Arabidopsis Restricts Sugar Loss to a Colonizing Trichoderma harzianum Strain by Downregulating SWEET11 and -12 and Upregulation of SUC1 and SWEET2 in the Roots
<p><span class="html-italic">Arabidopsis</span> and <span class="html-italic">Trichoderma</span> growth performance on NBRIP medium containing 0.004% (<span class="html-italic">w</span>/<span class="html-italic">v</span>) bromocresol purple as pH indicator (bright yellow indicates pH 5.2 and deep purple pH 7.0). (<b>A</b>) <span class="html-italic">Arabidopsis</span> seedlings started to die 10 days after cultivation on NBRIY medium. (<b>B</b>) Pi solubilization by <span class="html-italic">Trichoderma</span> 10 days after cultivation. (<b>C</b>) pH change induced by the fungus in insoluble Pi liquid medium. Left: directly after inoculation; right: 10 days later. (<b>D</b>) WGA Alexa 488 fluorescence staining of fungal hyphae after 10 days of coculture with <span class="html-italic">Arabidopsis</span> roots on NBRIP medium. Bright filed confocal (left) and dissection (right) images. (<b>E</b>) Cocultivation of <span class="html-italic">Arabidopsis</span> and <span class="html-italic">Trichoderma</span> for 5 days (top) and 10 days (bottom).</p> "> Figure 2
<p>(<b>A</b>) WGA Alexa 488 fluorescence staining of <span class="html-italic">Trichoderma</span> hyphae at the stem/leaf junction of <span class="html-italic">Arabidopsis</span> seedlings, five days after cocultivation and transfer to NBRIP medium. (<b>B</b>) At the same time, after transfer to the medium with soluble phosphate, hyphae can only be detected in the roots, but never in the stems or leaves. Bright filed confocal (left) and dissection (right) images of roots. For experimental details, cf. Methods and Materials.</p> "> Figure 3
<p>Colonization of <span class="html-italic">Arabidopsis</span> roots (<b>black</b>) and shoots (<b>grey</b>) by <span class="html-italic">Trichoderma</span> between 24 and 96 h after cocultivation on NBRIP medium. The amount of the fungus in the plant tissue was determined as the mRNA ratio (<span class="html-italic">Thtef1/AtGAPC2</span>) (cf. Methods and Materials). For better comparison, the value for the colonization of the roots 24 h after the onset of the experiment was set as 1.0, and all other values are expressed relative to this. Data are based on 3 independent experiments, bars represent SEs.</p> "> Figure 4
<p>Maximum quantum yield of the photosystem II (Fv/Fm) after the transfer of <span class="html-italic">Arabidopsis</span> seedlings to NBRIP medium. At the time point of transfer to the NBRIP medium, the seedlings were either exposed to <span class="html-italic">Trichoderma</span> (+) or mock-treated (−). Data are based on 5 independent experiments, bars represent SEs. * indicates significant difference of <span class="html-italic">Trichoderma</span>-treated vs. non-treated roots (* <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.005).</p> "> Figure 5
<p>Relative mRNA levels for the Pi transporters Pht1;1 and Pht1;4, as well as the Pi starvation regulators PHO1, WRKY6, and PHR in the roots of <span class="html-italic">Arabidopsis</span> seedlings after transfer to NBRIP medium for 48 h or 96 h. Upon transfer to the NBRIP medium, the seedlings were either cocultured with <span class="html-italic">Trichoderma</span> (<b>grey</b>) or mock-treated (<b>white</b>). The mRNA levels are expressed relative to the levels in the roots at the time point of transfer to NBRIP medium (t = 0 h). Based on 3 independent experiments; bars represent SEs. * indicates significant difference of non-treated vs. <span class="html-italic">Trichoderma</span>-treated roots (** <span class="html-italic">p</span> < 0.005; *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 6
<p>Relative mRNA levels for the defense-related proteins PDF1.2, PR1, and ZEP in the roots of <span class="html-italic">Arabidopsis</span> seedlings after transfer to NBRIP medium for 48 h or 96 h. Upon transfer to the NBRIP medium, the seedlings were either cocultured with <span class="html-italic">Trichoderma</span> (<b>grey</b>) or mock-treated (<b>white</b>). The mRNA levels are expressed relative to the levels in the roots at the time point of transfer to NBRIP medium (t = 0 h). Based on 3 independent experiments; bars represent SEs. No significant differences between the values of <span class="html-italic">Trichoderma</span>-treated vs. non-treated roots.</p> "> Figure 7
<p>Relative mRNA levels for sugar transporter genes in the roots of <span class="html-italic">Arabidopsis</span> seedlings after transfer to NBRIP medium for 48 h or 96 h. Upon transfer to the NBRIP medium, the seedlings were either cocultured with <span class="html-italic">Trichoderma</span> (grey) or mock-treated (white). The mRNA levels are expressed relative to the levels in the roots at the time point of transfer to NBRIP medium (t = 0 h). Based on 3 independent experiments; bars represent SEs. * indicates significant difference of <span class="html-italic">Trichoderma</span>-treated vs. non-treated roots (* <span class="html-italic">p</span> < 0.05; *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 8
<p>A model describing the regulation of sugar transporter genes in stress-exposed <span class="html-italic">Arabidopsis</span> roots in response to <span class="html-italic">Trichoderma</span> colonization. Upon increasing stress, the initial beneficial symbiotic interaction of <span class="html-italic">Trichoderma</span> with <span class="html-italic">Arabidopsis</span> roots shifts to an interaction with a saprophytic lifestyle of the fungus and a higher demand for sugar from the host. The endophytic fungus takes the sucrose mostly from the root apoplast, or from the rhizophere (not shown) after secretion of the roots. The host responds to it by downregulating <span class="html-italic">SWEET11</span> and -<span class="html-italic">12</span>, which results in less unloading of sucrose from the phloem into the apoplastic space, and thus restriction of hyphal growth due to sugar shortage. Restricted sucrose availability in the apoplast stimulates uptake into the mesophyll root cells and upregulation of <span class="html-italic">SUC1</span> expression to promote sucrose uptake from the apoplast into the mesophyll root cells. Furthermore, the shortage of sucrose in the root cells stimulates <span class="html-italic">SWEET2</span> expression. <span class="html-italic">SWEET2</span> sequesters sucrose in the vacuole of the root cells, to further reduce sugar loss to the microbe.</p> ">
Abstract
:1. Introduction
2. Methods and Materials
2.1. Growth Conditions of Plants and Fungus
2.2. Trichoderma-Arabidopsis Co-Cultivation
2.3. RNA Extraction and cDNA Synthesis
2.4. Real-Time PCR
2.5. Fluorescence Microscopy
2.6. Measurement of Photosynthesis Parameters
2.7. Acid Phosphatase (AcP) Assay
2.8. Quantitative Estimation of Soluble Pi
3. Results
3.1. Pi Limitation Promotes Plant Colonisation
3.2. Trichoderma Effects on the Pi Starvation Response in Roots
3.3. Fungal Colonization Does Not Activate Defense Gene Expression
3.4. Root Colonization Alters Expression of SUC1, SWEET2, -11 and -12 in the Roots
4. Discussion
Trichoderma Manipulates Sugar Transport in Roots
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Y.; Wang, M.; Mur, L.A.J.; Shen, Q.; Guo, S. The cross-kingdom roles of mineral nutrient transporters in plant-microbe relations. Physiol. Plant. 2021, 171, 771–784. [Google Scholar] [CrossRef] [PubMed]
- Durand, M.; Mainson, D.; Porcheron, B.; Maurousset, L.; Lemoine, R.; Pourtau, N. Carbon source–sink relationship in Arabidopsis thaliana: The role of sucrose transporters. Planta 2018, 247, 587–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kariman, K.; Barker, S.J.; Tibbett, M. Structural plasticity in root-fungal symbioses: Diverse interactions lead to improved plant fitness. PeerJ 2018, 6, e6030. [Google Scholar] [CrossRef]
- Mandyam, K.G.; Jumpponen, A. Mutualism-parasitism paradigm synthesized from results of root-endophyte models. Front. Microbiol. 2015, 5, 776. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Shin, H.S.; Dewbre, G.R.; Harrison, M.J. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J. 2004, 39, 629–642. [Google Scholar] [CrossRef]
- Gu, M.; Chen, A.; Sun, S.; Xu, G. Complex Regulation of Plant Phosphate Transporters and the Gap between Molecular Mechanisms and Practical Application: What Is Missing? Mol. Plant 2016, 9, 396–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamburger, D.; Rezzonico, E.; Petétot, J.M.-C.; Somerville, C.; Poirier, Y. Identification and Characterization of the Arabidopsis PHO1 Gene Involved in Phosphate Loading to the Xylem. Plant Cell 2002, 14, 889–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-F.; Li, L.-Q.; Xu, Q.; Kong, Y.-H.; Wang, H.; Wu, W.-H. The WRKY6 Transcription Factor Modulates PHOSPHATE1 Expression in Response to Low Pi Stress in Arabidopsis. Plant Cell 2009, 21, 3554–3566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio, V.; Linhares, F.; Solano, R.; Martín, A.C.; Iglesias, J.; Leyva, A.; Paz-Ares, J. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev. 2001, 15, 2122–2133. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Jiao, F.; Wu, Z.; Li, Y.; Wang, X.; He, X.; Zhong, W.; Wu, P. OsPHR2 Is Involved in Phosphate-Starvation Signaling and Excessive Phosphate Accumulation in Shoots of Plants. Plant Physiol. 2008, 146, 1673–1686. [Google Scholar] [CrossRef] [Green Version]
- Bustos, R.; Castrillo, G.; Linhares, F.; Puga, M.I.; Rubio, V.; Pérez-Pérez, J.; Solano, R.; Leyva, A.; Paz-Ares, J. A Central Regulatory System Largely Controls Transcriptional Activation and Repression Responses to Phosphate Starvation in Arabidopsis. PLoS Genet. 2010, 6, e1001102. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.N.; Ruan, W.Y.; Li, C.Y.; Huang, F.L.; Zeng, M.; Liu, Y.Y.; Yu, X.M.; Ding, X.M.; Wu, Y.R.; Wu, Z.C.; et al. Integrative comparison of the role of the PHR1 subfamily in phosphate signaling and homeostasis in rice. Plant Physiol. 2015, 168, 1762–1776. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Nagarajan, V.K.; Raghothama, K.G. Transcriptional regulation of phosphate acquisition by higher plants. Cell. Mol. Life Sci. 2012, 69, 3207–3224. [Google Scholar] [CrossRef]
- Castrillo, G.; Teixeira, P.J.; Paredes, S.H.; Law, T.F.; De Lorenzo, L.; Feltcher, M.E.; Finkel, O.M.; Breakfield, N.W.; Mieczkowski, P.; Jones, P.M.C.D.; et al. Root microbiota drive direct integration of phosphate stress and immunity. Nature 2017, 543, 513–518. [Google Scholar] [CrossRef]
- Hermans, C.; Hammond, J.P.; White, P.J.; Verbruggen, N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 2006, 11, 610–617. [Google Scholar] [CrossRef]
- Hennion, N.; Durand, M.; Vriet, C.; Doidy, J.; Maurousset, L.; Lemoine, R.; Pourtau, N. Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere. Physiol. Plant. 2019, 165, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Eom, J.-S.; Chen, L.-Q.; Sosso, D.; Julius, B.T.; Lin, I.; Qu, X.-Q.; Braun, D.M.; Frommer, W.B. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr. Opin. Plant Biol. 2015, 25, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Milne, R.J.; Perroux, J.M.; Rae, A.L.; Reinders, A.; Ward, J.M.; Offler, C.E.; Patrick, J.W.; Grof, C.P. Sucrose Transporter Localization and Function in Phloem Unloading in Developing Stems. Plant Physiol. 2017, 173, 1330–1341. [Google Scholar] [CrossRef]
- Cheng, X.; Wen, J.; Tadege, M.; Ratet, P.; Mysore, K.S. Reverse Genetics in Medicago truncatula Using Tnt1 Insertion Mutants. Methods Mol. Biol. 2011, 678, 179–190. [Google Scholar] [CrossRef]
- Tseng, Y.-H.; Rouina, H.; Groten, K.; Rajani, P.; Furch, A.C.U.; Reichelt, M.; Baldwin, I.T.; Nataraja, K.N.; Shaanker, R.U.; Oelmüller, R. An Endophytic Trichoderma Strain Promotes Growth of Its Hosts and Defends Against Pathogen Attack. Front. Plant Sci. 2020, 11, 573670. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Peskan-Berghofer, T.; Shahollari, B.; Giong, P.H.; Hehl, S.; Markert, C.; Blanke, V.; Kost, G.; Varma, A.; Oelmuller, R. Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol. Plant. 2004, 122, 465–477. [Google Scholar] [CrossRef]
- Wagner, R.; Dietzel, L.; Braeutigam, K.; Fischer, W.; Pfannschmidt, T. The long-term response to fluctuating light quality is an important and distinct light acclimation mechanism that supports survival of Arabidopsis thaliana under low light conditions. Planta 2008, 228, 573–587. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Tabatabai, M.; Bremner, J. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Ueda, Y.; Sakuraba, Y.; Yanagisawa, S. Environmental Control of Phosphorus Acquisition: A Piece of the Molecular Framework Underlying Nutritional Homeostasis. Plant Cell Physiol. 2021. online ahead of print. [Google Scholar] [CrossRef]
- Karandashov, V.; Nagy, R.; Wegmuller, S.; Amrhein, N.; Bucher, M. Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. USA 2004, 101, 6285–6290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grelet, G.-A.; Ba, R.; Goeke, D.F.; Houliston, G.J.; Taylor, A.F.S.; Durall, D.M. A plant growth-promoting symbiosis between Mycena galopus and Vaccinium corymbosum seedlings. Mycorrhiza 2017, 27, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.R.; Finlay, R.D.; Stenlid, J.; Vasaitis, R.; Menkis, A. Growing evidence for facultative biotrophy in saprotrophic fungi: Data from microcosm tests with 201 species of wood-decay basidiomycetes. New Phytol. 2017, 215, 747–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selosse, M.-A.; Dubois, M.-P.; Alvarez, N. Do Sebacinales commonly associate with plant roots as endophytes? Mycol. Res. 2009, 113, 1062–1069. [Google Scholar] [CrossRef] [Green Version]
- Baldrian, P.; Kohout, P. Interactions of saprotrophic fungi with tree roots: Can we observe the emergence of novel ectomycorrhizal fungi? New Phytol. 2017, 215, 511–513. [Google Scholar] [CrossRef] [Green Version]
- Schadt, C.; Martin, A.P.; Lipson, D.A.; Schmidt, S.K. Seasonal Dynamics of Previously Unknown Fungal Lineages in Tundra Soils. Science 2003, 301, 1359–1361. [Google Scholar] [CrossRef] [Green Version]
- Rosling, A.; Cox, F.; Cruz-Martinez, K.; Ihrmark, K.; Grelet, G.-A.; Lindahl, B.D.; Menkis, A.; James, T.Y. Archaeorhizomycetes: Unearthing an Ancient Class of Ubiquitous Soil Fungi. Science 2011, 333, 876–879. [Google Scholar] [CrossRef]
- Hacquard, S.; Kracher, B.; Hiruma, K.; Münch, P.C.; Garrido-Oter, R.; Thon, M.R.; Weimann, A.; Damm, U.; Dallery, J.F.; Hainaut, M.; et al. Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nat. Commun. 2016, 7, 11362. [Google Scholar] [CrossRef] [Green Version]
- Braun, D.M.; Wang, L.; Ruan, Y.-L. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J. Exp. Bot. 2014, 65, 1713–1735. [Google Scholar] [CrossRef] [Green Version]
- Stadler, R.; Lauterbach, C.; Sauer, N. Cell-to-Cell Movement of Green Fluorescent Protein Reveals Post-Phloem Transport in the Outer Integument and Identifies Symplastic Domains in Arabidopsis Seeds and Embryos. Plant Physiol. 2005, 139, 701–712. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Baxter, I.R.; Lahner, B.; Reinders, A.; Salt, D.E.; Ward, J.M. Arabidopsis NPCC6/NaKR1 Is a Phloem Mobile Metal Binding Protein Necessary for Phloem Function and Root Meristem Maintenance. Plant Cell 2010, 22, 3963–3979. [Google Scholar] [CrossRef] [Green Version]
- Ross-Elliott, T.J.; Jensen, K.H.; Haaning, K.S.; Wager, B.M.; Knoblauch, J.; Howell, A.H.; Mullendore, D.L.; Monteith, A.G.; Paultre, D.; Yan, D.; et al. Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle. eLife 2017, 6, e24125. [Google Scholar] [CrossRef] [Green Version]
- Durand, M.; Porcheron, B.; Hennion, N.; Maurousset, L.; Lemoine, R.; Pourtau, N. Water Deficit Enhances C Export to the Roots in Arabidopsis thaliana Plants with Contribution of Sucrose Transporters in Both Shoot and Roots. Plant Physiol. 2016, 170, 1460–1479. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, X.; Xuan, Y.; Jiang, J.; Wei, Y.; Piao, Z. Genome Wide Identification and Expression Profiling of SWEET Genes Family Reveals Its Role During Plasmodiophora brassicae-Induced Formation of Clubroot in Brassica rapa. Front. Plant Sci. 2018, 9, 207. [Google Scholar] [CrossRef] [PubMed]
- Walerowski, P.; Gündel, A.; Yahaya, N.; Truman, W.; Sobczak, M.; Olszak, M.; Rolfe, S.; Borisjuk, L.; Malinowski, R. Clubroot Disease Stimulates Early Steps of Phloem Differentiation and Recruits SWEET Sucrose Transporters within Developing Galls. Plant Cell 2018, 30, 3058–3073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kryvoruchko, I.S.; Sinharoy, S.; Torres-Jerez, I.; Sosso, D.; Pislariu, C.I.; Guan, D.; Murray, J.; Benedito, V.A.; Frommer, W.; Udvardi, M.K. MtSWEET11, a Nodule-Specific Sucrose Transporter of Medicago truncatula. Plant Physiol. 2016, 171, 554–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.-Q.; Hou, B.-H.; Lalonde, S.; Takanaga, H.; Hartung, M.L.; Qu, X.-Q.; Guo, W.-J.; Kim, J.-G.; Underwood, W.; Chaudhuri, B.; et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 2010, 468, 527–532. [Google Scholar] [CrossRef] [Green Version]
- Riesmeier, J.; Willmitzer, L.; Frommer, W. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 1992, 11, 4705–4713. [Google Scholar] [CrossRef]
- Sauer, N.; Stolz, J. SUC1 and SUC2: Two sucrose transporters from Arabidopsis thaliana; expression and characterization in baker’s yeast and identification of the histidine-tagged protein. Plant J. 1994, 6, 67–77. [Google Scholar] [CrossRef]
- Sivitz, A.B.; Reinders, A.; Johnson, M.E.; Krentz, A.D.; Grof, C.P.; Perroux, J.M.; Ward, J.M. Arabidopsis Sucrose Transporter AtSUC9. High-Affinity Transport Activity, Intragenic Control of Expression, and Early Flowering Mutant Phenotype. Plant Physiol. 2007, 143, 188–198. [Google Scholar] [CrossRef]
- Sivitz, A.B.; Reinders, A.; Ward, J.M. Arabidopsis Sucrose Transporter AtSUC1 Is Important for Pollen Germination and Sucrose-Induced Anthocyanin Accumulation. Plant Physiol. 2008, 147, 92–100. [Google Scholar] [CrossRef]
- Lasin, P.; Weise, A.; Reinders, A.; Ward, J.M. Arabidopsis Sucrose Transporter AtSuc1 introns act as strong enhancers of expression. Plant Cell Physiol. 2020, 61, 1054–1063. [Google Scholar] [CrossRef]
- Desrut, A.; Moumen, B.; Thibault, F.; Le Hir, R.; Coutos-Thévenot, P.; Vriet, C. Beneficial rhizobacteria Pseudomonas simiae WCS417 induce major transcriptional changes in plant sugar transport. J. Exp. Bot. 2020, 71, 7301–7315. [Google Scholar] [CrossRef]
- Ferrari, S.; Galletti, R.; Denoux, C.; De Lorenzo, G.; Ausubel, F.M.; Dewdney, J. Resistance to Botrytis cinerea Induced in Arabidopsis by Elicitors Is Independent of Salicylic Acid, Ethylene, or Jasmonate Signaling but Requires PHYTOALEXIN DEFICIENT3. Plant Physiol. 2007, 144, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Antony, G.; Zhou, J.; Huang, S.; Li, T.; Liu, B.; White, F.; Yang, B. Rice xa13 Recessive Resistance to Bacterial Blight Is Defeated by Induction of the Disease Susceptibility Gene Os-11N3. Plant Cell 2018, 22, 3864–3876. [Google Scholar] [CrossRef] [Green Version]
- Vargas, W.A.; Crutcher, F.K.; Kenerley, C.M. Functional characterization of a plant-like sucrose transporter from the beneficial fungus Trichoderma virens. Regulation of the symbiotic association with plants by sucrose metabolism inside the fungal cells. New Phytol. 2010, 189, 777–789. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rouina, H.; Tseng, Y.-H.; Nataraja, K.N.; Uma Shaanker, R.; Oelmüller, R. Arabidopsis Restricts Sugar Loss to a Colonizing Trichoderma harzianum Strain by Downregulating SWEET11 and -12 and Upregulation of SUC1 and SWEET2 in the Roots. Microorganisms 2021, 9, 1246. https://doi.org/10.3390/microorganisms9061246
Rouina H, Tseng Y-H, Nataraja KN, Uma Shaanker R, Oelmüller R. Arabidopsis Restricts Sugar Loss to a Colonizing Trichoderma harzianum Strain by Downregulating SWEET11 and -12 and Upregulation of SUC1 and SWEET2 in the Roots. Microorganisms. 2021; 9(6):1246. https://doi.org/10.3390/microorganisms9061246
Chicago/Turabian StyleRouina, Hamid, Yu-Heng Tseng, Karaba N. Nataraja, Ramanan Uma Shaanker, and Ralf Oelmüller. 2021. "Arabidopsis Restricts Sugar Loss to a Colonizing Trichoderma harzianum Strain by Downregulating SWEET11 and -12 and Upregulation of SUC1 and SWEET2 in the Roots" Microorganisms 9, no. 6: 1246. https://doi.org/10.3390/microorganisms9061246
APA StyleRouina, H., Tseng, Y. -H., Nataraja, K. N., Uma Shaanker, R., & Oelmüller, R. (2021). Arabidopsis Restricts Sugar Loss to a Colonizing Trichoderma harzianum Strain by Downregulating SWEET11 and -12 and Upregulation of SUC1 and SWEET2 in the Roots. Microorganisms, 9(6), 1246. https://doi.org/10.3390/microorganisms9061246