Import of Entamoeba histolytica Mitosomal ATP Sulfurylase Relies on Internal Targeting Sequences
<p>(<b>a</b>) Representative immunofluorescence assay (IFA) micrographs of wildtype C-terminal hemagluttinin (HA)-tagged <span class="html-italic">Eh</span>AS (top) and <span class="html-italic">Dv</span>AS (bottom) expressed in <span class="html-italic">E. histolytica</span> trophozoites, double stained with anti-HA antibody (green) and anti-APSK antiserum (red), respectively. Scale bar, 5 µm and DIC, differential interference contrast; (<b>b</b>) Immunoblotting profiles of the total lysate, cytosol, and organelle fractions of <span class="html-italic">Dv</span>AS-HA and <span class="html-italic">Eh</span>AS-HA, respectively. Membranes were stained with anti-HA antibody (top panel), anti-APSK (organelle marker, middle panel), and anti-CS1 antisera (cytosol marker, bottom panel), respectively.</p> "> Figure 2
<p>(<b>a</b>) Three-dimensional structure of <span class="html-italic">Eh</span>AS based on the alignment with AS from <span class="html-italic">Penicillium chrysogenum</span> were prepared with UCSF Chimera [<a href="#B35-microorganisms-08-01229" class="html-bibr">35</a>]. Ribbons depicting the three blocks A, B, and C are colored in red, blue, and green, respectively; (<b>b</b>) Amino acid sequence alignment of <span class="html-italic">Eh</span>AS and <span class="html-italic">Dv</span>AS using Clustal W [<a href="#B36-microorganisms-08-01229" class="html-bibr">36</a>] with the default parameters. The three major blocks A, B, and C are depicted in red, blue, and green text, respectively. Specific regions in block A and B are highlighted in yellow. <span class="html-italic">Dv</span>AS16–37 together with the corresponding <span class="html-italic">Eh</span>AS sequence is denoted with a dotted box to differentiate it from the overlap with <span class="html-italic">Dv</span>AS1–37; (<b>c</b>) Representative immunofluorescence assay (IFA) micrographs of chimeric <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>A)-HA, <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>B)-HA, <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>C)-HA, <span class="html-italic">Dv</span>AS(<span class="html-italic">Eh</span>A)-HA, <span class="html-italic">Dv</span>AS(<span class="html-italic">Eh</span>B)-HA, and <span class="html-italic">Dv</span>AS(<span class="html-italic">Eh</span>C)-HA expressed in <span class="html-italic">E. histolytica</span> trophozoites, double stained with anti-HA antibody (green) and anti-APSK antiserum (red) respectively. Scale bar, 5 µm; (<b>d</b>) Immunoblotting profiles of the total lysate, cytosol, and organelle fractions of chimeric <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>A)-HA, <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>B)-HA, and <span class="html-italic">Eh</span>AS(<span class="html-italic">DvC</span>)-HA, respectively. Membranes were stained with anti-HA antibody (top panel), anti-APSK (organelle marker, middle panel), and anti-CS1 antisera (cytosol marker, bottom panel), respectively.</p> "> Figure 2 Cont.
<p>(<b>a</b>) Three-dimensional structure of <span class="html-italic">Eh</span>AS based on the alignment with AS from <span class="html-italic">Penicillium chrysogenum</span> were prepared with UCSF Chimera [<a href="#B35-microorganisms-08-01229" class="html-bibr">35</a>]. Ribbons depicting the three blocks A, B, and C are colored in red, blue, and green, respectively; (<b>b</b>) Amino acid sequence alignment of <span class="html-italic">Eh</span>AS and <span class="html-italic">Dv</span>AS using Clustal W [<a href="#B36-microorganisms-08-01229" class="html-bibr">36</a>] with the default parameters. The three major blocks A, B, and C are depicted in red, blue, and green text, respectively. Specific regions in block A and B are highlighted in yellow. <span class="html-italic">Dv</span>AS16–37 together with the corresponding <span class="html-italic">Eh</span>AS sequence is denoted with a dotted box to differentiate it from the overlap with <span class="html-italic">Dv</span>AS1–37; (<b>c</b>) Representative immunofluorescence assay (IFA) micrographs of chimeric <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>A)-HA, <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>B)-HA, <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>C)-HA, <span class="html-italic">Dv</span>AS(<span class="html-italic">Eh</span>A)-HA, <span class="html-italic">Dv</span>AS(<span class="html-italic">Eh</span>B)-HA, and <span class="html-italic">Dv</span>AS(<span class="html-italic">Eh</span>C)-HA expressed in <span class="html-italic">E. histolytica</span> trophozoites, double stained with anti-HA antibody (green) and anti-APSK antiserum (red) respectively. Scale bar, 5 µm; (<b>d</b>) Immunoblotting profiles of the total lysate, cytosol, and organelle fractions of chimeric <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>A)-HA, <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>B)-HA, and <span class="html-italic">Eh</span>AS(<span class="html-italic">DvC</span>)-HA, respectively. Membranes were stained with anti-HA antibody (top panel), anti-APSK (organelle marker, middle panel), and anti-CS1 antisera (cytosol marker, bottom panel), respectively.</p> "> Figure 3
<p>(<b>a</b>) Representative immunofluorescence assay micrographs of chimeric <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>1–37)-HA, <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>16–37)-HA, <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>42–47)-HA, <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>64–73)-HA, <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>125–139)-HA, <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>165–174)-HA, <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>182–206)-HA, and <span class="html-italic">Dv</span>AS(<span class="html-italic">Eh</span>1–203)-HA expressed in <span class="html-italic">E. histolytica</span> trophozoites, double stained with anti-HA antibody (green) and anti-APSK antiserum (red), respectively. Scale bar, 5 µm; (<b>b</b>) Immunoblotting profiles of the total lysate, cytosol, and organelle fractions of <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>1–37)-HA, <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>16–37)-HA, <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>42–47)-HA, <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>64–73)-HA, <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>125–139)-HA, <span class="html-italic">Eh</span>AS(<span class="html-italic">Dv</span>165–174)-HA, and (<b>c</b>) <span class="html-italic">Dv</span>AS(<span class="html-italic">Eh</span>1–203)-HA, respectively. Membranes were stained with anti-HA antibody (top panel), anti-APSK (organelle marker, middle panel), and anti-CS1 antisera (cytosol marker, bottom panel), respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation of Entamoeba histolytica Cells
2.2. Plasmid Construction
2.3. Amoeba Transformation
2.4. Immunoflourescence Assay (IFA)
2.5. Subcellular Fractionation and Immunoblot Analysis
2.6. Structural Analysis
3. Results
3.1. Wildtype EhAS-HA Is Localized to Mitosomes
3.2. DvAS-HA Expressed in E. histolytica Was not Targeted to Mitosomes
3.3. Identification of EhAS Targeting Sequence by Constructing Chimeric Proteins with Swapped Blocks A, B, and C
Refinement of AS Targeting Sequence Analysis in Blocks A and B
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bykov, Y.S.; Rapaport, D.; Herrmann, J.M.; Schuldiner, M. Cytosolic Events in the Biogenesis of Mitochondrial Proteins. Trends Biochem. Sci. 2020, 45, 650–667. [Google Scholar] [CrossRef] [PubMed]
- Santos, H.J.; Makiuchi, T.; Nozaki, T. Reinventing an Organelle: The Reduced Mitochondrion in Parasitic Protists. Trends Parasitol. 2018, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Dolezal, P.; Likic, V.; Tachezy, J.; Lithgow, T. Evolution of the molecular machines for protein import into mitochondria. Science 2006, 313, 314–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukasawa, Y.; Tsuji, J.; Fu, S.-C.; Tomii, K.; Horton, P.; Imai, K. MitoFates: Improved Prediction of Mitochondrial Targeting Sequences and Their Cleavage Sites. Mol. Cell. Proteom. 2015, 14, 1113–1126. [Google Scholar] [CrossRef] [Green Version]
- Backes, S.; Hess, S.; Boos, F.; Woellhaf, M.W.; Gödel, S.; Jung, M.; Mühlhaus, T.; Herrmann, J.M. Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. J. Cell Biol. 2018, 217, 1369–1382. [Google Scholar] [CrossRef] [Green Version]
- Diekert, K.; Kispal, G.; Guiard, B.; Lill, R. An internal targeting signal directing proteins into the mitochondrial intermembrane space. Proc. Natl. Acad. Sci. USA 1999, 96, 11752–11757. [Google Scholar] [CrossRef] [Green Version]
- Fukasawa, Y.; Oda, T.; Tomii, K.; Imai, K. Origin and evolutionary alteration of the mitochondrial import system in eukaryotic lineages. Mol. Biol. Evol. 2017, 34, 1574–1586. [Google Scholar] [CrossRef] [Green Version]
- Baker, K.P.; Schaniel, A.; Vestweber, D.; Schatz, G. A yeast mitochondrial outer membrane protein essential for protein import and cell viability. Nature 1990, 348, 605–609. [Google Scholar] [CrossRef]
- Hill, K.; Model, K.; Ryan, M.T.; Dietmeier, K.; Martin, F.; Wagner, R.; Pfanner, N. Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 1998, 395, 516–521. [Google Scholar] [CrossRef]
- Araiso, Y.; Tsutsumi, A.; Qiu, J.; Imai, K.; Shiota, T.; Song, J.; Lindau, C.; Wenz, L.S.; Sakaue, H.; Yunoki, K.; et al. Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature 2019, 575, 395–401. [Google Scholar] [CrossRef]
- Moulin, C.; Caumont-Sarcos, A.; Ieva, R. Mitochondrial presequence import: Multiple regulatory knobs fine-tune mitochondrial biogenesis and homeostasis. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866, 930–944. [Google Scholar] [CrossRef] [PubMed]
- Makiuchi, T.; Nozaki, T. Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 2014, 100, 3–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiflett, A.M.; Johnson, P.J. Mitochondrion-Related Organelles in Eukaryotic Protists. Annu. Rev. Microbiol. 2010, 64, 409–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolezal, P.; Dagley, M.J.; Kono, M.; Wolynec, P.; Likic, V.A.; Foo, J.H.; Sedinova, M.; Tachezy, J.; Bachmann, A.; Bruchhaus, I.; et al. The Essentials of Protein Import in the Degenerate Mitochondrion of Entamoeba histolytica. PLoS Pathog. 2010, 6, e1000812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chacinska, A.; Koehler, C.M.; Milenkovic, D.; Lithgow, T.; Pfanner, N. Importing Mitochondrial Proteins: Machineries and Mechanisms. Cell 2009, 138, 628–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, M.; Mentel, M.; Hellemond, J.J.V.; Henze, K.; Woehle, C.; Gould, S.B.; Yu, R. Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes. Microbiol. Mol. Biol. Rev. 2012, 76, 444–495. [Google Scholar] [CrossRef] [Green Version]
- Mi-ichi, F.; Yousuf, M.A.; Nakada-Tsukui, K.; Nozaki, T. Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc. Natl. Acad. Sci. USA 2009, 106, 21731–21736. [Google Scholar] [CrossRef] [Green Version]
- Mi-ichi, F.; Miyamoto, T.; Yoshida, H. Uniqueness of Entamoeba sulfur metabolism: Sulfolipid metabolism that plays pleiotropic roles in the parasitic life cycle. Mol. Microbiol. 2017, 106, 479–491. [Google Scholar] [CrossRef] [Green Version]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef]
- Mi-ichi, F.; Miyamoto, T.; Takao, S.; Jeelani, G.; Hashimoto, T.; Hara, H.; Nozaki, T.; Yoshida, H. Entamoeba mitosomes play an important role in encystation by association with cholesteryl sulfate synthesis. Proc. Natl. Acad. Sci. USA 2015, 112, E2884–E2890. [Google Scholar] [CrossRef] [Green Version]
- Mi-ichi, F.; Makiuchi, T.; Furukawa, A.; Sato, D.; Nozaki, T. Sulfate activation in mitosomes plays an important role in the proliferation of Entamoeba histolytica. PLoS Negl. Trop. Dis. 2011, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Makiuchi, T.; Mi-ichi, F.; Nakada-Tsukui, K.; Nozaki, T. Novel TPR-containing subunit of TOM complex functions as cytosolic receptor for Entamoeba mitosomal transport. Sci. Rep. 2013, 3, 1129. [Google Scholar] [CrossRef] [Green Version]
- Nývltová, E.; Stairs, C.W.; Hrdý, I.; Rídl, J.; Mach, J.; Pačes, J.; Roger, A.J.; Tachezy, J. Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes. Mol. Biol. Evol. 2015, 32, 1039–1055. [Google Scholar] [CrossRef] [Green Version]
- Diamond, L.S.; Harlow, D.R.; Cunnick, C.C. A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Trans. R. Soc. Trop. Med. Hyg. 1978, 72, 431–432. [Google Scholar] [CrossRef]
- Santos, H.J.; Imai, K.; Makiuchi, T.; Tomii, K.; Horton, P.; Nozawa, A.; Ibrahim, M.; Tozawa, Y.; Nozaki, T. A novel mitosomal β-barrel outer membrane protein in Entamoeba. Sci. Rep. 2015, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakada-Tsukui, K.; Okada, H.; Mitra, B.N.; Nozaki, T. Phosphatidylinositol-phosphates mediate cytoskeletal reorganization during phagocytosis via a unique modular protein consisting of RhoGEF/DH and FYVE domains in the parasitic protozoon Entamoeba histolytica. Cell. Microbiol. 2009, 11, 1471–1491. [Google Scholar] [CrossRef]
- Nozaki, T.; Asai, T.; Sanchez, L.B.; Kobayashi, S.; Nakazawa, M.; Takeuchi, T. Characterization of the Gene Encoding Serine Acetyltransferase, a Regulated Enzyme of Cysteine Biosynthesis from the Protist Parasites Entamoeba histolytica and Entamoeba dispar. J. Biol. Chem. 1999, 274, 32445–32452. [Google Scholar] [CrossRef] [Green Version]
- Chiba, Y.; Kamikawa, R.; Nakada-Tsukui, K.; Saito-Nakano, Y.; Nozaki, T. Discovery of PPi-type Phosphoenolpyruvate Carboxykinase Genes in Eukaryotes and Bacteria. J. Biochem. 2015, 290, 23960–23970. [Google Scholar] [CrossRef] [Green Version]
- Santos, H.J.; Hanadate, Y.; Imai, K.; Nozaki, T. An Entamoeba-Specific Mitosomal Membrane Protein with Potential Association to the Golgi Apparatus. Genes 2019, 10, 367. [Google Scholar] [CrossRef] [Green Version]
- Tomii, K.; Santos, H.J.; Nozaki, T. Genome-wide analysis of known and potential tetraspanins in Entamoeba histolytica. Genes 2019, 10, 885. [Google Scholar] [CrossRef] [Green Version]
- Nozaki, T.; Asai, T.; Kobayashi, S.; Ikegami, F.; Noji, M.; Saito, K.; Takeuchi, T. Molecular cloning and characterization of the genes encoding two isoforms of cysteine synthase in the enteric protozoan parasite Entamoeba histolytica. Mol. Biochem. Parasitol. 1998, 97, 33–44. [Google Scholar] [CrossRef]
- Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci. 2016, 56, 5–6. [Google Scholar] [CrossRef] [Green Version]
- MacRae, I.J.; Segel, I.H.; Fisher, A.J. Crystal structure of ATP sulfurylase from Penicillium chrysogenum: Insights into the allosteric regulation of sulfate assimilation. Biochemistry 2001, 40, 6795–6804. [Google Scholar] [CrossRef] [PubMed]
- Tomii, K.; Akiyama, Y. FORTE: A profile-profile comparison tool for protein fold recognition. Bioinformatics 2004, 20, 594–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, P.; Barry, T.; Tovar, J. Entamoeba histolytica mitosomes: Organelles in search of a function. Exp. Parasitol. 2008, 118, 10–16. [Google Scholar] [CrossRef]
- Yousuf, M.A.; Mi-Ichi, F.; Nakada-Tsukui, K.; Nozaki, T. Localization and targeting of an unusual pyridine nucleotide transhydrogenase in Entamoeba histolytica. Eukaryot. Cell 2010, 9, 926–933. [Google Scholar] [CrossRef] [Green Version]
- Dolezal, P.; Smíd, O.; Rada, P.; Zubácová, Z.; Bursać, D.; Suták, R.; Nebesárová, J.; Lithgow, T.; Tachezy, J. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc. Natl. Acad. Sci. USA 2005, 102, 10924–10929. [Google Scholar] [CrossRef] [Green Version]
- Roger, A.J.; Svärd, S.G.; Tovar, J.; Clark, C.G.; Smith, M.W.; Gillin, F.D.; Sogin, M.L. A mitochondrial-like chaperonin 60 gene in Giardia lamblia: Evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc. Natl. Acad. Sci. USA 1998, 95, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Regoes, A.; Zourmpanou, D.; León-Avila, G.; Van Der Giezen, M.; Tovar, J.; Hehl, A.B. Protein import, replication, and inheritance of a vestigial mitochondrion. J. Biol. Chem. 2005, 280, 30557–30563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mentel, M.; Zimorski, V.; Haferkamp, P.; Martin, W.; Henze, K. Protein import into hydrogenosomes of Trichomonas vaginalis involves both N-terminal and internal targeting signals: A case study of thioredoxin reductases. Eukaryot. Cell 2008, 7, 1750–1757. [Google Scholar] [CrossRef] [Green Version]
- Zimorski, V.; Major, P.; Hoffmann, K.; Brás, X.P.; Martin, W.F.; Gould, S.B. The N-terminal sequences of four major hydrogenosomal proteins are not essential for import into hydrogenosomes of Trichomonas vaginalis. J. Eukaryot. Microbiol. 2013, 60, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.G.; Gould, S.B. The Role of Charge in Protein Targeting Evolution. Trends Cell Biol. 2016, 26, 894–905. [Google Scholar] [CrossRef] [PubMed]
- Šmíd, O.; Matušková, A.; Harris, S.R.; Kučera, T.; Novotný, M.; Horváthová, L.; Hrdý, I.; Kutějová, E.; Hirt, R.P.; Embley, T.M.; et al. Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog. 2008, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajaj, R.; Jaremko, Ł.; Jaremko, M.; Becker, S.; Zweckstetter, M. Molecular basis of the dynamic structure of the TIM23 complex in the mitochondrial intermembrane space. Structure 2014, 22, 1501–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, M.T.; Goldstone, H.M.H.; Bastida-Corcuera, F.; Delgadillo-Correa, M.G.; McArthur, A.G.; Johnson, P.J. A functionally divergent hydrogenosomal peptidase with protomitochondrial ancestry. Mol. Microbiol. 2007, 64, 1154–1163. [Google Scholar] [CrossRef]
- Alcock, F.; Webb, C.T.; Dolezal, P.; Hewitt, V.; Shingu-Vasquez, M.; Likić, V.A.; Traven, A.; Lithgow, T. A small Tim homohexamer in the relict mitochondrion of Cryptosporidium. Mol. Biol. Evol. 2012, 29, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Abrahamsen, M.S.; Templeton, T.J.; Enomoto, S.; Abrahante, J.E.; Zhu, G.; Lancto, C.A.; Deng, M.; Liu, C.; Widmer, G.; Tzipori, S.; et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 2004, 304, 441–445. [Google Scholar] [CrossRef] [Green Version]
- Denoeud, F.; Roussel, M.; Noel, B.; Wawrzyniak, I.; Da Silva, C.; Diogon, M.; Viscogliosi, E.; Brochier-Armanet, C.; Couloux, A.; Poulain, J.; et al. Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite. Genome Biol. 2011, 12. [Google Scholar] [CrossRef]
- Katinka, M.D.; Duprat, S.; Cornillott, E.; Méténler, G.; Thomarat, F.; Prensier, G.; Barbe, V.; Peyretaillade, E.; Brottier, P.; Wincker, P.; et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 2001, 414, 450–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burri, L.; Williams, B.A.P.; Bursac, D.; Lithgow, T.; Keeling, P.J. Microsporidian mitosomes retain elements of the general mitochondrial targeting system. Proc. Natl. Acad. Sci. USA 2006, 103, 15916–15920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jerlström-Hultqvist, J.; Einarsson, E.; Xu, F.; Hjort, K.; Ek, B.; Steinhauf, D.; Hultenby, K.; Bergquist, J.; Andersson, J.O.; Svärd, S.G. Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nat. Commun. 2013, 4, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyrihová, E.; Motyčková, A.; Voleman, L.; Wandyszewska, N.; Fišer, R.; Seydlová, G.; Roger, A.; Kolísko, M.; Doležal, P. A single tim translocase in themitosomes of Giardia intestinalis illustrates convergence of protein import machines in anaerobic eukaryotes. Genome Biol. Evol. 2018, 10, 2813–2822. [Google Scholar] [CrossRef] [PubMed]
- Santos, H.J.; Imai, K.; Hanadate, Y.; Fukasawa, Y.; Oda, T.; Mi-ichi, F.; Nozaki, T. Screening and discovery of lineage-specific mitosomal membrane proteins in Entamoeba histolytica. Mol. Biochem. Parasitol. 2016, 209, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Stölting, J.; Zimorski, V.; Rada, P.; Tachezy, J.; Martin, W.F.; Gould, S.B. Conservation of transit peptide-independent protein import into the mitochondrial and hydrogenosomal matrix. Genome Biol. Evol. 2015, 7, 2716–2726. [Google Scholar] [CrossRef] [Green Version]
Strain | % of Cells Showing Localization of HA-Tagged Protein to | n | ||
---|---|---|---|---|
Mitosome | Mitosome and Cytosol | Cytosol | ||
EhAS-HA | 100 | 0 | 0 | 96 |
DvAS-HA | 0 | 0 | 100 | 68 |
EhAS(DvA)-HA | 0 | 0 | 100 | 85 |
EhAS(DvB)-HA | 68 | 14 | 18 | 85 |
EhAS(DvC)-HA | 94 | 6 | 0 | 98 |
DvAS(EhA)-HA | 0 | 15 | 85 | 206 |
DvAS(EhB)-HA | 0 | 0 | 100 | 156 |
DvAS(EhC)-HA | 0 | 0 | 100 | 53 |
EhAS(Dv1–37)-HA | 88 | 11 | 1 | 127 |
EhAS(Dv16–37)-HA | 99 | 1 | 0 | 80 |
EhAS(Dv42–47)-HA | 83 | 17 | 0 | 121 |
EhAS(Dv64–73)-HA | 77 | 23 | 0 | 62 |
EhAS(Dv125–139)-HA | 39 | 58 | 3 | 62 |
EhAS(Dv165–174)-HA | 93 | 7 | 0 | 60 |
EhAS(Dv182–206)-HA | 45 | 55 | 0 | 191 |
DvAS(Eh1–203)-HA | 91 * | 0 | 0 | 58 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, H.J.; Chiba, Y.; Makiuchi, T.; Arakawa, S.; Murakami, Y.; Tomii, K.; Imai, K.; Nozaki, T. Import of Entamoeba histolytica Mitosomal ATP Sulfurylase Relies on Internal Targeting Sequences. Microorganisms 2020, 8, 1229. https://doi.org/10.3390/microorganisms8081229
Santos HJ, Chiba Y, Makiuchi T, Arakawa S, Murakami Y, Tomii K, Imai K, Nozaki T. Import of Entamoeba histolytica Mitosomal ATP Sulfurylase Relies on Internal Targeting Sequences. Microorganisms. 2020; 8(8):1229. https://doi.org/10.3390/microorganisms8081229
Chicago/Turabian StyleSantos, Herbert J., Yoko Chiba, Takashi Makiuchi, Saki Arakawa, Yoshitaka Murakami, Kentaro Tomii, Kenichiro Imai, and Tomoyoshi Nozaki. 2020. "Import of Entamoeba histolytica Mitosomal ATP Sulfurylase Relies on Internal Targeting Sequences" Microorganisms 8, no. 8: 1229. https://doi.org/10.3390/microorganisms8081229
APA StyleSantos, H. J., Chiba, Y., Makiuchi, T., Arakawa, S., Murakami, Y., Tomii, K., Imai, K., & Nozaki, T. (2020). Import of Entamoeba histolytica Mitosomal ATP Sulfurylase Relies on Internal Targeting Sequences. Microorganisms, 8(8), 1229. https://doi.org/10.3390/microorganisms8081229