The Effects of a Blend of Essential Oils in the Milk of Suckling Calves on Performance, Immune and Antioxidant Systems, and Intestinal Microbiota
<p>Ten most abundant bacterial genera found in the feces of calves supplemented with commercial mixture of essential oils. Abbreviations—Control: group of animals that did not receive the blend of essential oils; Phytobiotic: group of animals that received the blend. Data from the first collection (time 0) were excluded from this analysis.</p> "> Figure 2
<p>Ten most abundant bacterial genera found in calf feces on days 0, 35, and 60, dates that represent the days of the experiment.</p> "> Figure 3
<p>Alpha diversity of each sample. ‘Phytobiotic’ refers to the group that received the commercial mixture of essential oils.</p> "> Figure 4
<p>Alpha diversity based on treatment and days 35 and 60 of the experiment. ‘Phytobiotic’ refers to the group that received the blend of essential oils. Data from the first collection (time 0) were excluded from this analysis.</p> "> Figure 5
<p>Abundance of <span class="html-italic">Clostridium</span> detected in calf feces. ‘Phytobiotic’ refers to the group that received the commercial essential oil blend.</p> "> Figure 6
<p>The abundance of <span class="html-italic">Escherichia</span> was detected in calf feces. ‘Phytobiotic’ refers to the group that received the commercial essential oil blend.</p> ">
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Feeding
2.2. Body Weight, Feed Efficiency and Stool Score
2.3. Blood Analysis
2.4. Intestinal Microbiota Analysis
2.5. Statistical Analysis
3. Results
3.1. Clinical Changes
3.2. Consumption, Weight Gain, and Feed Efficiency
Stool Score
3.3. Blood Tests
3.4. Intestinal Microbiota
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). Crop and Livestock Products. Rome, Italy. 2023. Available online: https://www.fao.org/family-farming/detail/en/c/289563/ (accessed on 2 December 2024).
- Chase, C.C.L.; Hurley, D.J.; Reber, A.J. Neonatal immune development in the calf and its impact on vaccine response. Vet. Clin. N. Am. Food Anim. Pract. 2008, 24, 87–104. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Yoon, K. An overview of calf diarrhea—Infectious etiology, diagnosis, and intervention. J. Vet. Sci. 2014, 15, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Choi, C.Y.; Li, G.; Li, H.; Shi, Z. Pre-weaned dairy calf management practices, morbidity and mortality of bovine respiratory disease and diarrhea in China. Livest. Sci. 2020, 251, 104608. [Google Scholar] [CrossRef]
- Maynard, C.L.; Elson, C.O.; Hatton, R.D.; Weaver, A.T. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012, 489, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Maele, S.J.; Chaucheyras-Durand, F.; Berends, H.; Guan, L.L.; Steele, M.A. From pre-to postweaning: Transformation of the young calf’s gastrointestinal tract. J. Dairy Sci. 2017, 100, 5984–5995. [Google Scholar] [CrossRef] [PubMed]
- Alipour, M.J.; Jalanka, J.; Pessa-Morikawa, T.; Kokkonen, T.; Satokari, R.; Hynonen, U.; Iivanainen, A.; Niku, M. The composition of the perinatal intestinal microbiota in cattle. Sci. Rep. 2018, 8, 10437. [Google Scholar] [CrossRef]
- Kodithuwakku, K.A.H.T.; Owada, H.; Miura, H.; Maruyama, D.; Hirano, K.; Suzuki, Y.; Kobayashi, Y.; Koike, S. Effects of oral administration of timothy hay and psyllium on the growth performance and fecal microbiota of preweaning calves. J. Dairy Sci. 2021, 104, 12472–12485. [Google Scholar] [CrossRef]
- Bischoff, S.C. Gut health: A new objective in medicine? BMC Med. 2011, 9, 24. [Google Scholar] [CrossRef]
- Bento, M.H.L.; Ouwehand, A.C.; Tiihonen, K.; Lahtinen, S.; Nurminen, P.; Saarinen, M.T.; Schulze, H.; Mygind, T.; Fischer, J. Essential oils and their use in animal feeds for monogastric animals—Effects on feed quality, gut microbiota, growth performance and food safety: A review. Vet. Med. 2013, 58, 449–458. [Google Scholar] [CrossRef]
- Dill-Mcfarland, K.A.; Weimer, P.J.; Breaker, J.D.; Suen, G. Diet Influences Early Microbiota Development in Dairy Calves without Long-Term Impacts on Milk Production. Appl. Environ. Microbiol. 2018, 85, e02141-18. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, C.; Li, C.; Lin, L. Antibacterial mechanism of oregano essential oil. Ind. Crops Prod. 2019, 139, 111498. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Farret, A. Invited Review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef] [PubMed]
- Chapman, C.; Cabral, R.G.; Aragona, K.M.; Erickson, P.S. Short communication: Cinnamaldehyde taste preferences of weaned dairy heifers. J. Dairy Sci. 2016, 99, 3607–3611. [Google Scholar] [CrossRef] [PubMed]
- Vakili, A.R.; Khorrami, B.; Mesgaran, M.D.; Parand, E. The Effects of Thyme and Cinnamon Essential Oils on Performance, Rumen Fermentation and Blood Metabolites in Holstein Calves Consuming High Concentrate Diet. J. Anim. Sci. 2013, 26, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Haddi, K.; Faroni, L.R.A.; Oliveira, E. Cinnamon Oil. In Green Pesticides Handbook: Essential Oils for Pest Control; Nollet, L.M.L., Rathore, H.S., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 117–150. [Google Scholar]
- Leyva-López, N.; Gutiérrez-Grijalva, E.P.; Vazquez-Olivo, G.; Heredia, J.B. Essential oils of oregano: Biological activity beyond their antimicrobial properties. Molecules 2017, 22, 989. [Google Scholar] [CrossRef]
- Dhakad, A.K.; Pandey, V.V.; Beg, S.; Rawat, J.M.; Singh, A. Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: A review. J. Sci. Food Agric. 2017, 98, 833–848. [Google Scholar] [CrossRef]
- Shreaz, S.; Wani, W.A.; Behbehani, J.M.; Raja, V.; Irshad, M.; Karched, M.; Ali, I.; Siddiqi, W.A.; Hun, L.T. Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia 2016, 112, 116–131. [Google Scholar] [CrossRef]
- Wu, J.; Bai, Y.; Lang, X.; Wang, C.; Shi, X.; Casper, D.P.; Zhang, L.; Liu, H.; Liu, T.; Gong, X.; et al. Dietary supplementation with oregano essential oil and monensin in combination is antagonistic to growth performance of yearling Holstein bulls. J. Dairy Sci. 2020, 103, 8119–8129. [Google Scholar] [CrossRef]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Compositional analysis and insecticidal activity of Eucalyptus globulus (family: Myrtaceae) essential oil against housefly (Musca domestica). Acta Trop. 2012, 122, 212–218. [Google Scholar] [CrossRef]
- Baptista-Silva, S.; Borges, S.; Ramos, O.L.; Pintado, M.; Sarmento, B. The progress of essential oils as potential therapeutic agents: A review. J. Essent. Oil Res. 2020, 32, 279–295. [Google Scholar] [CrossRef]
- Caldas, G.F.R.; Oliveira, A.R.S.; Araújo, A.V.; Lafayette, S.S.L.; Albuquerque, G.S.; Silva-Neto, J.C.; Costa-Silva, J.H.; Ferreira, F.; Da Costa, J.G.M.; Wanderley, A.G. Gastroprotective Mechanisms of the Monoterpene 1,8-Cineole (eucalyptol). PLoS ONE 2015, 10, e0134558. [Google Scholar] [CrossRef]
- Abo-Donia, F.M.; Mahgoub, A.; Deraz, T.; Nayel, U.A. The effect of using eucalyptus oil, leaves, and seed Capsules as supplement in diets on lactating Egyptian Buffalo productivity and methane production. Egypt. J. Nutr. Feed. 2021, 24, 223–235. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, T.; Cairang, D.; Cheng, S.; Hu, J.; Shi, B.; Zhu, H.; Chen, H.; Zhang, T.; Yi, X. Orégano essential oil as a natural plant additive affects growth performance and serum antibody levels by regulation the rúmen microbiota of calves. Animals 2024, 14, 820. [Google Scholar] [CrossRef] [PubMed]
- Nehme, R.; Andrés, S.; Pereira, R.B.; Ben Jemaa, M.; Bouhallab, S.; Ceciliani, F.; López, S.; Rahali, F.Z.; Ksouri, R.; Pereira, D.M.; et al. Essential Oils in Livestock: From Health to Food Quality. Antioxidants 2021, 10, 330. [Google Scholar] [CrossRef] [PubMed]
- Bednar, G.E.; Murray, S.M.; Patil, A.R.; Flickinger, E.A.; Merchen, N.R.; Fahey, G.C. Selected animal and plant protein sources affect nutrient digestibility and fecal characteristics of ileally cannulated dogs. Arch. Für Tierernaehrung 2020, 53, 127–140. [Google Scholar] [CrossRef]
- Fagliari, J.J.; Santana, A.E.; Lucas, F.A.; Campos, E.; Curi, P.R. Constituintes sangüíneos de bovinos recém-nascidos das raças Nelore (Bos indicus) e Holandesa (Bos taurus) e de bubalinos (Bubalus bubalis) da raça Murrah. Arq. Bras. Med. Vet. Zootec. 1998, 50, 253–262. Available online: http://hdl.handle.net/11449/36109 (accessed on 25 January 2018).
- Tomasi, T.; Volpato, A.; Pereira, W.A.B.; Debastiani, L.H.; Bottari, N.B.; Morsch, V.M.; Schetinger, M.R.C.; Leal, M.L.R.; Machado, G.; Da Silva, A.S. Metaphylactic effect of minerals on the immune response, biochemical variables and antioxidant status of newborn calves. J. Anim. Physiol. Anim. Nutr. 2018, 102, 819–824. [Google Scholar] [CrossRef]
- Jentzsch, A.M.; Bachmann, H.; Fürst, P.; Biesalski, H.K. Improved analysis of malondialdehyde in human body fluids. Free Radic. Biol. Med. 1996, 20, 251–256. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef]
- Hjelmsø, M.H.; Hansen, L.H.; Balum, J.; Feld, L.; Holben, W.E.; Jacobsen, C.S. High-resolution melt analysis for rapid comparison of bacterial community compositions. Appl. Environ. Microbiol. 2014, 80, 3568–3575. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, 590–596. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Müller, C.; Obermaier, E.; Prati, D.; et al. Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 2014, 4, 3514–3524. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, J.; Chen, D. Community diversity measures and calculations. In Statistical Analysis of Microbiome Data with R; Springer: Singapore, 2018; pp. 167–190. [Google Scholar]
- Qian, X.B.; Chen, T.; Xu, Y.P.; Chen, L.; Sun, F.X.; Lu, M.P.; Liu, Y.X. A guide to human microbiome research: Study design, sample collection, and bioinformatics analysis. Chin. Med. J. (Engl.) 2020, 133, 1844–1855. [Google Scholar] [CrossRef]
- Schloss, P.D. Rarefaction is currently the best approach to control for uneven sequencing effort in amplicon sequence analyses. mSphere 2024, 9, e00354-23. [Google Scholar] [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Songer, J.G.; Anderson, M.A. Clostridium difficile: An important pathogen of food animals. Anaerobe 2006, 12, 1–4. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Bowman, J.P. The genus Psychrobacter. In The Prokaryotes: A Handbook on the Biology of Bacteria. Proteobacteria: Gamma Subclass; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; Volume 6, pp. 920–930. [Google Scholar]
- Van der Kolk, J.H.; Endimiani, A.; Graubner, C.; Gerber, V.; Perreten, V. Acinetobacter in veterinary medicine, with an emphasis on Acinetobacter baumannii. J. Glob. Antimicrob. Resist. 2019, 16, 59–71. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrients Requirements of Dairy Cattle, 7th ed.; National Academy of Science: Washington, DC, USA, 2001; 408p. [Google Scholar]
- Tapiki, I.; Ozalpaydin, H.B.; Tapiki, N.; Aslan, M.; Selvi, M.H. Effects of oregano essential oil on reduction of weaning age and increasing economic efficiency in holstein friesian calves. Pak. J. Zool. 2020, 52, 745–752. [Google Scholar] [CrossRef]
- Silva, R.B.; Pereira, M.N.; De Araujo, R.C.; Silva, W.R.; Pereira, R.A.N. A blend essential oils improved feed efficiency and affected ruminal and systemic variables of dairy cows. Transl. Anim. Sci. 2020, 4, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Farshid, S.; Alireza, V.; Mohsen, D.M. Effects of dome plant essential oils and probiotic (protexin) on performance, nutrient digestibility and blood metabolites of Holstein dairy calves. Iran. J. Anim. Sci. Res. 2021, 13, 161–173. [Google Scholar] [CrossRef]
- Mcintosh, F.M.; Williams, P.; Losa, R.; Wallace, R.J.; Beever, D.A.; Newbold, C.J. Effects of Essential Oils on Ruminal Microorganisms and Their Protein Metabolism. Appl. Environ. Microbiol. 2003, 69, 5011–5014. [Google Scholar] [CrossRef] [PubMed]
- Stellard, F. From Dietary Cholesterol to Blood Cholesterol, Physiological Lipid Fluxes, and Cholesterol Homeostasis. Nutrients 2022, 14, 1643. [Google Scholar] [CrossRef]
- Mcnamara, D.J.; Kolb, R.; Parker, T.S.; Batwin, H.; Samuel, P.; Brown, C.D.; Ahrens, E.H., Jr. Heterogeneity of cholesterol homeostasis in man. Response to changes in dietary fat quality and cholesterol quantity. J. Clin. Investig. 1987, 79, 1729–1739. [Google Scholar] [CrossRef]
- Nora, L.; Giacomelli, C.M.; Deolindo, G.L.; Molosse, V.L.; Copetti, P.M.; Bissacotti, B.F.; Morsch, V.M.; Da Silva, A.S. Inclusion of essential oils in a calf milk replacer and their effects on growth performance and the immune and oxidative systems. Comp. Clin. Pathol. 2024, 33, 327–335. [Google Scholar] [CrossRef]
- Wilms, J.N.; Van Der Nat, V.; Ghaffari, M.H.; Steele, M.A.; Sauerwein, H.; Martín-Tereso, J.; Leal, L.N. Fat composition of milk replacer influences growth performance, feeding behavior, and plasma fatty acid profile in ad libitum–fed calves. J. Dairy Sci. 2024, 107, 2797–2817. [Google Scholar] [CrossRef]
- Katsoulos, P.D.; Karatzia, M.A.; Dovas, C.I.; Filioussis, G.; Papadopoulos, E.; Kiossis, E.; Arsenopoulos, K.; Papadopoulos, T.; Boscos, C.; Karatzias, H. Evaluation of the in-field efficacy of oregano essential oil administration on the control of neonatal diarrhea syndrome in calves. Res. Vet. Sci. 2017, 115, 478–483. [Google Scholar] [CrossRef]
- Ritt, L.A.; Orso, C.; Silveira, A.K.; Frazzon, J.; de Vargas, D.P.; Wagner, R.; de Oliveira, F.C.; Nornberg, J.L.; Fischer, V. Oregano extract fed to pre-weaned dairy calves. Part 1: Effects on intake, digestibility, body weight, and rumen and intestinal bacteria microbiota. Livest. Sci. 2023, 269, 105165. [Google Scholar] [CrossRef]
- Liu, T.; Chen, H.; Bai, Y.; Wu, J.; Cheng, S.; He, B.; Casper, D.P. Calf starter containing a blend of essential oils and prebiotics affects the growth performance of Holstein calves. J. Dairy Sci. 2020, 103, 2315–2323. [Google Scholar] [CrossRef] [PubMed]
- Al-Suwaiegh, S.B.; Morshedy, S.A.; Mansour, A.T.; Ahmed, M.H.; Zahran, S.M.; Alnemr, T.M.; Sallam, S.M.A. Effect of an Essential Oil Blend on Dairy Cow Performance during Treatment and Post-Treatment Periods. Sustainability 2020, 12, 9123. [Google Scholar] [CrossRef]
- Pabst, O. New concepts in the generation and functions of IgA. Nat. Rev. Immunol. 2012, 12, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Palm, N.W.; Zoete, M.R.; Cullen, T.W.; Barry, N.A.; Stefanowski, J.; Hao, L.; Degman, P.H.; Hu, J.; Peter, I.; Zhang, W.; et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 2014, 158, 1000–1010. [Google Scholar] [CrossRef]
- Rocha, T.G.; Silva, F.D.F.; Bortoletto, C.; Silva, D.G.; Buzinaro, M.G.; Zafalon, L.F.; Fabliari, J.J. Serum concentrations of acute phase proteins and immunoglobulins of calves with rotavirus diarrhea. Vet. Med. 2016, 68, 865–872. [Google Scholar] [CrossRef]
- Bozuklunah, K.; Merhan, O.; Ogun, M.; Kut, B.; Cihan, M.; Erkiliç, E.E.; Gokce, G.; Aydin, U.; Ozcan, A. Investigation of haptoglobin, serum amyloid A, and some biochemical parameters in calves with omphalitis. Vet. World 2018, 11, 1055–1058. [Google Scholar] [CrossRef]
- Erkiliç, E.; Merhan, O.; Kirmizigul, A.H.; Ogun, M.; Akyuz, E.; Çitil, M. Salivary and serum levels of serum amyloid A, haptoglobin, ceruloplasmin and albumins in neonatal calves with diarrhea. Kafkas Univ. Vet. Fak. Derg. 2019, 25, 583–586. [Google Scholar]
- Saleh, N.; Allam, T.; Nayel, M.; Ahmed, R. Molecular investigation of calf diarrhea in relation to changes in some immunological profiles. J. Curr. Vet. Res. 2022, 4, 69–79. [Google Scholar] [CrossRef]
- de Sousa-Pereira, P.; Woof, J.M. IgA: Structure, Function, and Developability. Antibodies 2019, 8, 57. [Google Scholar] [CrossRef]
- Campolina, J.P.; Coelho, S.G.; Belli, A.L.; Neves, L.F.M.; Machado, F.S.; Pereira, L.G.R.; Tomich, T.R.; Carvalho, W.A.; Daibert, R.M.P.; Reis, D.R.L.; et al. Potential benefits of a blend of essential oils on metabolism, digestibility, organ development and gene expression of dairy calves. Sci. Rep. 2023, 13, 3378. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Gautam, V.; Naseem, S. Acute-phase proteins: As diagnostic tool. J. Pharm. Bioallied Sci. 2011, 3, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Favaretto, J.A.; Alba, D.F.; Marchiori, M.S.; Marcon, H.J.; Souza, C.F.; Badissera, M.D.; Bianchi, A.E.; Zanluchi, M.; Klein, B.; Wagner, R.; et al. Supplementation with a blend based on micro-encapsulated carvacrol, thymol, and cinnamaldehyde in lambs feed inhibits immune cells and improves growth performance. Livest. Sci. 2020, 240, 104144. [Google Scholar] [CrossRef]
- Dorman, H.J.; Deans, S.G. Antimicrobial agents from plats: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–314. [Google Scholar] [CrossRef]
- Molosse, V.L.; Deolindo, G.L.; Glombosky, P.; Pereira, W.A.B.; Carvalho, R.A.; Zotti, C.A.; Solivo, G.; Vedovto, M.; Fracasso, M.; Silva, A.D.; et al. Curcumin or microencapsulated phytogenic blend to replace ionophore and non-ionophore antibiotics in weaned calves: Effects on growth performance and health. Livest. Sci. 2022, 263, 105029. [Google Scholar] [CrossRef]
- Brunetto, A.L.R.; Giacomelli, C.M.; Favero, J.F.; Bissacotti, B.F.; Copeti, P.M.; Morsch, V.M.; Oliveira, F.C.; Wagner, R.; Alves, R.; Pereira, W.A.B.; et al. Phytogenic blend in the diet of growing Holstein steers: Effects on performance, digestibility, rumen volatile fatty acid profile, and immune and antioxidant responses. Anim. Feed Sci. Technol. 2023, 297, 115595. [Google Scholar] [CrossRef]
- Doughari, H.J.; Ndakidemi, P.A.; Human, I.S.; Benade, S. The ecology, biology and pathogenesis of Acinetobacter spp.: An Overview. Microbes Environ. 2011, 26, 101–112. [Google Scholar] [CrossRef]
- Hou, S.; Wu, H.; Chen, S.; Li, X.; Zhang, Z.; Cheng, Y.; Chen, Y.; He, M.; An, Q.; Man, C.; et al. Bovine skin fibroblast mediated immune responses to defend against bovine Acinetobacter baumannii infection. Microb. Pathog. 2022, 173, 105806. [Google Scholar] [CrossRef]
- Rojo, F. Carbon catabolite repression in Pseudomonas: Optimizing metabolic versatily and interactions with the environment. FEMS Microbiol. Rev. 2010, 34, 658–684. [Google Scholar] [CrossRef]
- Winsor, G.L.; Griffiths, E.J.; Lo, R.; Dhillon, B.K.; Shay, J.A.; Brinkman, F.S.L. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genoma database. Nucleic Acid Res. 2016, 44, 646–653. [Google Scholar] [CrossRef]
- Mcvey, S.; Kennedy, M.; Chengappa, M.M. Microbiologia Veterinária, 3rd ed.; Editora Guanabara Koogan Ltda.: Rio de Janeiro, Brazil, 2016; ISBN 9788527728263. [Google Scholar]
- Zarei, M.; Rahimi, S.; Fazlara, A.; Anvari, S.E. High biofilm-forming Pseudomonas strains isolated from poultry slaughterhouse surfaces: Their importance in the persistence of Salmonella enteritidis in slaughterhouses. Int. J. Food Microbiol. 2023, 390, 110126. [Google Scholar] [CrossRef] [PubMed]
- Gárcia-López, M.L.; Maradona, M.P. Psychrobacter. In Encyclopedia of Food Microbiology; Elsevier: Oxford, UK, 1999; pp. 1875–1882. [Google Scholar]
- Rama, E.N.; Bailey, M.; Kumar, S.; Leone, C.; Den Bakker, H.C.; Thippareddi, H.; Singh, M. Characterizing the gut microbiome of broilers raised undes conventional and no antibiotics ever practices. Poult. Sci. 2023, 102, 102832. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Liu, M.C.J.; Tong, M.K.; Jiang, S.; Lau, A.; Chow, K.H.; Tse, C.W.S.; Ho, P.L. Diversity of genomic clusters and CfiA/cfiA alleles in Bacteroides fragilis isolates from human and animals. Anaerobe 2022, 75, 102567. [Google Scholar] [CrossRef] [PubMed]
- Knoop, F.C. Bacteroides Infections. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Sears, C.L. The toxins of Bacteroides fragilis. Toxicon 2001, 39, 1737–1749. [Google Scholar] [CrossRef]
- Nagajara, T.G.; Narayanan, S.K.; Stewart, G.C.; Chengappa, M.M. Fusobacterium necrophorum infections in animals: Pathogenesis and pathogenic mechanisms. Anaerobe 2005, 11, 239–246. [Google Scholar] [CrossRef]
- Suchodolski, J.S.; Foster, M.L.; Sohail, M.U.; Leutenegger, C.; Queen, E.V.; Steiner, J.M.; Maks, S.L. The fecal microbiome in cats with diarrhea. PLoS ONE 2015, 10, e0127378. [Google Scholar] [CrossRef]
- Chevrot, R.; Carlotti, A.; Sopena, V.; Marchand, P.; Rosendeld, R. Megamonas rupellensis sp. Nov., an anaerobe isolated from the caecum of a duck. Int. J. Syst. Evol. Microbiol. 2008, 58, 2921–2924. [Google Scholar] [CrossRef]
- Cao, Z.; Liu, Z.; Zhang, N.; Bao, C.; Li, X.; Liu, M.; Yuan, W.; Wu, H.; Shang, H. Effects of dietary dandelion (Taraxacum mongolicum Hand.-Mazz.) polysaccharides on the performance and gut microbiota of laying hens. Int. J. Biol. Macromol. 2023, 240, 124422. [Google Scholar] [CrossRef]
- Virginio Junior, G.F.; Reais, M.E.; Da Silva, A.P.; De Toleto, A.F.; Cezar, A.M.; Mendes, L.W.; Freco, L.; Montenegro, H.; Coutinho, L.L.; Bittar, C.M.M. Does algae β-glucan affect the fecal bacteriome in dairy calves? PLoS ONE 2021, 16, e0258069. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, Q.; Zhang, B.; Chen, Z.; Huang, Q.; Xu, H.; Ren, J.; Zhang, X. Effect of multidonor intensive fecal microbiota transplantation by capsules for active uncreative colitis: A prospective trial. Gut 2019, 68, 109–110. [Google Scholar] [CrossRef]
- Rolinec, M.; Medo, J.; Gábor, M.; Miluchová, M.; Bíro, D.; Simko, M.; Jurácek, M.; Hanusovsky, O.; Schubertová, Z.; Gálik, B. The effect of cocconut oil addition to feed of pigs on rectal microbioal diversity and bacterial abundance. Animals 2020, 10, 1764. [Google Scholar] [CrossRef] [PubMed]
- Enjalbert, M.R.; Combes, S.; Cauquil, L.; Bouchez, O.; Monteil, C. Esrablissment of ruminal bacterial community in dairy calves from birth to weaning is sequential. J. Appl. Microbiol. 2014, 116, 245–257. [Google Scholar] [CrossRef]
- Foster, D.M.; Smith, G.W. Pathophysiology of diarrhea in calves. Vet. Clin. N. Am. Food Anim. Pract. 2009, 25, 13–36. [Google Scholar] [CrossRef] [PubMed]
- Gull, T. Bacterial causes of intestinal disease in dairy calves: Acceptable control measures. Vet. Clin. N. Am. Food Anim. Pract. 2022, 38, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Wang, Y.; Yan, X.; Ma, X.; Duan, A.; Hassan, F.; Wang, W.; Deng, T. Metagenomic and metabolomic analyses reveal the role of gut microbiome-associated metabolites in diarrhea calves. Vet. Microbiol. 2023, 8, e00582-23. [Google Scholar] [CrossRef]
- Fu, Z.L.; Yang, Y.; Ma, M.; Malmuthuge, N.; Guan, L.L.; Bu, D.P. Dynamics of oxidative stress and immune responses in neonatal calves during diarrhea. J. Dairy Sci. 2024, 107, 1286–1298. [Google Scholar] [CrossRef]
Ingredients | Quantity (Dry Matter) Days 1–60 | Quantity (Dry Matter) Days 61–75 | |
---|---|---|---|
STEP 1 | |||
Starter 1 | Ad libitum | Ad libitum | |
Milk replacer | 484 g/day | 363 g/day (days 61–62), 242 g/day (days 63–64); and 121 g/day (days 65–66) | |
Hay | 0 | Ad libitum | |
Chemical composition in dry matter (g/kg) | |||
Starter | Replacer | Hay | |
Dry matter | 893 | 973 | 850 |
Crude protein | 261 | 279 | 72.3 |
Ether extract | 34.4 | 92.5 | 8.00 |
Ash | 64.4 | 78.5 | 72.3 |
Crude fiber | - | 14.0 | - |
NDF | 260 | - | 602 |
ADF | 94.8 | - | 242 |
Lactose | - | 536 | - |
Variable | Control | Phytobiotic | SEM | p—Treat 1 | p—Treat × Day 2 |
---|---|---|---|---|---|
Body weight, kg | 0.86 | 0.87 | |||
d1 | 40.7 | 41.0 | 0.34 | ||
d60 | 61.2 | 62.4 | 0.34 | ||
d75 | 78.1 | 79.6 | 0.35 | ||
WG, kg | |||||
d1–60 | 16.6 | 16.0 | 0.21 | 0.84 | – |
d1–75 | 34.4 | 36.0 | 0.22 | 0.39 | – |
d60–75 | 17.6 | 20.0 | 0.20 | 0.42 | – |
ADG, kg | |||||
d1–60 | 0.27 | 0.26 | 0.03 | 0.88 | – |
d60–75 | 1.24 | 1.33 | 0.04 | 0.80 | – |
DMI of starter, kg DM | |||||
d1–60 | 0.52 | 0.41 | 0.05 | 0.11 | – |
d60–75 | 1.74 | 1.52 | 0.16 | 0.11 | – |
DMI of milk replacer, kg DM | |||||
d1–60 | 0.484 | 0.484 | 0.00 | – | – |
DMI: starter + milk replacer, kg DM | |||||
d1–60 | 1.00 a | 0.90 b | 0.04 | 0.08 | – |
Feed efficiency, kg/kg | |||||
d1–60 | 0.27 b | 0.29 a | 0.03 | 0.05 | – |
Variable | Control | Phytobiotic | SEM | p—Treat 1 | p—Treat × Day 2 |
---|---|---|---|---|---|
Leukocytes (×103 cel/µL) | 0.25 | 0.01 | |||
d1 | 14.8 | 16.6 | 0.69 | ||
d15 | 16.6 | 15.8 | 0.66 | ||
d30 | 21.2 | 17.3 | 0.77 | ||
d45 | 12.4 a | 9.91 b | 0.65 | ||
d60 | 8.00 a | 5.17 b | 0.66 | ||
d75 | 8.24 | 7.53 | 0.66 | ||
Lymphocytes (×103 cel/µL) | 0.07 | 0.01 | |||
d1 | 8.22 | 7.87 | 0.54 | ||
d15 | 10.8 | 8.58 | 0.54 | ||
d30 | 10.9 | 10.5 | 0.54 | ||
d45 | 8.53 a | 5.60 b | 0.52 | ||
d60 | 6.70 a | 3.74 b | 0.52 | ||
d75 | 4.62 | 3.96 | 0.52 | ||
Monocytes (×103 cel/µL) | 1.78 | 1.38 | 0.61 | 0.52 | 0.21 |
Granulocytes (×103 cel/µL) | 0.75 | 0.05 | |||
d1 | 3.78 | 4.91 | 0.35 | ||
d15 | 3.32 | 4.37 | 0.35 | ||
d30 | 6.57 a | 4.72 b | 0.35 | ||
d45 | 2.02 | 2.66 | 0.34 | ||
d60 | 2.07 | 2.35 | 0.29 | ||
d75 | 2.38 | 2.32 | 0.28 | ||
Erythrocytes (×106 cel/µL) | 8.05 | 8.31 | 0.03 | 0.95 | 0.96 |
Hemoglobin (mg/dL) | 10.4 | 10.4 | 0.18 | 0.98 | 0.95 |
Hematocrit (%) | 28.4 | 28.3 | 0.71 | 0.96 | 0.94 |
Variables | Control | Phytobiotic | SEM | p—Treat 1 | p—Treat × Day 2 |
---|---|---|---|---|---|
Glucose (mg/dL) | 83.5 | 83.1 | 2.12 | 0.95 | 0.98 |
Cholesterol (mg/dL) | 0.05 | 0.01 | |||
d1 | 59.5 | 59.8 | 4.52 | ||
d15 | 75.8 | 82.4 | 4.61 | ||
d30 | 144 b | 161 a | 4.27 | ||
d45 | 109 b | 150 a | 5.81 | ||
d60 | 112 b | 147 a | 5.92 | ||
d75 | 120 | 131 | 4.48 | ||
Total protein (g/dL) | 6.52 | 6.34 | 0.25 | 0.56 | 0.30 |
Albumin (g/dL) | 2.64 | 2.65 | 0.09 | 0.95 | 0.92 |
Urea (mg/dL) | 17.2 | 16.8 | 0.55 | 0.91 | 0.88 |
Globulin (g/dL) | 3.87 | 3.68 | 0.18 | 0.81 | 0.76 |
Variables | Control | Phytobiotic | SEM | p—Treat 1 | p—Treat × Day 2 |
---|---|---|---|---|---|
TBARS (g/dL) | 17.3 | 16.3 | 1.02 | 0.81 | 0.86 |
GST (g/dL) | 0.01 | 0.01 | |||
d1 | 432 | 414 | 5.84 | ||
d15 | 420 b | 457 a | 5.85 | ||
d30 | 411 b | 525 a | 5.74 | ||
d45 | 410 b | 492 a | 5.79 | ||
d60 | 420 b | 539 a | 5.78 | ||
Total Thiols (g/dL) | 62.2 | 65.7 | 1.03 | 0.76 | 0.62 |
Variables | Control | Phytobiotic | SEM | p—Treat 1 | p—Treat × Day 2 |
---|---|---|---|---|---|
IgA (g/dL) | 0.05 | 0.03 | |||
d1 | 0.69 | 0.65 | 0.02 | ||
d15 | 0.67 | 0.64 | 0.02 | ||
d30 | 0.70 | 0.71 | 0.02 | ||
d45 | 0.65 | 0.70 | 0.03 | ||
d60 | 0.62 b | 0.75 a | 0.02 | ||
Heavy chain Ig (g/dL) | 0.96 | 1.01 | 0.04 | 0.38 | 0.17 |
Ceruloplasmin (g/dL) | 0.05 | 0.02 | |||
d1 | 0.52 | 0.54 | 0.02 | ||
d15 | 0.53 | 0.50 | 0.02 | ||
d30 | 0.58 a | 0.51 b | 0.01 | ||
d45 | 0.52 | 0.48 | 0.01 | ||
d60 | 0.50 a | 0.39 b | 0.02 | ||
Haptoglobin (g/dL) | 0.29 | 0.30 | 0.01 | 0.89 | 0.60 |
C-reactive protein (g/dL) | 0.18 | 0.16 | 0.01 | 0.45 | 0.23 |
Ferritin (g/dL) | 0.23 | 0.20 | 0.02 | 0.54 | 0.42 |
Transferrin (mg/dL) | 0.01 | 0.01 | |||
d1 | 0.20 | 0.20 | 0.02 | ||
d15 | 0.21 | 0.20 | 0.02 | ||
d30 | 0.20 | 0.17 | 0.02 | ||
d45 | 0.21 a | 0.16 b | 0.01 | ||
d60 | 0.22 | 0.17 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nora, L.; Marcon, C.; Deolindo, G.L.; Signor, M.H.; Muniz, A.L.; Bajay, M.M.; Copetti, P.M.; Bissacotti, B.F.; Morsch, V.M.; da Silva, A.S. The Effects of a Blend of Essential Oils in the Milk of Suckling Calves on Performance, Immune and Antioxidant Systems, and Intestinal Microbiota. Animals 2024, 14, 3555. https://doi.org/10.3390/ani14243555
Nora L, Marcon C, Deolindo GL, Signor MH, Muniz AL, Bajay MM, Copetti PM, Bissacotti BF, Morsch VM, da Silva AS. The Effects of a Blend of Essential Oils in the Milk of Suckling Calves on Performance, Immune and Antioxidant Systems, and Intestinal Microbiota. Animals. 2024; 14(24):3555. https://doi.org/10.3390/ani14243555
Chicago/Turabian StyleNora, Luisa, Charles Marcon, Guilherme Luiz Deolindo, Mateus Henrique Signor, Ana Luiza Muniz, Miklos Maximiliano Bajay, Priscila Marquezan Copetti, Bianca Fagan Bissacotti, Vera M. Morsch, and Aleksandro Schafer da Silva. 2024. "The Effects of a Blend of Essential Oils in the Milk of Suckling Calves on Performance, Immune and Antioxidant Systems, and Intestinal Microbiota" Animals 14, no. 24: 3555. https://doi.org/10.3390/ani14243555
APA StyleNora, L., Marcon, C., Deolindo, G. L., Signor, M. H., Muniz, A. L., Bajay, M. M., Copetti, P. M., Bissacotti, B. F., Morsch, V. M., & da Silva, A. S. (2024). The Effects of a Blend of Essential Oils in the Milk of Suckling Calves on Performance, Immune and Antioxidant Systems, and Intestinal Microbiota. Animals, 14(24), 3555. https://doi.org/10.3390/ani14243555