Effects of Mixing Ratio and Lactic Acid Bacteria Preparation on the Quality of Whole-Plant Quinoa and Whole-Plant Corn or Stevia Powder Mixed Silage
<p>The number of aerobic bacteria (<b>A</b>) and molds (<b>B</b>) in mixed silage (Test 1). The different lowercase letters (a–h) above the column indicate significant differences among treatments (<span class="html-italic">p</span> < 0.05).</p> "> Figure 2
<p>Changes in five mycotoxins’ content in two types of quinoa mixed silage (Test 1). The different lowercase letters (a–h) above the column indicate significant differences among treatments (<span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>Effect of additives on mycotoxins in mixed silage of WPQ and WPC (Test 2). The different lowercase letters (a–i) above the column indicate significant differences among treatments (<span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>(<b>A</b>) Multi-sample rarefaction curves. (<b>B</b>) Multi-sample shannon curves (Test 2).</p> "> Figure 5
<p>Beta diversity analysis. (<b>A</b>) Principal coordinates analysis (PCoA). (<b>B</b>) Unweighted Pair group Method with Arithmetic (UPGMA) Mean. (<b>C</b>) ANOSIM analysis box plot (Test 2).</p> "> Figure 6
<p>Column diagram of horizontal distribution between groups. (<b>A</b>) Composition of bacteria community at phylum level. (<b>B</b>) Composition of bacteria community at genus level (Test 2).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Silage Additives
2.2. Experimental Design and Silage Preparation
2.3. Silage Quality Analysis
2.4. Determination of Microbial Quantity and Mycotoxin Content
2.5. Bacterial Community Analysis
2.6. Calculations
2.7. Statistical Analysis
3. Results
3.1. Sensory Evaluation of Mixed Silage
3.2. Analysis of Silage Quality and Microbial Quantity of Mixed Silage
3.3. Content of Five Mycotoxins in Different Mixed-Silage Treatments
3.4. Comprehensive Evaluation of Membership Functions of Different Types of Quinoa Mixed Silage
3.5. Effect of Additives on Quality of Mixed Silage
3.6. Effect of Additives on Mycotoxins of Mixed Silage
3.7. Changes in Bacterial Community Composition of Mixed Silage of WPQ and WPC
3.8. The Effect of Lactic Acid Bacteria Preparation on Microbial Composition of Mixed Silage
4. Discussion
4.1. Effect of Mixed Silage of WPQ and WPC or SP on Silage Quality
4.2. Effect of Mixed Silage of WPQ and WPC or SP on Mycotoxin Content
4.3. Effect of Lactic Acid Bacteria Preparation on the Quality of Mixed Silage of WPQ and WPC
4.4. Effect of Lactic Acid Bacteria Preparation on the Content of Mycotoxins in the Mixed Silage of WPQ and WPC
4.5. Effects of Lactic Acid Bacteria Preparation on Bacterial Community in Mixed Silage of WPQ and WPC
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kung, L.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage Review: Interpretation of Chemical, Microbial, and Organoleptic Components of Silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Dong, Z.; Chen, L.; Shao, T. Inclusion of Alfalfa Improves Nutritive Value and in Vitro Digestibility of Various Straw–Grass Mixed Silages in Tibet. Grass Forage Sci. 2018, 73, 694–704. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Kong, Z.; Huan, X.; Li, L.; Zhang, P.; Wang, Q.; Guo, Y.; Zhu, W.; Qin, P. Transcriptomics and Metabolomics Analyses of the Mechanism of Flavonoid Synthesis in Seeds of Differently Colored Quinoa Strains. Genomics 2022, 114, 138–148. [Google Scholar] [CrossRef]
- Angeli, V.; Miguel Silva, P.; Crispim Massuela, D.; Khan, M.W.; Hamar, A.; Khajehei, F.; Graeff-Hönninger, S.; Piatti, C. Quinoa (Chenopodium quinoa Willd.): An Overview of the Potentials of the “Golden Grain” and Socio-Economic and Environmental Aspects of Its Cultivation and Marketization. Foods 2020, 9, 216. [Google Scholar] [CrossRef] [PubMed]
- Asher, A.; Galili, S.; Whitney, T.; Rubinovich, L. The Potential of Quinoa (Chenopodium quinoa) Cultivation in Israel as a Dual-Purpose Crop for Grain Production and Livestock Feed. Sci. Hortic. 2020, 272, 109534. [Google Scholar] [CrossRef]
- Agricultural University of Athens; Bilalis, D.J.; Roussis, I.; Kakabouki, I.; Folina, A. Quinoa (Chenopodium quinoa Willd.) Crop under Mediterranean Conditions: A Review. Cienc. e Investig. Agrar. 2019, 46, 51–68. [Google Scholar] [CrossRef]
- Marino, R.; Caroprese, M.; Annicchiarico, G.; Ciampi, F.; Ciliberti, M.G.; Della Malva, A.; Santillo, A.; Sevi, A.; Albenzio, M. Effect of Diet Supplementation with Quinoa Seed and/or Linseed on Immune Response, Productivity and Meat Quality in Merinos Derived Lambs. Animals 2018, 8, 204. [Google Scholar] [CrossRef]
- Wu, T.; Jiang, X.; Yang, F.; Wei, Y.; Zhao, S.; Jiao, T. Effects of Dietary Quinoa Seeds on Cecal Microorganisms and Muscle Fatty Acids of Female Luhua Chickens. Animals 2022, 12, 3334. [Google Scholar] [CrossRef] [PubMed]
- Lemus-Mondaca, R.; Vega-Gálvez, A.; Zura-Bravo, L.; Ah-Hen, K. Stevia rebaudiana Bertoni, Source of a High-Potency Natural Sweetener: A Comprehensive Review on the Biochemical, Nutritional and Functional Aspects. Food Chem. 2012, 132, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Lailerd, N.; Saengsirisuwan, V.; Sloniger, J.A.; Toskulkao, C.; Henriksen, E.J. Effects of Stevioside on Glucose Transport Activity in Insulin-Sensitive and Insulin-Resistant Rat Skeletal Muscle. Metabolism 2004, 53, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.; Xu, D.-Y.; Liu, J.-C.; Chen, Y.-J.; Tomlinson, B.; Huang, W.-P.; Cheng, J.-T. The Effect of Stevioside on Blood Pressure and Plasma Catecholamines in Spontaneously Hypertensive Rats. Life Sci. 1998, 63, 1679–1684. [Google Scholar] [CrossRef]
- Boonkaewwan, C.; Toskulkao, C.; Vongsakul, M. Anti-Inflammatory and Immunomodulatory Activities of Stevioside and Its Metabolite Steviol on THP-1 Cells. J. Agric. Food Chem. 2006, 54, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Tomita, T.; Sato, N.; Arai, T.; Shiraishi, H.; Sato, M.; Takeuchi, M.; Kamio, Y. Bactericidal Activity of a Fermented Hot-Water Extract from Stevia rebaudiana Bertoni towards Enterohemorrhagic Escherichia coli O157:H7 and Other Food-Borne Pathogenic Bacteria. Microbiol. Immunol. 1997, 41, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.S.; Shi, Z.; Shi, B.M.; Shan, A.S. Effects of Dietary Stevioside/Rebaudioside A on the Growth Performance and Diarrhea Incidence of Weaned Piglets. Anim. Feed Sci. Technol. 2014, 187, 104–109. [Google Scholar] [CrossRef]
- Jiang, M.; Datsomor, O.; Cheng, Z.; Meng, Z.; Zhan, K.; Yang, T.; Huang, Y.; Yan, Q.; Zhao, G. Partial Substitution of Alfalfa Hay by Stevia (Stevia rebaudiana) Hay Can Improve Lactation Performance, Rumen Fermentation, and Nitrogen Utilization of Dairy Cows. Front. Vet. Sci. 2022, 9, 899148. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Kljak, K.; Whiting, I.M.; Rose, S.P.; Mansbridge, S.C.; Enchev, S.; Atanasov, A.; Stringhini, J.H. Feeding Dry Stevia Leaf (Stevia rebaudiana) or Xylanase Improves the Hepatic Antioxidative Status of Broiler Chickens. Res. Vet. Sci. 2021, 136, 227–229. [Google Scholar] [CrossRef]
- Driehuis, F. Silage Review: Animal and Human Health Risks from Silage. J. Dairy Sci. 2018, 101, 4093–4110. [Google Scholar] [CrossRef] [PubMed]
- Keshri, J.; Chen, Y.; Pinto, R.; Kroupitski, Y.; Weinberg, Z.G.; Sela Saldinger, S. Bacterial Dynamics of Wheat Silage. Front. Microbiol. 2019, 10, 1532. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Cao, Y.; Cai, Y.; Terada, F. Natural Populations of Lactic Acid Bacteria Isolated from Vegetable Residues and Silage Fermentation. J. Dairy Sci. 2010, 93, 3136–3145. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Nishino, N. Effects of Ensiling Fermentation and Aerobic Deterioration on the Bacterial Community in Italian Ryegrass, Guinea Grass, and Whole-Crop Maize Silages Stored at High Moisture Content. Asian Australas. J. Anim. Sci. 2013, 26, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- Yen, Y.; Weisbjerg, M.R.; Rautenberger, R.; Fečkaninová, A.; Novoa-Garrido, M. Improving Fermentation of Saccharina Latissima and Alaria Esculenta Silages with Additives for Preserving Biomass and Antioxidants. J. Appl. Phycol. 2022, 34, 625–636. [Google Scholar] [CrossRef]
- Storm, I.M.L.D.; Kristensen, N.B.; Raun, B.M.L.; Smedsgaard, J.; Thrane, U. Dynamics in the Microbiology of Maize Silage during Whole-Season Storage: Whole-Season Dynamics in Silage. J. Appl. Microbiol. 2010, 109, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Bryden, W.L. Mycotoxin Contamination of the Feed Supply Chain: Implications for Animal Productivity and Feed Security. Anim. Feed Sci. Technol. 2012, 173, 134–158. [Google Scholar] [CrossRef]
- Tolosa, J.; Rodríguez-Carrasco, Y.; Ruiz, M.J.; Vila-Donat, P. Multi-Mycotoxin Occurrence in Feed, Metabolism and Carry-over to Animal-Derived Food Products: A Review. Food Chem. Toxicol. 2021, 158, 112661. [Google Scholar] [CrossRef] [PubMed]
- Khota, W.; Pholsen, S.; Higgs, D.; Cai, Y. Comparative Analysis of Silage Fermentation and in Vitro Digestibility of Tropical Grass Prepared with Acremonium and Tricoderma Species Producing Cellulases. Asian-Australas. J. Anim. Sci. 2018, 31, 1913–1922. [Google Scholar] [CrossRef]
- Tian, J.; Li, Z.; Yu, Z.; Zhang, Q.; Li, X. Interactive Effect of Inoculant and Dried Jujube Powder on the Fermentation Quality and Nitrogen Fraction of Alfalfa Silage. Anim. Sci. J. 2017, 88, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Broderick, G.A.; Kang, J.H. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and In Vitro Media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Wang, M.; Xu, S.; Wang, T.; Jia, T.; Xu, Z.; Wang, X.; Yu, Z. Effect of Inoculants and Storage Temperature on the Microbial, Chemical and Mycotoxin Composition of Corn Silage. Asian-Australas. J. Anim. Sci. 2018, 31, 1903–1912. [Google Scholar] [CrossRef]
- Ferrero, F.; Piano, S.; Tabacco, E.; Borreani, G. Effects of Conservation Period and Lactobacillus hilgardii Inoculum on the Fermentation Profile and Aerobic Stability of Whole Corn and Sorghum Silages. J. Sci. Food Agric. 2019, 99, 2530–2540. [Google Scholar] [CrossRef] [PubMed]
- Koyama, E.; Kitazawa, K.; Ohori, Y.; Izawa, O.; Kakegawa, K.; Fujino, A.; Ui, M. In Vitro Metabolism of the Glycosidic Sweeteners, Stevia Mixture and Enzymatically Modified Stevia in Human Intestinal Microflora. Food Chem. Toxicol. 2003, 41, 359–374. [Google Scholar] [CrossRef]
- Ennahar, S.; Cai, Y.; Fujita, Y. Phylogenetic Diversity of Lactic Acid Bacteria Associated with Paddy Rice Silage as Determined by 16S Ribosomal DNA Analysis. Appl. Environ. Microbiol. 2003, 69, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zeng, T.; Du, Z.; Dong, X.; Xin, Y.; Wu, Y.; Huang, L.; Liu, L.; Kang, B.; Jiang, D.; et al. Assessment on the Fermentation Quality and Bacterial Community of Mixed Silage of Faba Bean With Forage Wheat or Oat. Front. Microbiol. 2022, 13, 875819. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Zhang, Y.; Wang, F.; Liu, K.; Huang, G.; Zheng, N.; Wang, J. Effects of Sugar Cane Molasses Addition on the Fermentation Quality, Microbial Community, and Tastes of Alfalfa Silage. Animals 2021, 11, 355. [Google Scholar] [CrossRef]
- Kung, L.; Myers, C.L.; Neylon, J.M.; Taylor, C.C.; Lazartic, J.; Mills, J.A.; Whiter, A.G. The Effects of Buffered Propionic Acid-Based Additives Alone or Combined with Microbial Inoculation on the Fermentation of High Moisture Corn and Whole-Crop Barley. J. Dairy Sci. 2004, 87, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Yu, C.; Shimojo, M.; Shao, T. Improvement of Fermentation and Nutritive Quality of Straw-Grass Silage by Inclusion of Wet Hulless-Barley Distillers’ Grains in Tibet. Asian Australas. J. Anim. Sci. 2012, 25, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, L.; Xing, Y.; Zhou, W.; Pian, R.; Yang, F.; Chen, X.; Zhang, Q. Bacterial Diversity and Fermentation Quality of Moringa Oleifera Leaves Silage Prepared with Lactic Acid Bacteria Inoculants and Stored at Different Temperatures. Bioresour. Technol. 2019, 284, 349–358. [Google Scholar] [CrossRef]
- Navruz-Varli, S.; Sanlier, N. Nutritional and Health Benefits of Quinoa (Chenopodium quinoa Willd.). J. Cereal Sci. 2016, 69, 371–376. [Google Scholar] [CrossRef]
- Yin, H.; Zhao, M.; Pan, G.; Zhang, H.; Yang, R.; Sun, J.; Yu, Z.; Bai, C.; Xue, Y. Effects of Bacillus Subtilis or Lentilactobacillus buchneri on Aerobic Stability, and the Microbial Community in Aerobic Exposure of Whole Plant Corn Silage. Front. Microbiol. 2023, 14, 1177031. [Google Scholar] [CrossRef] [PubMed]
- Morillo, A.C.; Manjarres, E.H.; Mora, M.S. Afrosymetric Method for Quantifying Saponins in Chenopodium quinoa Willd. from Colombia. Braz. J. Biol. 2022, 82, e262716. [Google Scholar] [CrossRef]
- Gitanjali, J.; Dinesh Ram, D.S.; R, K.; Amalan, V.; Alahmadi, T.A.; Alharbi, S.A.; Kandasamy, S.; Shanmuganthan, R.; Vijayakumar, N. Antimicrobial, Antioxidant, Anticancer, and Antithrombotic, Competency of Saponins from the Root of Decalepis hamiltonii. Environ. Res. 2023, 231, 116096. [Google Scholar] [CrossRef] [PubMed]
- Zachariasova, M.; Dzuman, Z.; Veprikova, Z.; Hajkova, K.; Jiru, M.; Vaclavikova, M.; Zachariasova, A.; Pospichalova, M.; Florian, M.; Hajslova, J. Occurrence of Multiple Mycotoxins in European Feedingstuffs, Assessment of Dietary Intake by Farm Animals. Anim. Feed Sci. Technol. 2014, 193, 124–140. [Google Scholar] [CrossRef]
- Schatzmayr, G.; Streit, E. Global Occurrence of Mycotoxins in the Food and Feed Chain: Facts and Figures. World Mycotoxin J. 2013, 6, 213–222. [Google Scholar] [CrossRef]
- Latham, R.L.; Boyle, J.T.; Barbano, A.; Loveman, W.G.; Brown, N.A. Diverse Mycotoxin Threats to Safe Food and Feed Cereals. Essays Biochem. 2023, 67, 797–809. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhao, L.; Chen, Y.; Gao, H.; Hua, Y.; Yuan, X.; Yang, H. Mycotoxins in Maize Silage from China in 2019. Toxins 2022, 14, 241. [Google Scholar] [CrossRef] [PubMed]
- Skladanka, J.; Adam, V.; Dolezal, P.; Nedelnik, J.; Kizek, R.; Linduskova, H.; Mejia, J.; Nawrath, A. How Do Grass Species, Season and Ensiling Influence Mycotoxin Content in Forage? Int. J. Environ. Res. Public Health 2013, 10, 6084–6095. [Google Scholar] [CrossRef]
- Qing, H.; Huang, S.; Zhan, K.; Zhao, L.; Zhang, J.; Ji, C.; Ma, Q. Combined Toxicity Evaluation of Ochratoxin A and Aflatoxin B1 on Kidney and Liver Injury, Immune Inflammation, and Gut Microbiota Alteration Through Pair-Feeding Pullet Model. Front. Immunol. 2022, 13, 920147. [Google Scholar] [CrossRef]
- Kamala, A.; Kimanya, M.; Haesaert, G.; Tiisekwa, B.; Madege, R.; Degraeve, S.; Cyprian, C.; De Meulenaer, B. Local Post-Harvest Practices Associated with Aflatoxin and Fumonisin Contamination of Maize in Three Agro Ecological Zones of Tanzania. Food Addit. Contam. Part A 2016, 33, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Reyneri, A. The Role of Climatic Condition on Micotoxin Production in Cereal. Vet. Res. Commun. 2006, 30, 87–92. [Google Scholar] [CrossRef]
- Peng, W.-X.; Marchal, J.L.M.; Van Der Poel, A.F.B. Strategies to Prevent and Reduce Mycotoxins for Compound Feed Manufacturing. Anim. Feed Sci. Technol. 2018, 237, 129–153. [Google Scholar] [CrossRef]
- Mansfield, M.A.; De Wolf, E.D.; Kuldau, G.A. Relationships Between Weather Conditions, Agronomic Practices, and Fermentation Characteristics with Deoxynivalenol Content in Fresh and Ensiled Maize. Plant Dis. 2005, 89, 1151–1157. [Google Scholar] [CrossRef]
- Wambacq, E.; Vanhoutte, I.; Audenaert, K.; De Gelder, L.; Haesaert, G. Occurrence, Prevention and Remediation of Toxigenic Fungi and Mycotoxins in Silage: A Review. J. Sci. Food Agric. 2016, 96, 2284–2302. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Xu, D.; Li, F.; Bai, J.; Su, R. Current Approaches on the Roles of Lactic Acid Bacteria in Crop Silage. Microb. Biotechnol. 2023, 16, 67–87. [Google Scholar] [CrossRef]
- Mendonça, R.D.C.A.D.; Cardoso, M.V.S.B.; Pantoja, S.O.S.; Souza, M.S.D.; Domingues, F.N.; Faturi, C.; Silva, T.C.D.; Rêgo, A.C.D. Effects of Cutting Height and Bacterial Inoculant on Corn Silage Aerobic Stability and Nutrient Digestibility by Sheep. Rev. Bras. de Zootec. 2020, 49, e20190231. [Google Scholar] [CrossRef]
- Jiang, F.; Cheng, H.; Liu, D.; Wei, C.; An, W.; Wang, Y.; Sun, H.; Song, E. Treatment of Whole-Plant Corn Silage with Lactic Acid Bacteria and Organic Acid Enhances Quality by Elevating Acid Content, Reducing pH, and Inhibiting Undesirable Microorganisms. Front. Microbiol. 2020, 11, 593088. [Google Scholar] [CrossRef]
- Ma, J.; Fan, X.; Ma, Z.; Huang, X.; Tang, M.; Yin, F.; Zhao, Z.; Gan, S. Silage Additives Improve Fermentation Quality, Aerobic Stability and Rumen Degradation in Mixed Silage Composed of Amaranth and Corn Straw. Front. Plant Sci. 2023, 14, 1189747. [Google Scholar] [CrossRef] [PubMed]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L. Silage Review: Recent Advances and Future Uses of Silage Additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef]
- Ferrero, F.; Prencipe, S.; Spadaro, D.; Gullino, M.L.; Cavallarin, L.; Piano, S.; Tabacco, E.; Borreani, G. Increase in Aflatoxins Due to Aspergillus Section Flavi Multiplication during the Aerobic Deterioration of Corn Silage Treated with Different Bacteria Inocula. J. Dairy Sci. 2019, 102, 1176–1193. [Google Scholar] [CrossRef] [PubMed]
- Peles, F.; Sipos, P.; Győri, Z.; Pfliegler, W.P.; Giacometti, F.; Serraino, A.; Pagliuca, G.; Gazzotti, T.; Pócsi, I. Adverse Effects, Transformation and Channeling of Aflatoxins Into Food Raw Materials in Livestock. Front. Microbiol. 2019, 10, 2861. [Google Scholar] [CrossRef]
- Ma, Z.X.; Amaro, F.X.; Romero, J.J.; Pereira, O.G.; Jeong, K.C.; Adesogan, A.T. The Capacity of Silage Inoculant Bacteria to Bind Aflatoxin B1 in Vitro and in Artificially Contaminated Corn Silage. J. Dairy Sci. 2017, 100, 7198–7210. [Google Scholar] [CrossRef]
- Carvalho, B.F.; Sales, G.F.C.; Schwan, R.F.; Ávila, C.L.S. Criteria for Lactic Acid Bacteria Screening to Enhance Silage Quality. J. Appl. Microbiol. 2021, 130, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Okoye, C.O.; Wei, Z.; Jiang, H.; Wu, Y.; Wang, Y.; Gao, L.; Li, X.; Jiang, J. Metagenomics Analysis Reveals the Performance of Homo- and Heterofermentative Lactic Acid Bacteria in Alfalfa Silage Fermentation, Bacterial Community, and Functional Profiles. J. Anim. Sci. 2023, 101, skad163. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-High-Throughput Microbial Community Analysis on the Illumina HiSeq and MiSeq Platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef]
- Kung, L.; Savage, R.M.; Da Silva, E.B.; Polukis, S.A.; Smith, M.L.; Johnson, A.C.B.; Miller, M.A. The Effects of Air Stress during Storage and Low Packing Density on the Fermentation and Aerobic Stability of Corn Silage Inoculated with Lactobacillus buchneri 40788. J. Dairy Sci. 2021, 104, 4206–4222. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tan, Z.; Wu, G.; Wang, L.; Qin, G.; Wang, Y.; Pang, H. Investigation on Fermentation Characteristics and Microbial Communities of Wheat Straw Silage with Different Proportion Artemisia Argyi. Toxins 2023, 15, 330. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Wang, Z.; Bao, J.; Zhao, M.; Si, Q.; Sun, P.; Ge, G.; Jia, Y. Effects of Different Types of LAB on Dynamic Fermentation Quality and Microbial Community of Native Grass Silage during Anaerobic Fermentation and Aerobic Exposure. Microorganisms 2023, 11, 513. [Google Scholar] [CrossRef] [PubMed]
- Muck, R.E. Silage Microbiology and Its Control through Additives. R. Bras. Zootec. 2010, 39, 183–191. [Google Scholar] [CrossRef]
- Si, Q.; Wang, Z.; Liu, W.; Liu, M.; Ge, G.; Jia, Y.; Du, S. Influence of Cellulase or Lactiplantibacillus Plantarum on the Ensiling Performance and Bacterial Community in Mixed Silage of Alfalfa and Leymus Chinensis. Microorganisms 2023, 11, 426. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Xu, N.; Liu, B.; Huan, H.; Gu, H.; Dong, C.; Ding, C. Interaction Effect of Silo Density and Additives on the Fermentation Quality, Microbial Counts, Chemical Composition and in Vitro Degradability of Rice Straw Silage. Bioresour. Technol. 2020, 297, 122412. [Google Scholar] [CrossRef]
Parameter | WPQ | WPC |
---|---|---|
Dry matter (% FM) | 35.50 | 32.64 |
Crude protein (% DM) | 13.51 | 7.42 |
Ether extract (% DM) | 7.39 | 6.09 |
Crude ash (% DM) | 13.20 | 4.61 |
Neutral detergent fiber (% DM) | 48.37 | 54.54 |
Acid detergent fiber (% DM) | 31.84 | 25.01 |
Material | Treatment | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
QB5 | QB6 | QB7 | QB8 | QB9 | QB10 | QB10S2 | QB10S4 | QB10S6 | QB10S8 | QB10S10 | |
WPQ | 5 | 6 | 7 | 8 | 9 | 10 | 10 | 10 | 10 | 10 | 10 |
WPC | 5 | 4 | 3 | 2 | 1 | 0 | - | - | - | - | - |
SP | - | - | - | - | - | - | 0.2% | 0.4% | 0.6% | 0.8% | 1.0% |
Treatment | Ratio of WPQ and WPC | |||||
---|---|---|---|---|---|---|
5:5 (QB5) | 6:4 (QB6) | 7:3 (QB7) | 8:2 (QB8) | 9:1 (QB9) | 10:0 (QB10) | |
Lac | LacQB5 | LacQB6 | LacQB7 | LacQB8 | LacQB9 | LacQB10 |
Laa | LaaQB5 | LaaQB6 | LaaQB7 | LaaQB8 | LaaQB9 | LaaQB10 |
Lai | LaiQB5 | LaiQB6 | LaiQB7 | LaiQB8 | LaiQB9 | LaiQB10 |
Group | Mildew | Smell | Color | Texture | Composite Scores | ||||
---|---|---|---|---|---|---|---|---|---|
Description | Average Score | Description | Average Score | Description | Average Score | Total Score | Grade | ||
QB5 | No mildew | A faint smell of bread. | 11.33 | Yellowish-brown. | 1.30 | The stem and leaf structure are well-maintained, soft and loose. | 2.83 | 15.46 | Between good and excellent |
QB6 | No mildew | A faint smell of bread. | 11.33 | Medium, yellow, with a hint of green. | 1.33 | The stem and leaf structure are maintained well, and loose. | 2.63 | 15.29 | Between good and excellent |
QB7 | No mildew | Slightly aromatic. | 11.66 | Yellowish-brown. | 1.30 | The stem and leaf structure are maintained well, and loose. | 2.63 | 15.59 | Between good and excellent |
QB8 | No mildew | Slightly aromatic. | 11.66 | Light yellowish brown, with a hint of green. | 1.43 | The stems and leaves do not rot, and the texture is soft and loose. | 2.50 | 15.59 | Between good and excellent |
QB9 | No mildew | A faint sour smell. | 10.66 | Light yellow, light green. | 1.56 | The stem and leaf structure are well-maintained, and slightly sticky. | 2.33 | 14.55 | Good |
QB10 | No mildew | A faint sour smell. | 10.33 | Light yellowish brown, with a hint of green. | 1.53 | The stem and leaf is slightly damaged, and sticky | 2.00 | 15.42 | Between good and excellent |
QB10S2 | No mildew | No butyric acid odor, weak aromatic smell. | 10.66 | Yellowish-brown. | 1.23 | The stem and leaf is slightly damaged, and slightly sticky. | 2.13 | 14.02 | Good |
QB10S4 | No mildew | Slightly aromatic. | 11.66 | Yellowish-brown. | 1.20 | The stem and leaf structure are maintained well, and loose. | 2.43 | 15.29 | Between good and excellent |
QB10S6 | No mildew | No butyric acid odor, weak aromatic smell. | 10.66 | Light yellowish brown, with a hint of green. | 1.43 | The stem and leaf structure are maintained well, and loose. | 2.40 | 14.49 | Good |
QB10S8 | No mildew | No sour odor, weak aromatic smell. | 11.00 | Yellow with a hint of green, | 1.50 | The stem and leaf structure are maintained well, and loose. | 2.43 | 14.93 | Good |
QB10S10 | No mildew | A faint smell of bread. | 11.33 | Yellow-green. | 1.53 | The stem and leaf structure are well-maintained, soft and loose. | 2.60 | 15.46 | Between good and excellent |
Groups | Crude Protein (CP)/% DM | pH | NH3-N/TN /% | Lactic Acid (LA)/g·kg−1 DM | Acetic Acid (AA)/g·kg−1 DM |
---|---|---|---|---|---|
QB5 | 9.16 E | 3.96 D | 6.89 | 20.44 B | 2.26 A |
QB6 | 10.10 D | 4.02 CD | 6.88 | 21.88 A | 2.13 AB |
QB7 | 10.46 CD | 4.08 BC | 6.21 | 22.82 A | 1.77 BC |
QB8 | 10.65 C | 4.10 AB | 6.37 | 22.83 A | 1.49 C |
QB9 | 12.90 B | 4.13 AB | 6.22 | 22.83 A | 1.56 C |
QB10 | 13.39 AB | 4.10 AB | 6.29 | 23.01 A | 1.84 BC |
QB10S2 | 13.40 AB | 4.13 AB | 7.66 | 20.37 B | 1.76 BC |
QB10S4 | 13.06 AB | 4.15 A | 7.00 | 18.29 C | 1.66 C |
QB10S6 | 13.23 AB | 4.10 AB | 6.87 | 18.19 C | 1.68 C |
QB10S8 | 13.18 AB | 4.15 AB | 5.59 | 18.73 C | 1.76 BC |
QB10S10 | 13.51 A | 4.14 AB | 7.10 | 18.34 C | 1.84 BC |
SEM | 0.28 | 0.01 | 0.16 | 0.36 | 0.05 |
p-Value | ** | ** | NS | ** | ** |
Item | Quinoa + Corn | ||||
---|---|---|---|---|---|
Aflatoxin B1 (AFB1) | Zearalenone (ZEN) | Deoxynivalenol (DON) | Ochratoxins (OTA) | T-2 Toxin (T-2) | |
Number of detection groups | 18 | 18 | 18 | 18 | 18 |
Detection range/(μg·kg−1) | 14.28~30.60 | 147.41~217.12 | 339.34~388.64 | 22.91~57.47 | 23.14~46.69 |
Detection rate/% | 100 | 100 | 100 | 100 | 100 |
Excessive number | 5 | 0 | 0 | 0 | 0 |
Item | Quinoa + Stevia | ||||
---|---|---|---|---|---|
Aflatoxin B1 (AFB1) | Zearalenone (ZEN) | Deoxynivalenol (DON) | Ochratoxins (OTA) | T-2 Toxin (T-2) | |
Number of detection groups | 15 | 15 | 15 | 15 | 15 |
Detection range/(μg·kg−1) | 10.89~16.99 | 137.29~148.51 | 300.28~365.12 | 28.37~42.36 | 29.70~41.81 |
Detection rate/% | 100 | 100 | 100 | 100 | 100 |
Excessive number | 0 | 0 | 0 | 0 | 0 |
Item | Membership-Function Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
QB5 | QB6 | QB7 | QB8 | QB9 | QB10 | QB10S2 | QB10S4 | QB10S6 | QB10S8 | QB10S10 | |
CP | 0.0000 | 0.2161 | 0.2989 | 0.3425 | 0.8598 | 0.9724 | 0.9747 | 0.8966 | 0.9356 | 0.9241 | 1.0000 |
Moisture content | 1.0000 | 0.6667 | 0.5556 | 0.3333 | 0.3333 | 0.1111 | 0.3333 | 0.2222 | 0.1111 | 0.0000 | 0.2222 |
pH | 1.0000 | 0.6842 | 0.3684 | 0.2632 | 0.1053 | 0.2632 | 0.1053 | 0.0000 | 0.2632 | 0.0000 | 0.0526 |
NH3-N/TN | 0.3720 | 0.3768 | 0.7005 | 0.6232 | 0.6957 | 0.6618 | 0.0000 | 0.3188 | 0.3816 | 1.0000 | 0.2705 |
LA | 0.4668 | 0.7656 | 0.9606 | 0.9627 | 0.9627 | 1.0000 | 0.4523 | 0.0207 | 0.0000 | 0.1120 | 0.0311 |
AA | 0.0000 | 0.1688 | 0.6364 | 1.0000 | 0.9091 | 0.5455 | 0.6494 | 0.7792 | 0.7532 | 0.6494 | 0.5455 |
Molds | 1.0000 | 0.9766 | 0.8750 | 0.2422 | 0.0781 | 0.0000 | 0.2891 | 0.3516 | 0.9297 | 0.2813 | 0.4453 |
Aerobic bacteria | 0.0000 | 0.0556 | 0.0833 | 0.1944 | 0.3472 | 0.8611 | 0.9583 | 0.8611 | 0.9167 | 0.8472 | 1.0000 |
AFB1 | 0.0000 | 0.0168 | 0.2111 | 0.1826 | 0.6258 | 0.8126 | 0.7263 | 0.7753 | 0.7163 | 1.0000 | 0.8463 |
ZEN | 0.0637 | 0.0000 | 0.4774 | 0.5704 | 0.7636 | 0.8733 | 0.9001 | 1.0000 | 0.9509 | 0.8799 | 0.9884 |
DON | 0.1529 | 0.1480 | 0.3006 | 0.4171 | 0.4677 | 0.5984 | 0.3771 | 0.4716 | 1.0000 | 0.8836 | 0.0000 |
OTA | 0.1477 | 0.0000 | 0.2772 | 0.2825 | 0.6544 | 1.0000 | 0.4488 | 0.4497 | 0.4477 | 0.8431 | 0.8340 |
T-2 | 0.0000 | 0.2196 | 1.0000 | 0.4010 | 0.3426 | 0.3538 | 0.2113 | 0.5431 | 0.6674 | 0.6479 | 0.5660 |
Mean | 0.3233 | 0.3304 | 0.5188 | 0.4473 | 0.5496 | 0.6195 | 0.4943 | 0.5146 | 0.6210 | 0.6207 | 0.5232 |
Ranking | 11 | 10 | 7 | 9 | 4 | 3 | 8 | 5 | 1 | 2 | 6 |
Mixing Ratio | Additive | pH | CP | NH3-N/TN (%) | LA (g·kg−1 DM) | AA (g·kg−1 DM) | Microorganisms (lg CFU·g−1 FM) | |
---|---|---|---|---|---|---|---|---|
Mold | Aerobic Bacteria | |||||||
QB5 | Lac | 3.96 D | 9.16 h | 6.89 a | 20.44 F | 2.26 CDE | 4.18 A | 4.51 A |
Laa | 3.84 F | 9.57 gh | 6.53 ab | 27.54 C | 2.62 BC | 3.21 C | 4.35 C | |
Lai | 3.90 E | 9.86 fgh | 6.04 ab | 27.56 C | 2.69 BC | 3.13 D | 4.24 D | |
Mean | 3.90 C | 9.53 E | 6.49 a | 25.18 D | 2.52 B | 3.51 A | 4.37 A | |
QB6 | Lac | 4.02 C | 10.10 fgh | 6.88 a | 21.88 E | 2.13 CDEF | 4.15 A | 4.47 AB |
Laa | 3.90 E | 10.47 fg | 5.39 b | 28.38 ABC | 3.67 A | 2.81 G | 4.25 D | |
Lai | 3.96 D | 10.70 5fg | 6.22 ab | 27.41 C | 3.08 AB | 2.73 H | 4.20 D | |
Mean | 3.96 A | 10.43 D | 6.16 ab | 25.89 C | 2.96 A | 3.23 B | 4.31 B | |
QB7 | Lac | 4.08 B | 10.46 fg | 6.21 ab | 22.82 DE | 1.77 DEF | 4.02 B | 4.45 B |
Laa | 3.80 G | 10.93 ef | 5.57 ab | 28.36 ABC | 2.42 BCD | — | 4.24 D | |
Lai | 3.79 G | 10.53 fg | 6.04 ab | 27.63 C | 2.22 CDEF | — | 3.97 E | |
Mean | 3.89 C | 10.64 D | 5.94 ab | 26.27 BC | 2.14 C | 1.34 C | 4.22 C | |
QB8 | Lac | 4.10 AB | 10.65 fg | 6.37 ab | 22.83 DE | 1.49 EF | 3.21 C | 4.37 C |
Laa | 3.79 G | 12.08 cd | 5.38 b | 28.73 AB | 1.80 DEF | — | 4.06 E | |
Lai | 3.80 G | 11.76 de | 5.85 ab | 27.87 BC | 1.81 DEF | — | 3.97 E | |
Mean | 3.90 C | 11.50 C | 5.87 ab | 26.48 AB | 1.70 D | 1.07 D | 4.13 D | |
QB9 | Lac | 4.13 A | 12.90 bc | 6.22 ab | 22.83 DE | 1.56 EF | 3.00 E | 4.26 D |
Laa | 3.78 G | 13.66 ab | 5.44 ab | 28.75 AB | 1.60 EF | — | 3.95 E | |
Lai | 3.85 F | 12.59 bcd | 5.39 b | 28.03 BC | 1.61 EF | — | 3.80 G | |
Mean | 3.92 B | 13.05 B | 5.68 b | 26.53 AB | 1.59 D | 1.00 E | 4.00 E | |
QB10 | Lac | 4.10 AB | 13.39 ab | 6.29 ab | 23.01 D | 1.84 DEF | 2.90 F | 3.89 F |
Laa | 3.69 H | 13.64 ab | 5.18 b | 29.18 A | 1.46 F | — | 3.74 H | |
Lai | 3.77 G | 14.14 a | 3.85 ab | 28.77 AB | 1.47 F | — | 3.17 I | |
Mean | 3.85 D | 13.72 A | 5.77 ab | 26.98 A | 1.59 D | 0.97 E | 3.60 F | |
Main-effect analysis | ||||||||
p | A | ** | * | ** | ** | * | ** | ** |
B | ** | ** | NS | ** | ** | ** | ** | |
A*B | ** | NS | NS | NS | NS | ** | ** |
Treatment | Mixing Ratio | |||||
---|---|---|---|---|---|---|
QB5 | QB6 | QB7 | QB8 | QB9 | QB10 | |
Lac | 566 | 632 | 550 | 551 | 541 | 477 |
Laa | 622 | 688 | 646 | 506 | 575 | 723 |
Lai | 592 | 463 | 526 | 492 | 545 | 578 |
Mixing Ratio | Additive | Index Type | |||
---|---|---|---|---|---|
Shannon | Simpson | Chao1 | ACE | ||
QB5 | Lac | 6.25 | 0.95 | 847.52 | 914.23 |
Laa | 4.96 | 0.89 | 665.40 | 647.43 | |
Lai | 6.00 | 0.91 | 708.92 | 684.71 | |
QB6 | Lac | 6.48 | 0.96 | 781.20 | 770.03 |
Laa | 5.99 | 0.93 | 697.30 | 701.59 | |
Lai | 5.91 | 0.93 | 603.90 | 708.08 | |
QB7 | Lac | 4.82 | 0.81 | 734.72 | 776.77 |
Laa | 6.84 | 0.97 | 752.70 | 865.56 | |
Lai | 6.31 | 0.94 | 678.77 | 810.92 | |
QB8 | Lac | 6.21 | 0.94 | 741.03 | 874.80 |
Laa | 6.91 | 0.98 | 666.11 | 910.74 | |
Lai | 6.39 | 0.96 | 640.12 | 772.31 | |
QB9 | Lac | 6.76 | 0.97 | 722.50 | 886.91 |
Laa | 6.76 | 0.97 | 748.66 | 975.36 | |
Lai | 6.98 | 0.98 | 770.52 | 980.91 | |
QB10 | Lac | 7.05 | 0.98 | 675.69 | 909.40 |
Laa | 6.90 | 0.98 | 820.66 | 876.10 | |
Lai | 6.74 | 0.98 | 767.40 | 974.72 | |
SEM | 0.105 | 0.007 | 13.67 | 22.58 | |
p-Value | NS | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, C.; Li, Q.; Xiao, H.; Sun, X.; Gao, Z.; Cai, Y.; Zhao, S. Effects of Mixing Ratio and Lactic Acid Bacteria Preparation on the Quality of Whole-Plant Quinoa and Whole-Plant Corn or Stevia Powder Mixed Silage. Microorganisms 2025, 13, 78. https://doi.org/10.3390/microorganisms13010078
He C, Li Q, Xiao H, Sun X, Gao Z, Cai Y, Zhao S. Effects of Mixing Ratio and Lactic Acid Bacteria Preparation on the Quality of Whole-Plant Quinoa and Whole-Plant Corn or Stevia Powder Mixed Silage. Microorganisms. 2025; 13(1):78. https://doi.org/10.3390/microorganisms13010078
Chicago/Turabian StyleHe, Chao, Qian Li, Huaidong Xiao, Xuchun Sun, Zepeng Gao, Yuan Cai, and Shengguo Zhao. 2025. "Effects of Mixing Ratio and Lactic Acid Bacteria Preparation on the Quality of Whole-Plant Quinoa and Whole-Plant Corn or Stevia Powder Mixed Silage" Microorganisms 13, no. 1: 78. https://doi.org/10.3390/microorganisms13010078
APA StyleHe, C., Li, Q., Xiao, H., Sun, X., Gao, Z., Cai, Y., & Zhao, S. (2025). Effects of Mixing Ratio and Lactic Acid Bacteria Preparation on the Quality of Whole-Plant Quinoa and Whole-Plant Corn or Stevia Powder Mixed Silage. Microorganisms, 13(1), 78. https://doi.org/10.3390/microorganisms13010078