note: (left A) Double digestion of pcDNA3.1-RSFD1. lane 1: pcDNA3.1 (+); lane 2: Plasmid digested with <span class="html-italic">HindIII</span>-<span class="html-italic">EcoRI</span>; lane M: DNA Marker. (Right A) Overexpression efficiency of the <span class="html-italic">lncRSFD1</span> in 3T3-L1 cells (* <span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>Effect of <span class="html-italic">lncRSFD1</span> on differentiation of 3T3-L1 preadipocytes. (<b>A</b>) Oil red O staining of 3T3-L1 cells (magnification: 100×); (<b>B</b>) the mRNA expression of adipogenic differentiation-related genes (* <span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>Prediction of miRNAs adsorbed by <span class="html-italic">lncRSFD1</span> (<b>A</b>,<b>B</b>) the secondary structure of <span class="html-italic">lncRSFD1</span>-miRNA pairs.</p> "> Figure 5
<p>Identification of the core promoter region of <span class="html-italic">lncRSFD1</span>. (<b>A</b>) The PCR amplification of <span class="html-italic">lncRSFD1</span> promoter deletion fragments and (<b>B</b>) double enzyme digestion for recombinant plasmid vectors, and (<b>C</b>) schematic diagram of deletion vector and (<b>D</b>,<b>E</b>) the luciferase reporter activity detection of sheep <span class="html-italic">lncRSFD1</span> promoter reconstructed plasmids (** <span class="html-italic">p</span> < 0.01).</p> "> Figure 6
<p>Identification of genetic variants in the core promoter region of <span class="html-italic">lncRSFD1</span>. (<b>A</b>) Sequencing peak of SNPs sites in sheep <span class="html-italic">lncRSFD1</span> core promoter; (<b>B</b>) Linkage disequilibrium plot of the SNP sites in sheep <span class="html-italic">lncRSFD1</span> core promoter; (<b>C</b>) Prediction of transcription factors potentially binding to the sequence containing SNPs in the core promoter region of sheep <span class="html-italic">lncRSFD1</span>. Note: Lanzhou fat-tailed sheep (LFT) and Guiqian semi-fine wool sheep (GSFW).</p> ">
1. Introduction
2. Materials and Methods
2.1. Collection of Sheep Tissue Samples
2.2. DNA and RNA Extraction and qRT-PCR
2.3. Cell Culture, Transfection, and Luciferase Activity Analysis
2.4. Cell Proliferation-Related Experiments
2.5. Oil Red O Staining
2.6. SNP Selection, Genotyping, and Association Analysis
2.7. Bioinformatics Prediction and Data Analysis
2.7.1. Prediction Analysis of the Biological Characteristics of lncRSFD1
2.7.2. Prediction of Sheep miRNAs Targeting lncRSFD1
2.7.3. Bioinformatics Prediction and Construction of Vector
3. Results
3.1. Identification, Molecular Characteristics, and Tissue Expression of lncRSFD1
3.2. The Proliferation Inhibition and Differentiation Promotion of Preadipocytes by lncRSFD1
3.2.1. The Effects of Overexpressing lncRSFD1 on 3T3-L1 Cell Proliferation
3.2.2. Effect of lncRSFD1 Overexpression on the Differentiation of 3T3-L1 Cells
3.2.3. Predication of Potential Molecules Targeted by lncRSFD1
3.3. Identification of lncRSFD1 Core Promoter Region
3.4. Identification of SNPs in the Core Promoter Region of lncRSFD1
3.5. Association Analysis of Promoter Subregion Polymorphism with Ovine Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pourlis, A.F. A review of morphological characteristics relating to the production and reproduction of fat-tailed sheep breeds. Trop. Anim. Health Prod. 2011, 43, 1267–1287. [Google Scholar] [CrossRef] [PubMed]
- Rocha, J.; Chen, S.; Beja-Pereira, A. Molecular evidence for fat-tailed sheep domestication. Trop. Anim. Health Prod. 2011, 43, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- Kalds, P.; Luo, Q.; Sun, K.; Zhou, S.; Chen, Y.; Wang, X. Trends towards revealing the genetic architecture of sheep tail patterning: Promising genes and investigatory pathways. Anim. Genet. 2021, 52, 799–812. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zhang, M.; Jin, Y.; Erdenee, S.; Hu, L.; Chen, H.; Cai, Y.; Lan, X. Comparative transcriptome profiling of mRNA and lncRNA related to tail adipose tissues of sheep. Front. Genet. 2018, 9, 365. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.; Jiang, Y.; Zhong, M.; Wei, K.; Hu, C.; Qin, Y.; Zuo, Y.; Yang, L.; Shen, Z.; Zou, C. Regulatory roles and mechanisms of alternative RNA splicing in adipogenesis and human metabolic health. Cell Biosci. 2021, 11, 66. [Google Scholar] [CrossRef]
- Lefterova, M.I.; Haakonsson, A.K.; Lazar, M.A.; Mandrup, S. PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol. Metab. 2014, 25, 293–302. [Google Scholar] [CrossRef]
- Siersbæk, R.; Nielsen, R.; Mandrup, S. Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends Endocrinol. Metab. 2012, 23, 56–64. [Google Scholar] [CrossRef]
- Arner, P.; Kulyté, A. MicroRNA regulatory networks in human adipose tissue and obesity. Nat. Rev. Endocrinol. 2015, 11, 276–288. [Google Scholar] [CrossRef]
- Knoll, M.; Lodish, H.F.; Sun, L. Long non-coding RNAs as regulators of the endocrine system. Nat. Rev. Endocrinol. 2015, 11, 151–160. [Google Scholar] [CrossRef]
- Lehr, S.; Hartwig, S.; Sell, H. Adipokines: A treasure trove for the discovery of biomarkers for metabolic disorders. Proteom. Clin. Appl. 2012, 6, 91–101. [Google Scholar] [CrossRef]
- Bhartiya, D.; Scaria, V. Genomic variations in non-coding RNAs: Structure, function and regulation. Genomics 2016, 107, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.S.; Li, M.H. Recent advances in understanding genetic variants associated with economically important traits in sheep (Ovis aries) revealed by high-throughput screening technologies. Front. Agric. Sci. Eng. 2017, 4, 279–288. [Google Scholar] [CrossRef]
- Fei, X.; Jin, M.; Wang, Y.; Li, T.; Lu, Z.; Yuan, Z.; Wang, H.; Lu, J.; Quan, K.; Di, R.; et al. Transcriptome reveals key microRNAs involved in fat deposition between different tail sheep breeds. PLoS ONE 2022, 17, e0264804. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Feng, H.; Yousuf, S.; Xie, L.; Miao, X. Differential regulation of mRNAs and lncRNAs related to lipid metabolism in Duolang and Small Tail Han sheep. Sci. Rep. 2022, 12, 11157. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Y.; Ji, M.; Rong, X.; Zhang, Y.; Yang, S.; Lu, C.; Cai, C.; Gao, P.; Guo, X.; et al. The long non-coding RNA lncMYOZ2 mediates an AHCY/MYOZ2 axis to promote adipogenic differentiation in porcine preadipocytes. BMC Genom. 2022, 23, 700. [Google Scholar] [CrossRef]
- Zhu, C.; Li, N.; Cheng, H.; Ma, Y. Genome wide association study for the identification of genes associated with tail fat deposition in Chinese sheep breeds. Biol. Open 2021, 10, bio054932. [Google Scholar] [CrossRef]
- Nojima, T.; Proudfoot, N.J. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat. Rev. Mol. Cell Biol. 2022, 23, 389–406. [Google Scholar] [CrossRef]
- Kiełbowski, K.; Ptaszyński, K.; Wójcik, J.; Wojtyś, M.E. The role of selected non-coding RNAs in the biology of non-small cell lung cancer. Adv. Med. Sci. 2023, 68, 121–137. [Google Scholar] [CrossRef]
- Macvanin, M.T.; Gluvic, Z.; Radovanovic, J.; Essack, M.; Gao, X.; Isenovic, E.R. Diabetic cardiomyopathy: The role of microRNAs and long non-coding RNAs. Front. Endocrinol. 2023, 14, 1124613. [Google Scholar] [CrossRef]
- Zhang, Q.; Chao, T.C.; Patil, V.S.; Qin, Y.; Tiwari, S.K.; Chiou, J.; Dobin, A.; Tsai, C.M.; Li, Z.; Dang, J.; et al. The long noncoding RNA ROCKI regulates inflammatory gene expression. EMBO J. 2019, 38, e100041. [Google Scholar] [CrossRef]
- Li, J.; Xu, H.; Liu, X.; Xu, H.; Cai, Y.; Lan, X. Insight into the possible formation mechanism of the intersex phenotype of Lanzhou fat-tailed sheep using whole-genome resequencing. Animals 2020, 10, 944. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Qiao, L.; An, L.; Wang, W.; Liu, J.; Ren, Y.; Pan, Y.; Jing, J.; Liu, W. Transcriptome analysis of adipose tissues from two fat-tailed sheep breeds reveals key genes involved in fat deposition. BMC Genom. 2018, 19, 338. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, M.; Guo, Z.; Wijayanti, D.; Xu, H.; Jiang, F.; Lan, X. Insertion/deletion (InDel) variants within the sheep fat-deposition-related PDGFD gene strongly affect morphological traits. Animals 2023, 13, 1485. [Google Scholar] [CrossRef]
- Wang, L.; Park, H.J.; Dasari, S.; Wang, S.; Kocher, J.P.; Li, W. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013, 41, e74. [Google Scholar] [CrossRef]
- Kang, Y.J.; Yang, D.C.; Kong, L.; Hou, M.; Meng, Y.Q.; Wei, L.; Gao, G. CPC2: A fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017, 45, W12–W16. [Google Scholar] [CrossRef]
- Cao, Z.; Pan, X.; Yang, Y.; Huang, Y.; Shen, H.B. The lncLocator: A subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier. Bioinformatics 2018, 34, 2185–2194. [Google Scholar] [CrossRef]
- Rehmsmeier, M.; Steffen, P.; Hochsmann, M.; Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 2004, 10, 1507–1517. [Google Scholar] [CrossRef]
- Solovyev, V.V.; Shahmuradov, I.A.; Salamov, A.A. Identification of promoter regions and regulatory sites. Methods Mol. Biol. 2010, 674, 57–83. [Google Scholar]
- Ruijtenberg, S.; van den Heuvel, S. Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle 2016, 15, 196–212. [Google Scholar] [CrossRef]
- Behal, R.H.; Buxton, D.B.; Robertson, J.G.; Olson, M.S. Regulation of the pyruvate dehydrogenase multienzyme complex. Annu. Rev. Nutr. 1993, 13, 497–520. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, L.; Hao, X.; Wang, L.; Han, F.; Liu, L.; Duan, X.; Guo, F.; He, J.; Liu, N. Identification and characterization of circular RNAs in association with the deposition of intramuscular fat in Aohan fine-wool sheep. Front. Genet. 2021, 12, 759747. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, Y.; Lu, S.; Yin, L.; Zong, C.; Cui, S.; Qin, D.; Yang, Y.; Guan, Q.; Li, X.; et al. The role and possible mechanism of lncRNA U90926 in modulating 3T3-L1 preadipocyte differentiation. Int. J. Obes. 2017, 41, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xu, H.; Jiang, E.; Akhatayeva, Z.; Jiang, F.; Song, E.; Pan, C.; Chen, H.; Lan, X. Screening of bovine tissue-specific expressed genes and identification of genetic variation within an adipose tissue-specific lncRNA gene. Front. Vet. Sci. 2022, 9, 887520. [Google Scholar] [CrossRef]
- Milan, D.; Bidanel, J.P.; Iannuccelli, N.; Riquet, J.; Amigues, Y.; Gruand, J.; Le Roy, P.; Renard, C.; Chevalet, C. Detection of quantitative trait loci for carcass composition traits in pigs. Genet. Sel. Evol. 2002, 34, 705–728. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, H.; Su, X.; Liu, W. Identification of key miRNAs regulating fat metabolism based on RNA-seq from fat-tailed sheep and F2 of wild Argali. Gene 2022, 834, 146660. [Google Scholar] [CrossRef]
- Wang, D.R.; Wang, B.; Yang, M.; Liu, Z.L.; Sun, J.; Wang, Y.; Sun, H.; Xie, L.J. Suppression of miR-30a-3p attenuates hepatic steatosis in non-alcoholic fatty liver disease. Biochem. Genet. 2020, 58, 691–704. [Google Scholar] [CrossRef]
- Wu, R.; Li, H.; Zhai, L.; Zou, X.; Meng, J.; Zhong, R.; Li, C.; Wang, H.; Zhang, Y.; Zhu, D. MicroRNA-431 accelerates muscle regeneration and ameliorates muscular dystrophy by targeting Pax7 in mice. Nat. Commun. 2015, 6, 7713. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Liu, X.; Hong, T.; Wang, T.; Dong, A.; Li, J.; Xu, X.; Cao, L. miR-431 inhibits adipogenic differentiation of human bone marrow-derived mesenchymal stem cells via targeting insulin receptor substance 2. Stem Cell Res. Ther. 2018, 9, 231. [Google Scholar] [CrossRef]
- Mattick, J.S.; Rinn, J.L. Discovery and annotation of long noncoding RNAs. Nat. Struct. Mol. Biol. 2015, 22, 5–7. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, F.; Teschendorff, A.E.; Zhao, Y.; Yao, L.; Li, J.; He, Y. Insights into the role of long non-coding RNAs in DNA methylation mediated transcriptional regulation. Front. Mol. Biosci. 2022, 9, 1067406. [Google Scholar] [CrossRef]
- Wang, W.; Gu, M.F.; Wang, Z.F.; Shen, X.M.; Zhang, J.; Yang, L. Let-7a-5p regulated by lncRNA-MEG3 promotes functional differentiation to Schwann cells from adipose derived stem cells via directly inhibiting RBPJ-mediating Notch pathway. Apoptosis 2021, 26, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Peng, Y.; Hu, J.; Zhu, M.; Mao, Y.; Wang, L.; Wang, G.; Xu, Z.; Wu, W.; Zuo, B. Functional SNPs in SYISL promoter significantly affect muscle fiber density and muscle traits in pigs. Anim. Genet. 2024, 55, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.; Dahiya, S.P.; Bangar, C.; Magotra, A. The estimation of (co)variance components and genetic parameters for growth and wool traits in Harnali sheep. Small Rumin. Res. 2021, 203, 106485. [Google Scholar] [CrossRef]
- Raza, S.H.A.; Khan, S.; Amjadi, M.; Abdelnour, S.A.; Ohran, H.; Alanazi, K.M.; Abd El-Hack, M.E.; Taha, A.E.; Khan, R.; Gong, C.; et al. Genome-wide association studies reveal novel loci associated with carcass and body measures in beef cattle. Arch. Biochem. Biophys. 2020, 694, 108543. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Liu, L.; Li, Q.; Zhang, L.; Pan, Z.; Li, Q. NORFA, long intergenic noncoding RNA, maintains sow fertility by inhibiting granulosa cell death. Commun. Biol. 2020, 3, 131. [Google Scholar] [CrossRef]
- Chen, S.; Hu, Z.; He, H.; Liu, X. Fatty acid elongase7 is regulated via SP1 and is involved in lipid accumulation in bovine mammary epithelial cells. J. Cell. Physiol. 2018, 233, 4715–4725. [Google Scholar] [CrossRef]
- Guzmán, C.; Benet, M.; Pisonero-Vaquero, S.; Moya, M.; García-Mediavilla, M.V.; Martínez-Chantar, M.L.; González-Gallego, J.; Castell, J.V.; Sánchez-Campos, S.; Jover, R. The human liver fatty acid binding protein (FABP1) gene is activated by FOXA1 and PPARα; and repressed by C/EBPα: Implications in FABP1 down-regulation in nonalcoholic fatty liver disease. Biochim. Biophys. Acta 2013, 1831, 803–818. [Google Scholar] [CrossRef]
- Sakai, D.D.; Helms, S.; Carlstedt-Duke, J.; Gustafsson, J.A.; Rottman, F.M.; Yamamoto, K.R. Hormone-mediated repression: A negative glucocorticoid response element from the bovine prolactin gene. Genes Dev. 1988, 2, 1144. [Google Scholar] [CrossRef]
Loci | Breeds | Number | Genotype Frequencies | Allele Frequencies | |||
---|---|---|---|---|---|---|---|
Wildtype | Heterozygote | Homozygous Mutant | Wildtype | Mutant | |||
g.-2429G>A | GG | GA | AA | G | A | ||
LFT | 52 | 0.519 (27) | 0.442 (23) | 0.039 (2) | 0.740 | 0.260 | |
GSFW | 350 | 0.826 (289) | 0.163 (57) | 0.011 (4) | 0.907 | 0.093 | |
g.-2030T>C | TT | TC | CC | T | C | ||
LFT | 52 | 0.058 (3) | 0.519 (27) | 0.423 (22) | 0.317 | 0.683 | |
GSFW | 350 | 0.403 (141) | 0.406 (142) | 0.191 (67) | 0.606 | 0.394 | |
g.-2016C>T | CC | CT | TT | C | T | ||
LFT | 52 | 0.058 (3) | 0.519 (27) | 0.423 (22) | 0.317 | 0.683 | |
GSFW | 350 | 0.403 (141) | 0.406 (142) | 0.191 (67) | 0.606 | 0.394 | |
g.-2015G>A | GG | GA | AA | G | A | ||
LFT | 52 | 1.000 (52) | 0 | 0 | 1.000 | 0 | |
GSFW | 350 | 0.986 (345) | 0.014 (5) | 0 | 0.993 | 0.007 |
Loci | Breeds | Number | Ho | Ne | PIC | HWE p-Value |
---|---|---|---|---|---|---|
g.-2429G>A | LFT | 52 | 0.616 | 1.625 | 0.311 | p > 0.05 |
GSFW | 350 | 0.832 | 1.203 | 0.154 | p > 0.05 | |
g.-2030T>C | LFT | 52 | 0.567 | 1.764 | 0.339 | p > 0.05 |
GSFW | 350 | 0.522 | 1.914 | 0.364 | p < 0.05 | |
g.-2016C>T | LFT | 52 | 0.567 | 1.764 | 0.339 | p > 0.05 |
GSFW | 350 | 0.522 | 1.914 | 0.364 | p < 0.05 | |
g.-2015G>A | LFT | 52 | 1.000 | 1.000 | 0 | p > 0.05 |
GSFW | 350 | 0.986 | 1.014 | 0.014 | p > 0.05 |
Genotypes (Mean ± SE) | p-Value | |||
---|---|---|---|---|
Wildtype | Heterozygous Genotype | Homozygous Mutant | ||
Ram | TT (n = 12) | TC (n = 32) | CC (n = 22) | |
body height (cm) | 69.08 b ± 1.09 | 72.47 a ± 0.85 | 69.95 b ± 0.73 | 0.027 |
Ewe | TT (n = 129) | TC (n = 110) | CC (n = 45) | |
body weight (kg) | 43.41 B ± 0.69 | 46.10 A ± 0.79 | 48.30 A ± 1.13 | 0.001 |
body height (cm) | 64.09 C ± 0.50 | 66.60 B ± 0.56 | 70.24 A ± 0.72 | 3.33 × 10−9 |
body length (cm) | 68.51 C ± 0.65 | 72.05 B ± 0.87 | 76.67 A ± 1.09 | 1.63 × 10−8 |
chest depth (cm) | 32.99 B ± 0.31 | 33.80 AB ± 0.34 | 34.99 A ± 0.62 | 0.006 |
cannon circumference (cm) | 8.33 B ± 0.07 | 8.65 A ± 0.07 | 8.83 A ± 0.07 | 4.9 × 10−5 |
Breeds | Name | Types | Number | g.-2429G>A | g.-2030T>C | g.-2016C>T | g.-2015G>A | Frequency |
---|---|---|---|---|---|---|---|---|
LFT | Haplotypes | H1 | 28 | G | T | C | - | 0.269 |
H2 | 49 | G | C | T | - | 0.471 | ||
H3 | 5 | A | T | C | - | 0.048 | ||
H4 | 22 | A | C | T | - | 0.212 | ||
Diplotypes | H1H2 | 5 | GG | TC | CT | - | 0.096 | |
H1H3 | 1 | GA | TT | CC | - | 0.019 | ||
H1H4 | 22 | GA | TC | CT | - | 0.423 | ||
H2H2 | 22 | GG | CC | TT | - | 0.423 | ||
H3H3 | 2 | AA | TT | CC | - | 0.038 | ||
Guiqian semi-fine wool sheep | Haplotypes | H1′ | 371 | G | T | C | G | 0.533 |
H2′ | 256 | G | C | T | G | 0.368 | ||
H3′ | 46 | A | T | C | G | 0.066 | ||
H4′ | 19 | A | C | T | G | 0.027 | ||
H5′ | 4 | G | T | C | A | 0.006 | ||
Diplotypes | H1′H1′ | 94 | GG | TT | CC | GG | 0.270 | |
H1′H2′ | 122 | GG | TC | CT | GG | 0.351 | ||
H1′H3′ | 38 | GA | TT | CC | GG | 0.109 | ||
H1′H4′ | 19 | GA | TC | CT | GG | 0.055 | ||
H1′H5′ | 4 | GG | TT | CC | GA | 0.011 | ||
H2′H2′ | 67 | GG | CC | TT | GG | 0.193 | ||
H3′H3′ | 4 | AA | TT | CC | GG | 0.011 |
Gender/Traits | Diplotypes (Mean ± SE) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
H1′H1′ | H1′H2′ | H1′H3′ | H1′H4′ | H1′H5′ | H2′H2′ | H3′H3′ | ||
Ram number | n = 8 | n = 26 | n = 3 | n = 5 | - | n = 22 | - | |
body weight (kg) | 48.40 ± 3.32 | 46.13 ± 1.12 | 39.38 ± 1.91 | 49.48 ± 2.41 | - | 43.60 ± 1.35 | - | 0.090 |
body height (cm) | 70.25 a ± 1.28 | 72.23 a ± 1.01 | 65.33 b ± 1.20 | 72.80 a ± 1.46 | - | 69.95 a ± 0.73 | - | 0.049 |
body length (cm) | 73.75 ± 2.30 | 73.77 ± 0.96 | 71.00 ± 0.58 | 76.60 ± 2.32 | - | 72.95 ± 0.98 | - | 0.550 |
chest depth (cm) | 36.75 ± 1.16 | 35.65 ± 0.65 | 35.33 ± 1.45 | 36.80 ± 0.66 | - | 35.27 ± 0.73 | - | 0.765 |
chest width (cm) | 25.63 ± 1.00 | 26.73 ± 0.58 | 25.33 ± 0.88 | 27.20 ± 0.58 | - | 26.14 ± 0.53 | - | 0.690 |
chest circumference (cm) | 89.75 ± 2.48 | 89.00 ± 0.98 | 82.00 ± 1.15 | 92.60 ± 2.32 | - | 87.86 ± 1.30 | - | 0.129 |
cannon circumference (cm) | 10.00 ± 0.19 | 10.23 ± 0.12 | 10.00 ± 0.00 | 10.00 ± 0.00 | - | 10.00 ± 0.09 | - | 0.512 |
Ewe number | n = 86 | n = 96 | n = 35 | n = 14 | n = 4 | n = 45 | n = 4 | |
body weight (kg) | 43.98 b ± 0.86 | 45.62 ab ± 0.74 | 42.01b c ± 1.24 | 49.36 a ± 3.57 | 43.60 b ± 4.97 | 48.30 a ± 1.13 | 43.25 b ± 3.84 | 0.019 |
body height (cm) | 64.01 B ± 0.61 | 66.55 AB ± 0.59 | 64.06 B ± 1.00 | 66.93 AB ± 1.71 | 64.25 AB ± 2.95 | 70.24 A ± 0.72 | 65.75 AB ± 1.89 | 6.61 × 10−7 |
body length (cm) | 68.36 ab ± 0.80 | 71.66 ab ± 0.91 | 68.91 ab ± 1.32 | 74.71 ab ± 2.79 | 69.75 ab ± 3.84 | 76.67 a ± 1.09 | 67.00 b ± 1.22 | 0.023 |
chest depth (cm) | 33.24 ± 0.38 | 33.73 ± 0.36 | 32.44 ± 0.63 | 34.29 ± 0.97 | 33.00 ± 1.58 | 34.99 ± 0.62 | 32.50 ± 1.19 | 0.067 |
chest width (cm) | 27.09 ± 0.31 | 27.38 ± 0.28 | 26.74 ± 0.53 | 28.71 ± 1.12 | 26.50 ± 1.26 | 28.09 ± 0.43 | 26.50 ± 0.65 | 0.191 |
chest circumference (cm) | 99.32 a ± 0.95 | 97.49 ab ± 0.82 | 94.54 b ± 1.47 | 102.07 a ± 2.55 | 98.75 ab ± 2.02 | 96.11 b ± 1.00 | 95.00 b ± 3.14 | 0.024 |
cannon circumference (cm) | 8.31 abc ± 0.08 | 8.64 ab ± 0.07 | 8.43 abc ± 0.12 | 8.68 ab ± 0.25 | 8.00 bc ± 0.71 | 8.83 a ± 0.07 | 7.88 c ± 0.04 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Luo, Y.; Zhang, M.; Pan, C.; Lan, X.; Zheng, J. Ovine LncRSFD1 Mined from RNA-Seq: Identification, Expression Profile, Promotion of Preadipocyte Differentiation, Promoter Activity, and Its Polymorphisms Related to Phenotypic Traits. Animals 2024, 14, 3631. https://doi.org/10.3390/ani14243631
Xu H, Luo Y, Zhang M, Pan C, Lan X, Zheng J. Ovine LncRSFD1 Mined from RNA-Seq: Identification, Expression Profile, Promotion of Preadipocyte Differentiation, Promoter Activity, and Its Polymorphisms Related to Phenotypic Traits. Animals. 2024; 14(24):3631. https://doi.org/10.3390/ani14243631
Chicago/Turabian StyleXu, Hongwei, Yunyun Luo, Mengyang Zhang, Chuanying Pan, Xianyong Lan, and Juanshan Zheng. 2024. "Ovine LncRSFD1 Mined from RNA-Seq: Identification, Expression Profile, Promotion of Preadipocyte Differentiation, Promoter Activity, and Its Polymorphisms Related to Phenotypic Traits" Animals 14, no. 24: 3631. https://doi.org/10.3390/ani14243631
APA StyleXu, H., Luo, Y., Zhang, M., Pan, C., Lan, X., & Zheng, J. (2024). Ovine LncRSFD1 Mined from RNA-Seq: Identification, Expression Profile, Promotion of Preadipocyte Differentiation, Promoter Activity, and Its Polymorphisms Related to Phenotypic Traits. Animals, 14(24), 3631. https://doi.org/10.3390/ani14243631