Gut Microbiota Alteration in Healthy Preterm Infants: An Observational Study from Tertiary Care Center in India
<p>Alpha diversity metrics: (<b>a</b>) observed ASVs and (<b>b</b>) Shannon index in first four weeks of preterm infants.</p> "> Figure 2
<p>(<b>a</b>) Observed ASVs and (<b>b</b>) Shannon index on samples before and after probiotics supplementation.</p> "> Figure 3
<p>(<b>a</b>) Observed ASVs and (<b>b</b>) Shannon index on samples based on sex.</p> "> Figure 4
<p>Nonmetric multidimensional scaling (NMDS) plot generated based on Bray–Curtis distance. Each sample represents a dot. (<b>a</b>) Colored according to weeks. (<b>b</b>) Preterm. (<b>c</b>) Birth weight. (<b>d</b>) Mode of delivery. (<b>e</b>) Sex. (<b>f</b>) Probiotics.</p> "> Figure 4 Cont.
<p>Nonmetric multidimensional scaling (NMDS) plot generated based on Bray–Curtis distance. Each sample represents a dot. (<b>a</b>) Colored according to weeks. (<b>b</b>) Preterm. (<b>c</b>) Birth weight. (<b>d</b>) Mode of delivery. (<b>e</b>) Sex. (<b>f</b>) Probiotics.</p> "> Figure 5
<p>LEfSe analysis identified differential microbial abundance between samples collected before and after probiotic supplementation.</p> "> Figure 6
<p>Bar plot depicting significant metabolic pathways identified by functional prediction analysis in samples of probiotic supplementation compared to non-supplemented samples. Grey color represents confidence interval.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Data Collection
2.2. Calprotectin Assay
2.3. 16S rRNA Gene Sequencing
2.4. Microbiome Composition and Statistical Analysis
3. Results
3.1. Alpha- and Beta-Diversity of Preterm Infants
3.2. Taxa Associated with Clinical Variables
3.3. Functional Metabolic Pathways
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thänert, R.; Schwartz, D.J.; Keen, E.C.; Hall-Moore, C.; Wang, B.; Shaikh, N.; Ning, J.; Rouggly-Nickless, L.C.; Thänert, A.; Ferreiro, A.; et al. Clinical Sequelae of Gut Microbiome Development and Disruption in Hospitalized Preterm Infants. Cell Host Microbe 2024, 32, 1822–1837.e5. [Google Scholar] [CrossRef] [PubMed]
- Warner, B.B.; Deych, E.; Zhou, Y.; Hall-Moore, C.; Weinstock, G.M.; Sodergren, E.; Shaikh, N.; Hoffmann, J.A.; Linneman, L.A.; Hamvas, A.; et al. Gut Bacteria Dysbiosis and Necrotising Enterocolitis in Very Low Birthweight Infants: A Prospective Case-Control Study. Lancet 2016, 387, 1928–1936. [Google Scholar] [CrossRef] [PubMed]
- Denning, N.-L.; Prince, J.M. Neonatal Intestinal Dysbiosis in Necrotizing Enterocolitis. Mol. Med. 2018, 24, 4. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Lopez, M.; Dinsmoor, A.M.; Ho, T.T.B.; Donovan, S.M. A Systematic Review of the Factors Influencing Microbial Colonization of the Preterm Infant Gut. Gut Microbes 2021, 13, 1884514. [Google Scholar] [CrossRef] [PubMed]
- Jara, J.; Alba, C.; Del Campo, R.; Fernández, L.; Sáenz de Pipaón, M.; Rodríguez, J.M.; Orgaz, B. Linking Preterm Infant Gut Microbiota to Nasograstric Enteral Feeding Tubes: Exploring Potential Interactions and Microbial Strain Transmission. Front. Pediatr. 2024, 12, 1397398. [Google Scholar] [CrossRef]
- Travier, L.; Alonso, M.; Andronico, A.; Hafner, L.; Disson, O.; Lledo, P.-M.; Cauchemez, S.; Lecuit, M. Neonatal Susceptibility to Meningitis Results from the Immaturity of Epithelial Barriers and Gut Microbiota. Cell Rep. 2021, 35. [Google Scholar] [CrossRef]
- Schwartz, D.J.; Shalon, N.; Wardenburg, K.; DeVeaux, A.; Wallace, M.A.; Hall-Moore, C.; Ndao, I.M.; Sullivan, J.E.; Radmacher, P.; Escobedo, M.; et al. Gut Pathogen Colonization Precedes Bloodstream Infection in the Neonatal Intensive Care Unit. Sci. Transl. Med. 2023, 15, eadg5562. [Google Scholar] [CrossRef]
- Dermyshi, E.; Wang, Y.; Yan, C.; Hong, W.; Qiu, G.; Gong, X.; Zhang, T. The “Golden Age” of Probiotics: A Systematic Review and Meta-Analysis of Randomized and Observational Studies in Preterm Infants. Neonatology 2017, 112, 9–23. [Google Scholar] [CrossRef]
- Chawanpaiboon, S.; Vogel, J.P.; Moller, A.-B.; Lumbiganon, P.; Petzold, M.; Hogan, D.; Landoulsi, S.; Jampathong, N.; Kongwattanakul, K.; Laopaiboon, M.; et al. Global, Regional, and National Estimates of Levels of Preterm Birth in 2014: A Systematic Review and Modelling Analysis. Lancet Glob. Health 2019, 7, e37–e46. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic Biomarker Discovery and Explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Mallick, H.; Rahnavard, A.; McIver, L.J.; Ma, S.; Zhang, Y.; Nguyen, L.H.; Tickle, T.L.; Weingart, G.; Ren, B.; Schwager, E.H.; et al. Multivariable Association Discovery in Population-Scale Meta-Omics Studies. PLoS Comput. Biol. 2021, 17, e1009442. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for Prediction of Metagenome Functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package 2001, 2.6-8. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 28 January 2025).
- Torondel, B.; Ensink, J.H.J.; Gundogdu, O.; Ijaz, U.Z.; Parkhill, J.; Abdelahi, F.; Nguyen, V.-A.; Sudgen, S.; Gibson, W.; Walker, A.W.; et al. Assessment of the Influence of Intrinsic Environmental and Geographical Factors on the Bacterial Ecology of Pit Latrines. Microb. Biotechnol. 2016, 9, 209–223. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2; Use R! Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-24275-0. [Google Scholar]
- Ggpicrust2: An R Package for PICRUSt2 Predicted Functional Profile Analysis and Visualization|Bioinformatics|Oxford Academic. Available online: https://academic.oup.com/bioinformatics/article/39/8/btad470/7234609?login=true (accessed on 28 January 2025).
- Zhou, H.; He, K.; Chen, J.; Zhang, X. LinDA: Linear Models for Differential Abundance Analysis of Microbiome Compositional Data. Genome Biol. 2022, 23, 95. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, S.; Egan, M.; Cherry, P.; Strain, C.; Morais, E.; Boyaval, P.; Ryan, C.A.; Dempsey, E.; Ross, R.P.; et al. Metagenomic Analysis of Mother-Infant Gut Microbiome Reveals Global Distinct and Shared Microbial Signatures. Gut Microbes 2021, 13, 1911571. [Google Scholar] [CrossRef]
- Heston, S.M.; Lim, C.S.E.; Ong, C.; Chua, M.C.; Kelly, M.S.; Yeo, K.T. Strain-Resolved Metagenomic Analysis of the Gut as a Reservoir for Bloodstream Infection Pathogens among Premature Infants in Singapore. Gut Pathog. 2023, 15, 55. [Google Scholar] [CrossRef]
- Chernikova, D.A.; Madan, J.C.; Housman, M.L.; Zain-ul-abideen, M.; Lundgren, S.N.; Morrison, H.G.; Sogin, M.L.; Williams, S.M.; Moore, J.H.; Karagas, M.R.; et al. The Premature Infant Gut Microbiome during the First 6 Weeks of Life Differs Based on Gestational Maturity at Birth. Pediatr. Res. 2018, 84, 71. [Google Scholar] [CrossRef]
- Costalos, C.; Skouteri, V.; Gounaris, A.; Sevastiadou, S.; Triandafilidou, A.; Ekonomidou, C.; Kontaxaki, F.; Petrochilou, V. Enteral Feeding of Premature Infants with Saccharomyces boulardii. Early Hum. Dev. 2003, 74, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Westaway, J.A.F.; Huerlimann, R.; Kandasamy, Y.; Miller, C.M.; Norton, R.; Staunton, K.M.; Watson, D.; Rudd, D. The Bacterial Gut Microbiome of Probiotic-Treated Very-Preterm Infants: Changes from Admission to Discharge. Pediatr. Res. 2022, 92, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Knol, J.; Boehm, G.; Lidestri, M.; Negretti, F.; Jelinek, J.; Agosti, M.; Stahl, B.; Marini, A.; Mosca, F. Increase of Faecal Bifidobacteria Due to Dietary Oligosaccharides Induces a Reduction of Clinically Relevant Pathogen Germs in the Faeces of Formula-Fed Preterm Infants. Acta Paediatr. 2005, 94, 31–33. [Google Scholar] [CrossRef] [PubMed]
- Devarajalu, P.; Kumar, J.; Dutta, S.; Attri, S.V.; Kabeerdoss, J. Gut Microbiota of Preterm Infants in the Neonatal Intensive Care Unit: A Study from a Tertiary Care Center in Northern India. Front. Microbiol. 2024, 15, 1329926. [Google Scholar] [CrossRef]
- Aguilar-Lopez, M.; Wetzel, C.; MacDonald, A.; Ho, T.T.B.; Donovan, S.M. Human Milk-Based or Bovine Milk-Based Fortifiers Differentially Impact the Development of the Gut Microbiota of Preterm Infants. Front. Pediatr. 2021, 9, 719096. [Google Scholar] [CrossRef]
- Rougé, C.; Butel, M.-J.; Piloquet, H.; Ferraris, L.; Legrand, A.; Vodovar, M.; Voyer, M.; de la Cochetière, M.-F.; Darmaun, D.; Rozé, J.-C. Fecal Calprotectin Excretion in Preterm Infants during the Neonatal Period. PLoS ONE 2010, 5, e11083. [Google Scholar] [CrossRef]
- Samara, J.; Moossavi, S.; Alshaikh, B.; Ortega, V.A.; Pettersen, V.K.; Ferdous, T.; Hoops, S.L.; Soraisham, A.; Vayalumkal, J.; Dersch-Mills, D.; et al. Supplementation with a Probiotic Mixture Accelerates Gut Microbiome Maturation and Reduces Intestinal Inflammation in Extremely Preterm Infants. Cell Host Microbe 2022, 30, 696–711.e5. [Google Scholar] [CrossRef]
- Beck, L.C.; Masi, A.C.; Young, G.R.; Vatanen, T.; Lamb, C.A.; Smith, R.; Coxhead, J.; Butler, A.; Marsland, B.J.; Embleton, N.D.; et al. Strain-Specific Impacts of Probiotics Are a Significant Driver of Gut Microbiome Development in Very Preterm Infants. Nat. Microbiol. 2022, 7, 1525–1535. [Google Scholar] [CrossRef]
Variables | n = 16 |
---|---|
Gestational age (week), mean ± SD | 28.3 ± 1.5 |
Sex (male/female) | 7/9 |
Birth weight (g), mean ± SD | 1090 ± 219 |
No. (%) of extreme preterm subjects (≤28 weeks) | 7 (43.8%) |
No. (%) of Vaginal/Cesarean section | 9 (56.25%)/(743.8%) |
No. (%) of mothers with Preterm Premature rupture of membranes | 9 (56.25%) |
No. (%) of mothers with preeclampsia | 2 (12.5%) |
No. (%) of mothers who received antenatal corticosteroids | 15 (93.8%) |
APGAR score at 1 min, median (range) | 6 (4–8) |
APGAR score at 5 min, median (range) | 8 (7–10) |
No. (%) of neonates receiving antibiotics | 15 (93.8%) |
Media (range) days taken for full feed (120 mL/kg/d) | 12 (5–24) |
Df | Sums of Sqs | Mean Sqs | F.Model | R2 | Pr(>F) | |
---|---|---|---|---|---|---|
Week | 3 | 0.543 | 0.543 | 2.563 | 0.030 | 0.017 |
Probiotics | 1 | 0.758 | 0.758 | 3.579 | 0.042 | 0.004 |
Preterm | 1 | 0.619 | 0.619 | 2.919 | 0.035 | 0.015 |
Birth weight | 1 | 0.503 | 0.503 | 2.372 | 0.028 | 0.027 |
Mode of delivery | 1 | 0.486 | 0.486 | 2.296 | 0.027 | 0.027 |
Sex | 1 | 0.568 | 0.568 | 2.680 | 0.032 | 0.023 |
Week:Probiotics | 3 | 0.426 | 0.426 | 2.009 | 0.024 | 0.054 |
Week:Preterm | 3 | 0.194 | 0.194 | 0.916 | 0.011 | 0.501 |
Probiotics:Preterm | 1 | 0.250 | 0.250 | 1.181 | 0.014 | 0.311 |
Week:Birth weight | 3 | 0.378 | 0.378 | 1.786 | 0.021 | 0.082 |
Probiotics:Birth weight | 1 | 0.143 | 0.143 | 0.673 | 0.008 | 0.706 |
Preterm: Birth weight | 1 | 0.660 | 0.660 | 3.115 | 0.037 | 0.006 |
Week:Mode of delivery | 3 | 0.182 | 0.182 | 0.858 | 0.010 | 0.538 |
Probiotics: Mode of delivery | 1 | 0.119 | 0.119 | 0.561 | 0.007 | 0.821 |
Preterm: Mode of delivery | 1 | 0.752 | 0.752 | 3.548 | 0.042 | 0.007 |
Week:sex | 3 | 0.210 | 0.210 | 0.992 | 0.012 | 0.421 |
Probiotics:sex | 1 | 0.319 | 0.319 | 1.504 | 0.018 | 0.158 |
Preterm:sex | 1 | 0.618 | 0.618 | 2.918 | 0.035 | 0.01 |
Birth weight:sex | 1 | 1.198 | 1.198 | 5.654 | 0.067 | 0.001 |
Mode of delivery:sex | 1 | 0.166 | 0.166 | 0.784 | 0.009 | 0.582 |
Week:Probiotics:Preterm | 3 | 0.205 | 0.205 | 0.967 | 0.011 | 0.407 |
Week:Preterm: Birth weight | 3 | 0.246 | 0.246 | 1.160 | 0.014 | 0.314 |
Probiotics:Preterm: Birth weight | 3 | 0.212 | 0.212 | 0.999 | 0.012 | 0.45 |
Week:Probiotics:Mode of delivery | 2 | 0.175 | 0.175 | 0.826 | 0.010 | 0.587 |
Week:Preterm:Mode of delivery | 3 | 0.236 | 0.236 | 1.113 | 0.013 | 0.317 |
Probiotics:Preterm:Mode of delivery | 1 | 0.176 | 0.176 | 0.833 | 0.010 | 0.593 |
Week:Probiotics:sex | 1 | 0.129 | 0.129 | 0.607 | 0.007 | 0.758 |
Week:Preterm:sex | 3 | 0.160 | 0.160 | 0.754 | 0.009 | 0.618 |
Probiotics:Preterm:sex | 1 | 0.227 | 0.227 | 1.073 | 0.013 | 0.346 |
Week: Birth weight:sex | 1 | 0.138 | 0.138 | 0.651 | 0.008 | 0.721 |
Week: Mode of delivery: sex | 1 | 0.399 | 0.399 | 1.884 | 0.022 | 0.085 |
Probiotics: Mode of delivery: sex | 1 | 0.616 | 0.616 | 2.906 | 0.034 | 0.009 |
Week:Probiotics:Preterm: Mode of delivery | 1 | 0.225 | 0.225 | 1.060 | 0.013 | 0.362 |
Week:Probiotics:Preterm:sex | 1 | 0.135 | 0.135 | 0.636 | 0.008 | 0.749 |
Residuals | 26 | 5.510 | 0.212 | NA | 0.308 | NA |
Total | 60 | 17.880 | NA | NA | 1.000 | NA |
Feature | Metadata | Regression Coefficient | Standard Error | p Value | BH-Adjusted p Value |
---|---|---|---|---|---|
Enterobacteriaceae | Probiotics | 3.145 | 0.804 | 0.000 | 0.062 |
Enterobacteriaceae.1 | Probiotics | 2.849 | 0.773 | 0.001 | 0.063 |
Klebsiella.unclassified | Probiotics | 3.081 | 0.967 | 0.002 | 0.084 |
Klebsiella.unclassified.1 | Probiotics | 2.963 | 0.915 | 0.002 | 0.084 |
Staphylococcus.unclassified | Probiotics | 2.475 | 0.779 | 0.002 | 0.084 |
Staphylococcus.unclassified.1 | Probiotics | 2.622 | 0.824 | 0.002 | 0.084 |
Enterobacteriaceae.9 | Probiotics | 2.292 | 0.668 | 0.001 | 0.084 |
Bifidobacterium.longum | Probiotics | 2.360 | 0.834 | 0.006 | 0.127 |
Bifidobacterium.unclassified | Probiotics | 2.326 | 0.831 | 0.007 | 0.127 |
Bacteroides.unclassified | Probiotics | 1.060 | 0.364 | 0.005 | 0.127 |
Bacteroides.vulgatus | Probiotics | 1.067 | 0.365 | 0.005 | 0.127 |
Klebsiella.unclassified.3 | Probiotics | 2.615 | 0.946 | 0.008 | 0.127 |
Klebsiella.unclassified.4 | Probiotics | 2.216 | 0.801 | 0.008 | 0.127 |
Escherichia.Shigella.unclassified.2 | Probiotics | 1.914 | 0.685 | 0.007 | 0.127 |
Escherichia.Shigella.unclassified.5 | Probiotics | 2.521 | 0.914 | 0.008 | 0.127 |
Klebsiella.unclassified.2 | Probiotics | 2.268 | 0.852 | 0.010 | 0.152 |
Acinetobacter.unclassified.2 | Probiotics | −1.448 | 0.548 | 0.011 | 0.152 |
Klebsiella.unclassified.5 | Probiotics | 2.970 | 1.152 | 0.013 | 0.173 |
Enterobacterales | Probiotics | 1.644 | 0.665 | 0.016 | 0.202 |
Enterobacteriaceae.14 | Probiotics | 1.657 | 0.675 | 0.017 | 0.202 |
Lacticaseibacillus.unclassified | Probiotics | 1.960 | 0.801 | 0.018 | 0.202 |
Enterobacteriaceae.15 | Probiotics | 2.180 | 0.906 | 0.020 | 0.217 |
Acinetobacter.unclassified.3 | Probiotics | −1.363 | 0.580 | 0.022 | 0.234 |
Bifidobacterium.longum.1 | Probiotics | 1.461 | 0.634 | 0.025 | 0.245 |
Bifidobacterium.unclassified.1 | Probiotics | 1.524 | 0.657 | 0.025 | 0.245 |
Feature | Metadata | Regression Coefficient | Standard Error | p-Value | BH-Adjusted p Value |
---|---|---|---|---|---|
Klebsiella.unclassified.2 | Week | 1.22908 | 0.321885 | 0.000417 | 0.020781 |
Klebsiella.unclassified.3 | Week | 1.41849 | 0.355709 | 0.000248 | 0.020781 |
Enterobacteriaceae | Week | 1.186119 | 0.331487 | 0.000839 | 0.020781 |
Clostridium.sensu.stricto.1.unclassified.1 | Week | 0.960771 | 0.269656 | 0.000846 | 0.020781 |
Enterobacteriaceae.15 | Week | 1.22519 | 0.342688 | 0.000859 | 0.020781 |
Klebsiella.unclassified | Week | 1.346191 | 0.388773 | 0.00119 | 0.022955 |
Klebsiella.unclassified.1 | Week | 1.25157 | 0.369885 | 0.001499 | 0.022955 |
Enterobacteriaceae.13 | Week | 1.079414 | 0.320783 | 0.001518 | 0.022955 |
Enterobacteriaceae.1 | Week | 1.050946 | 0.319754 | 0.001958 | 0.026326 |
Staphylococcus.unclassified.7 | Week | 0.416346 | 0.128861 | 0.002339 | 0.028307 |
Enterobacteriaceae.16 | Week | 0.644443 | 0.222827 | 0.005917 | 0.047907 |
Bifidobacterium.unclassified.1 | Week | 0.712908 | 0.254997 | 0.007618 | 0.053069 |
Escherichia.Shigella.unclassified.5 | Week | 1.049388 | 0.37369 | 0.007291 | 0.053069 |
Enterobacteriaceae.9 | Week | 0.776773 | 0.280789 | 0.008193 | 0.053069 |
Enterococcus.unclassified.18 | Week | −0.8197 | 0.297401 | 0.008333 | 0.053069 |
Bifidobacterium.longum.1 | Week | 0.672177 | 0.246387 | 0.009087 | 0.054978 |
Escherichia.Shigella.unclassified.2 | Week | 0.730768 | 0.281493 | 0.012638 | 0.069508 |
Bifidobacterium.breve | Week | 0.679655 | 0.26794 | 0.014749 | 0.071723 |
Bifidobacterium.unclassified.2 | Week | 0.804917 | 0.317121 | 0.014693 | 0.071723 |
Streptococcus.unclassified.6 | Week | 0.402735 | 0.160303 | 0.015801 | 0.071723 |
Klebsiella.unclassified.4 | Week | 0.769098 | 0.327439 | 0.02333 | 0.095271 |
Veillonella.unclassified.4 | Week | 0.434013 | 0.186852 | 0.024408 | 0.095271 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devarajalu, P.; Kumar, J.; Dutta, S.; Attri, S.V.; Kabeerdoss, J. Gut Microbiota Alteration in Healthy Preterm Infants: An Observational Study from Tertiary Care Center in India. Microorganisms 2025, 13, 577. https://doi.org/10.3390/microorganisms13030577
Devarajalu P, Kumar J, Dutta S, Attri SV, Kabeerdoss J. Gut Microbiota Alteration in Healthy Preterm Infants: An Observational Study from Tertiary Care Center in India. Microorganisms. 2025; 13(3):577. https://doi.org/10.3390/microorganisms13030577
Chicago/Turabian StyleDevarajalu, Prabavathi, Jogender Kumar, Sourabh Dutta, Savita Verma Attri, and Jayakanthan Kabeerdoss. 2025. "Gut Microbiota Alteration in Healthy Preterm Infants: An Observational Study from Tertiary Care Center in India" Microorganisms 13, no. 3: 577. https://doi.org/10.3390/microorganisms13030577
APA StyleDevarajalu, P., Kumar, J., Dutta, S., Attri, S. V., & Kabeerdoss, J. (2025). Gut Microbiota Alteration in Healthy Preterm Infants: An Observational Study from Tertiary Care Center in India. Microorganisms, 13(3), 577. https://doi.org/10.3390/microorganisms13030577