Rumen Microbiota Transplantation Alleviates Gossypol Diet-Induced Reproductive, Liver, and Intestinal Damage in Male Mice
"> Figure 1
<p>Body weight and food intake of mice. Note: (<b>A</b>): Body weight of mice; (<b>B</b>): feed intake of mice. Values with different small-letter superscripts indicate a significant difference between groups at the same time (<span class="html-italic">p</span> < 0.05).</p> "> Figure 2
<p>Effects of FMT on organ coefficients in mice. Note: Value columns with the same or no small-letter superscripts mean no significant difference (<span class="html-italic">p</span> > 0.05), while those with different small-letter superscripts indicate a significant difference (<span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>AST and ALT enzyme activities in serum. Note: (<b>A</b>): Alanine aminotransferase (ALT), (<b>B</b>): aspartate aminotransferase (AST), (<b>C</b>): AST/ALT ratio. Value columns with the same or no small-letter superscripts mean no significant difference (<span class="html-italic">p</span> > 0.05), while those with different small-letter superscripts indicate a significant difference (<span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>Effects of FMT on liver pathology (HE, ×400). Note: (<b>A</b>): CK group; (<b>B</b>): FG group; (<b>C</b>): FMT group.</p> "> Figure 5
<p>Effects of FMT on the reproductive function of male mice. Note: (<b>A</b>): Sperm concentration, (<b>B</b>): sperm motility, (<b>C</b>): sperm abnormality rate; (<b>D</b>): activity of LDH-X in the testis. Value columns with the same or no small-letter superscripts mean no significant difference (<span class="html-italic">p</span> > 0.05), while those with different small-letter superscripts indicate a significant difference (<span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Morphology of the small intestine tissues of mice (HE, ×400). Note: (<b>A</b>): CK group; (<b>B</b>): FG group; (<b>C</b>): FMT group.</p> "> Figure 7
<p>Parameters of small intestine tissue in mice. Note: (<b>A</b>): Villus height, (<b>B</b>): crypt depth, (<b>C</b>): V/C rate. Value columns with the same or no small-letter superscripts mean no significant difference (<span class="html-italic">p</span> > 0.05), while those with different small-letter superscripts indicate a significant difference (<span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Feeding of Mice and FMT
2.2. Clinical Information
2.3. Sample Collection
2.4. Analysis of Liver Injury
2.5. Reproductive Injury Analysis
2.6. Intestinal Tissue Analysis
2.7. Data Analysis
3. Results
3.1. Effects of Rumen Microbiota Transplantation on Body Weight and Food Intake of Mice
3.2. Effects of Rumen Microbiota Transplantation on the Organ Coefficients of Mice
3.3. Effects of Rumen Microbiota Transplantation on Liver Function in Mice
3.4. Effect of Rumen Microbiota Transplantation on the Reproductive Function of Mice
3.5. Effect of Rumen Microbiota Transplantation on the Small Intestine of Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, M.; Tomar, M.; Punia, S.; Grasso, S.; Arrutia, F.; Choudhary, J.; Singh, S.; Verma, P.; Mahapatra, A.; Patil, S.; et al. Cottonseed: A sustainable contributor to global protein requirements. Trends Food Sci. Technol. 2021, 111, 100–113. [Google Scholar] [CrossRef]
- Duraiswamy, A.; Sneha, A.N.M.; Jebakani, K.S.; Selvaraj, S.; Pramitha, J.L.; Selvaraj, R.; Petchiammal, K.I.; Kather Sheriff, S.; Thinakaran, J.; Rathinamoorthy, S.; et al. Genetic manipulation of anti-nutritional factors in major crops for a sustainable diet in future. Front. Plant Sci. 2023, 13, 1070398. [Google Scholar] [CrossRef]
- Tan, C.F.; Kwan, S.H.; Lee, C.S.; Soh, Y.N.A.; Ho, Y.S.; Bi, X. Cottonseed Meal Protein Isolate as a New Source of Alternative Proteins: A Proteomics Perspective. Int. J. Mol. Sci. 2022, 23, 10105. [Google Scholar] [CrossRef]
- Qian, S.Z.; Wang, Z.G. Gossypol: A potential antifertility agent for males. Annu. Rev. Pharmacol. Toxicol. 1984, 24, 329–360. [Google Scholar] [CrossRef]
- Nakadate, T.; Jeng, A.Y.; Blumberg, P.M. Comparison of protein kinase C functional assays to clarify mechanisms of inhibitor action. Biochem. Pharmacol. 1988, 37, 1541–1545. [Google Scholar] [CrossRef]
- Wang, X.C.; Wu, S.G.; Zhang, H.J.; Qi, G.H.; Li, J. Research Advances on the Effects of Free Gossypol on Egg Quality and Its Removal Methord. Chin. J. Anim. Nutr. 2014, 26, 571–577. [Google Scholar] [CrossRef]
- Wang, H.; Piao, Z.; Ma, H.; Cao, L.; Liu, J.; Wu, J. Short-term exposure to gossypol causes reversible reproductive toxicity and nephrotoxicity in mice. Nan Fang Yi Ke Da Xue Xue Bao 2023, 43, 251–256. [Google Scholar] [CrossRef]
- Lee, K.J.; Dabrowski, K. Gossypol and gossypolone enantiomers in tissues of rainbow trout fed low and high levels of dietary cottonseed meal. J. Agric. Food Chem. 2002, 50, 3056–3061. [Google Scholar] [CrossRef]
- Lordelo, M.M.; Davis, A.J.; Calhoun, M.C.; Dowd, M.K.; Dale, N.M. Relative toxicity of gossypol enantiomers in broilers. Poult. Sci. 2005, 84, 1376–1382. [Google Scholar] [CrossRef]
- Gamboa, D.A.; Calhoun, M.C.; Kuhlmann, S.W.; Haq, A.U.; Bailey, C.A. Tissue distribution of gossypol enantiomers in broilers fed various cottonseed meals. Poult. Sci. 2001, 80, 920–925. [Google Scholar] [CrossRef]
- Shepherd, A.; Brunckhorst, O.; Ahmed, K.; Xu, Q. Botanicals in health and disease of the testis and male fertility: A scoping review. Phytomedicine 2022, 106, 154398. [Google Scholar] [CrossRef]
- Randel, R.D.; Chase, C.C., Jr.; Wyse, S.J. Effects of gossypol and cottonseed products on reproduction of mammals. J. Anim. Sci. 1992, 70, 1628–1638. [Google Scholar] [CrossRef]
- Dodou, K.; Anderson, R.J.; Small, D.A.; Groundwater, P.W. Investigations on gossypol: Past and present developments. Expert. Opin. Investig. Drugs 2005, 14, 1419–1434. [Google Scholar] [CrossRef]
- Yang, A.; Zhang, C.; Zhang, B.; Wang, Z.; Zhu, L.; Mu, Y.; Wang, S.; Qi, D. Effects of Dietary Cottonseed Oil and Cottonseed Meal Supplementation on Liver Lipid Content, Fatty Acid Profile and Hepatic Function in Laying Hens. Animals 2021, 11, 78. [Google Scholar] [CrossRef]
- Yu, J.; Yang, H.; Sun, Q.; Xu, X.; Yang, Z.; Wang, Z. Effects of cottonseed meal on performance, gossypol residue, liver function, lipid metabolism, and cecal microbiota in geese. J. Anim. Sci. 2023, 101, skad020. [Google Scholar] [CrossRef]
- Zhuo, Y.; Zou, X.; Wang, Y.; Jiang, X.; Sun, M.; Xu, S.; Lin, Y.; Hua, L.; Li, J.; Feng, B.; et al. Nutritional values of cottonseed meal from different sources fed to gestating and non-pregnant sows. J. Anim. Sci. 2023, 101, skad118. [Google Scholar] [CrossRef]
- Jimenez, C.R.; Moretti, D.B.; da Silva, T.P.; Corrêa, P.S.; da Costa, R.L.D.; Siu, T.M.; Louvandini, H. Cottonseed (gossypol) intake during gestation and lactation does affect the ovarian population in ewes and lambs? Res. Vet. Sci. 2021, 135, 557–567. [Google Scholar] [CrossRef]
- Pierce, R.B.; Adeniji, Y.A.; Bomberger, R.; Goodall, S.R.; Harvatine, K.J. Effect of feeding increasing levels of whole cottonseed on milk and milk components, milk fatty acid profile, and total tract digestibility in lactating dairy cows. J. Dairy Sci. 2023, 13, 2916–2929. [Google Scholar] [CrossRef]
- Abou-Donia, M.B. Physiological effects and metabolism of gossypol. Residue Rev. 1976, 61, 125–160. [Google Scholar] [CrossRef]
- Wang, W.K.; Yang, H.J.; Wang, Y.L.; Yang, K.L.; Jiang, L.S.; Li, S.L. Gossypol detoxification in the rumen and Helicoverpa armigera larvae: A review. Anim. Nutr. 2021, 7, 967–972. [Google Scholar] [CrossRef]
- Jami, E.; Mizrahi, I. Composition and similarity of bovine rumen microbiota across individual animals. PLoS ONE 2012, 7, e33306. [Google Scholar] [CrossRef]
- Albillos, A.; de Gottardi, A.; Rescigno, M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J. Hepatol. 2020, 72, 558–577. [Google Scholar] [CrossRef]
- Gharechahi, J.; Sarikhan, S.; Han, J.L.; Ding, X.Z.; Salekdeh, G.H. Functional and phylogenet-ic analyses of camel rumen microbiota associated with different lignocellulosic sub-strates. NPJ Biofilms Microbiomes 2022, 8, 46. [Google Scholar] [CrossRef]
- Kim, M.; Morrison, M.; Yu, Z. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol. Ecol. 2011, 76, 49–63. [Google Scholar] [CrossRef]
- Silva, É.B.R.D.; Silva, J.A.R.D.; Silva, W.C.D.; Belo, T.S.; Sousa, C.E.L.; Santos, M.R.P.D.; Neves, K.A.L.; Rodrigues, T.C.G.C.; Camargo-Júnior, R.N.C.; Lourenço-Júnior, J.B. A Review of the Rumen Microbiota and the Different Molecular Techniques Used to Identify Microorganisms Found in the Rumen Fluid of Ruminants. Animals 2024, 14, 1448. [Google Scholar] [CrossRef]
- Liu, J.; Bian, G.; Sun, D.; Zhu, W.; Mao, S. Starter feeding supplementation alters colonic mucosal bacterial communities and modulates mucosal immune homeostasis in newborn lambs. Front. Microbiol. 2017, 8, 429. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; MaiTiSaiYiDi, T.; Yang, H.; Yang, K. Effect of dietary gossypol supplement on fermentation characteristics and bacterial diversity in the rumen of sheep. PLoS ONE 2020, 15, e0234378. [Google Scholar] [CrossRef]
- Qi, R.; Zhang, Z.; Wang, J.; Qiu, X.; Wang, Q.; Yang, F.; Huang, J.; Liu, Z. Introduction of Colonic and Fecal Microbiota from an Adult Pig Differently Affects the Growth, Gut Health, Intestinal Microbiota and Blood Metabolome of Newborn Piglets. Front. Microbiol. 2021, 12, 623673. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, L.; Sun, X.; Wan, X.; Sun, G.; Jiang, R.; Li, W.; Tian, Y.; Liu, X.; Kang, X. Characteristics of the fecal microbiota of high- and low-yield hens and effects of fecal microbiota transplantation on egg production performance. Res. Vet. Sci. 2020, 129, 164–173. [Google Scholar] [CrossRef]
- Nanthini, A.R.; Valli, C.; Radhakrishnan, L.; Balasubramanyam, D.; Mangalagowri, A.V. Lyophilized rumen fluid as a ruminal fermentation modifier in high grain-fed acidotic goats. Trop. Anim. Health Prod. 2024, 56, 169. [Google Scholar] [CrossRef]
- Li, Y.Q.; Zhao, H.W.; Zheng, J.M.; Wang, Y.Z. The protective effect of fecal microbiota transplantation on the intestinal mucosal barrier in nonalcoholic fatty liver disease rats. Chin. J. Microecol. 2020, 32, 893–896. [Google Scholar] [CrossRef]
- Yang, F.; Li, L.; Yang, R.; Wei, M.; Sheng, Y.; Ji, L. Identification of serum microRNAs as potential toxicological biomarkers for toosendanin-induced liver injury in mice. Phytomedicine 2019, 58, 152867. [Google Scholar] [CrossRef]
- Giannini, E.; Botta, F.; Fasoli, A.; Ceppa, P.; Risso, D.; Lantieri, P.B.; Celle, G.; Testa, R. Progressive liver functional impairment is associated with an increase in AST/ALT ratio. Dig. Dis. Sci. 1999, 44, 1249–1253. [Google Scholar] [CrossRef]
- Wu, S.; Ye, D.Q. Implementation of Ridit analysis for multiple unidirectional ordered data groups in SPSS. Chin. J. Health Stat. 2006, 6, 554. [Google Scholar] [CrossRef]
- Domrazek, K.; Konieczny, P.; Majka, M.; Czopowicz, M.; Jurka, P. The Impact of Microorganisms on Canine Semen Quality. Animals 2024, 14, 1267. [Google Scholar] [CrossRef]
- Xue, S.P.; Liang, D.C.; Fei, R.R.; Chen, X.M.; Ye, S.J.; Liu, Y.; Wu, Y.W.; You, M.M.; Guo, X.Y. Subcellular site of antispermatogenic effect of gossypol and its possible molecular mechanism of action. Sci. Sin. B. 1983, 26, 614–633. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, L.; Wei, D.; Li, X.; Xu, L.; Wei, L. Enzymatic kinetic properties of the lactate dehydrogenase isoenzyme C₄ of the plateau pika (Ochotona curzoniae). Int. J. Mol. Sci. 2016, 17, 39. [Google Scholar] [CrossRef]
- Li, J.; Yin, L.; Wang, L.; Li, J.; Huang, P.; Yang, H.; Yin, Y. Effects of vitamin B6 on growth, diar-rhea rate, intestinal morphology, function, and inflammatory factors expression in a high-protein diet fed to weaned piglets. J. Anim. Sci. 2019, 97, 4865–4874. [Google Scholar] [CrossRef]
- Kubitza, D.; Becka, M.; Zuehlsdorf, M.; Mueck, W. Body weight has limited influence on the safety, tolerability, pharmacokinetics, or pharmacodynamics of rivaroxaban (BAY 59-7939) in healthy subjects. J. Clin. Pharmacol. 2007, 47, 218–226. [Google Scholar] [CrossRef]
- Gilani, G.S.; Cockell, K.A.; Sepehr, E. Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J. AOAC Int. 2005, 88, 967–987. [Google Scholar] [CrossRef]
- Tang, J.; He, L.; Wang, P.; He, X.; Yi, H.; Cheng, X.; Ren, C.; Wang, J.; Wang, Q.; Zhang, Z. Research progress on the role of intestinal microbes in healthy production of ruminants. China Anim. Husb. Vet. Med. 2024, 51, 1466–1479. [Google Scholar] [CrossRef]
- Speakman, J.R.; Chi, Q.; Ołdakowski, Ł.; Fu, H.; Fletcher, Q.E.; Hambly, C.; Togo, J.; Liu, X.; Piertney, S.B.; Wang, X.; et al. Surviving winter on the Qinghai-Tibetan plateau: Pikas suppress energy demands and exploit yak feces to survive winter. Proc. Natl. Acad. Sci. USA 2021, 118, e2100707118. [Google Scholar] [CrossRef]
- Ji, H.; Wang, H.; Zhou, Y.; Qian, S. Effects of rumen-derived probiotics on the growth and physiological characteristics of mice. China Anim. Husb. Vet. Med. 2018, 45, 2463–2470. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, D.; Yu, B.; He, J.; Yu, J.; Luo, J.; Mao, X.; Huang, Z.; Zheng, P.; Luo, Y. Short-term adding high-level oat β-glucan, microcrystalline cellulose and their mixture in diets affects growth performance, organ indexes and fecal bacterial community structure of mice. Chin. J. Anim. Nutr. 2017, 29, 9. [Google Scholar] [CrossRef]
- European Food Safety Authority. Gossypol as undesirable substance in animal feed. EFSA J. 2008, 7, 908. [Google Scholar] [CrossRef]
- Henry, M.H.; Pesti, G.M.; Brown, T.P. Pathology and histopathology of gossypol toxicity in broiler chicks. Avian Dis. 2001, 45, 598–604. [Google Scholar] [CrossRef]
- Zhang, N.; Li, J.; Wang, L.; Wei, Y. Effects of Bacillus amyloliquefaciens fsznc-06 isolated from goats on growth and immune function of mice. Chin. J. Anim. Nutr. 2020, 32, 2861–2868. [Google Scholar] [CrossRef]
- Medrano, F.J.; Andreu, J.M. Binding of gossypol to purified tubulin and inhibition of its assembly into microtubules. Eur. J. Biochem. 1986, 158, 63–69. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, B.; Luo, H.; Zhang, X.; Wang, B. Role of Gut-Liver Axis in Animal Nutritional Metabolism and Immunity. Biotechnol. Bull. 2022, 38, 128–135. [Google Scholar] [CrossRef]
- Zhang, C.; Xiong, B.; Chen, L.; Ge, W.; Yin, S.; Feng, Y.; Sun, Z.; Sun, Q.; Zhao, Y.; Shen, W.; et al. Rescue of male fertility following faecal microbiota transplantation from alginate oligosaccharide-dosed mice. Gut 2021, 70, 2213–2215. [Google Scholar] [CrossRef] [PubMed]
- Winzell, M.S.; Svensson, H.; Arner, P.; Ahrén, B.; Holm, C. The expression of hormone-sensitive lipase in clonal beta-cells and rat islets is induced by long-term exposure to high glucose. Diabetes 2001, 50, 2225–2230. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, G.; Liu, Z.; Wu, P.; Yu, Z.; Wang, J. Repeated inoculation with fresh rumen fluid before or during weaning modulates the microbiota composition and co-occurrence of the rumen and colon of lambs. BMC Microbiol. 2020, 20, 29. [Google Scholar] [CrossRef]
- DePeters, E.J.; George, L.W. Rumen transfaunation. Immunol. Lett. 2014, 162 Pt A, 69–76. [Google Scholar] [CrossRef]
- Yin, X.; Ji, S.; Duan, C.; Ju, S.; Zhang, Y.; Yan, H.; Liu, Y. Rumen fluid transplantation affects growth performance of weaned lambs by altering gastrointestinal microbiota, immune function and feed digestibility. Animal 2021, 15, 100076. [Google Scholar] [CrossRef]
Group | Treatment | Description |
---|---|---|
CK | Fed a gossypol-free diet; oral administration of CMC-Na solution | Blank control group |
FG | Fed a gossypol diet (CM diet, FG = 100.06 ± 0.42 mg/kg); oral administration of CMC-Na solution | Negative control group |
FMT | Fed a gossypol diet (FG = 100.06 ± 0.42 mg/kg); oral administration of FMT oral solution | Rumen microbiota transplant group |
Treatments | n | Injury Level | Score | Ridit-Value | ||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | ||||
CK | 10 | 8 | 1 | 1 | 0 | 0 | 3 | 7.50 c |
FG | 10 | 0 | 0 | 3 | 5 | 2 | 29 | 24.20 a |
FMT | 10 | 2 | 3 | 4 | 1 | 0 | 14 | 14.80 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Lu, W.; Liu, H.; Shen, L.; Zhu, M.; Zhou, T.; Zhang, L.; Xiao, D.; Chen, L. Rumen Microbiota Transplantation Alleviates Gossypol Diet-Induced Reproductive, Liver, and Intestinal Damage in Male Mice. Animals 2024, 14, 2206. https://doi.org/10.3390/ani14152206
Zhang C, Lu W, Liu H, Shen L, Zhu M, Zhou T, Zhang L, Xiao D, Chen L. Rumen Microbiota Transplantation Alleviates Gossypol Diet-Induced Reproductive, Liver, and Intestinal Damage in Male Mice. Animals. 2024; 14(15):2206. https://doi.org/10.3390/ani14152206
Chicago/Turabian StyleZhang, Chen, Wenguang Lu, Huiru Liu, Lingwei Shen, Mengfan Zhu, Tangtang Zhou, Ling Zhang, Dingfu Xiao, and Lijuan Chen. 2024. "Rumen Microbiota Transplantation Alleviates Gossypol Diet-Induced Reproductive, Liver, and Intestinal Damage in Male Mice" Animals 14, no. 15: 2206. https://doi.org/10.3390/ani14152206
APA StyleZhang, C., Lu, W., Liu, H., Shen, L., Zhu, M., Zhou, T., Zhang, L., Xiao, D., & Chen, L. (2024). Rumen Microbiota Transplantation Alleviates Gossypol Diet-Induced Reproductive, Liver, and Intestinal Damage in Male Mice. Animals, 14(15), 2206. https://doi.org/10.3390/ani14152206