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Abstract: The significant microbiota variability represents a key feature that makes the
full comprehension of the functional interaction between microbiota and the host an
ongoing challenge. To overcome this limitation, in this study, fish intestinal microbiota
was analyzed through a meta-analysis, identifying the core microbiota and constructing
stochastic Bayesian network (BN) models with SAMBA. We combined three experiments
performed with gilthead sea bream juveniles of the same hatchery batch, reared at the
same season/location, and fed with diets enriched on processed animal proteins (PAP)
and other alternative ingredients (NOPAP-PP, NOPAP-SCP). Microbiota data analysis
disclosed a high individual taxonomic variability, a high functional homogeneity within
trials and highlighted the importance of the core microbiota, clustering PAP and NOPAP
fish microbiota composition. For both NOPAP and PAP BNs, >99% of the microbiota
population were modelled, with a significant proportion of bacteria (55–69%) directly
connected with the diet variable. Functional enrichment identified 11 relevant pathways
expressed by different taxa across the different BNs, confirming the high metabolic plasticity
and taxonomic heterogeneity. Altogether, these results reinforce the comprehension of the
functional bacteria–host interactions and in the near future, allow the use of microbiota
as a species-specific growth and welfare benchmark of livestock animals, and farmed fish
in particular.

Keywords: fish gut microbiome; core microbiota; processed animal proteins; functional
redundancy; taxonomical variability; microbiota biomarkers; Bayesian network; bacte-
rial functions

1. Introduction
The microbiome represents a complex environment inhabited by a large number of

microorganisms such as bacteria, archaea, virus and eukaryotes that form a dynamic equi-
librium occupying different ecological niches or organism compartments [1,2]. The last
decade has witnessed an explosion in microbiome research, but our understanding of the
structure and function of the microorganisms inhabiting the host and its surroundings
is still limited due to the personalized nature and complexity of the microbiota and host
interactions [3–5]. Certainly, according to the holobiont theory, the microbiota and host
associations represent a synergistic system that co-evolved over time towards homeostatic
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loads driven by mutualism and cooperation [6]. At the same time, the microbiota offers a
great functional redundancy that makes the host and microbiota associations from humans,
and rodents to other animal models challenging and sometimes controversial, shaping
variations in a broad range of metabolic, immunological, behavioral and reproductive host
traits [7–11]. This also applies to farmed fish, in which the manipulation of the gut micro-
biome has the potential to generate substantial improvements in aquaculture production,
that has reached 88 million tons in 2020 with a sale value of USD 265 billion [12–15].

The great variability in bacterial communities inhabiting the gut intestine of living
animals, and farmed fish in particular, remains an ongoing challenge that is difficult to solve
and exploit without considering the combined effects of host genetics and diet. Indeed,
both in gilthead sea bream and European sea bass farmed fish, there is now evidence that
the gut microbiota variability is decreased by selective breeding and improved by feed
formulations for enhanced growth [16,17]. However, in genetically selected fish, both the
inferred metagenome and wide meta-transcriptomics approaches have revealed a func-
tionally more plastic microbial community, which does not require significant alterations
in composition to cope with changes in diet [18,19]. Such observations harbor clear host
genome and metagenome interactions that are also concurrent with a more responsive
host transcriptome in fast-growing families, which would become decisive for the effec-
tive function and regulation of the holobiont system [20]. However, univocal changes
in fish gut microbiota are mostly limited to the phylum level, characterized by a high
over-representation of Pseudomonadota (formerly Proteobacteria), Bacteroidota (formerly
Bacteroidetes) and Bacillota (formerly Firmicutes) [21–23], while it remains challenging to
solve its functional redundancy in both fish and humans [24]. A strategy through which
this topic can be approached is identified via the core microbiota, defined as the most stable
and/or abundant microbial population that would also represent the most ecologically and
functionally important microbial associates [25–27].

According to the above findings, the definition of core microbiomes may assist in
addressing the efficacy of a wide range of dietary and environmental interventions, as well
as a proxy for the early indicators of dysbiosis or inflammation of the gastro-intestinal
tract (GIT), often characterized by a multi-factorial etiology [28]. Thus far, several attempts
have been made using this definition, but the significant individual variability, together
with the technical limitations due to a limited number of samples, sequencing depth,
and poorly predictable environmental factors, make it difficult to establish a robust and
commonly accepted core microbiota at a lower taxonomic level [29,30]. In any case, the
identification of the most abundant fraction of the microbiota populations is not sufficient
to fully understand its functional profile and contribution within the host’s metabolism.
The introduction of statistical learning-based models is in fact necessary to better identify
the complex features within microbiota studies. Thus, the use of Bayesian network (BN)
platforms, such as the recently published SAMBA [31], is becoming a useful tool for
investigating the close directional relationships within the social network organization
that characterize bacterial populations, but also how these microbial associations can
be modulated by one or more experimental/environmental variables [32]. However, in
contrast to the networks built for macro-organisms that are constructed using functional
and ecological macroscopic features that are easy to be measured, the microbial networks
are commonly structured only using sequencing data [33]. Such a technical limitation
represents a potential drawback that numerous Bayesian network (BN) approaches are
partially or not properly considered [34–36]. Therefore, there is a huge need to develop new
instruments to go deeper into the functionality of microbiota, and to transform bacterial
taxa into functional units rather than simple changes in the profile composition.
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In this context, to address the challenges in studying the microbiome, the aim of
the present work was to establish a robust core microbiota that would serve to re-think
the taxonomic variability and functional redundancy of the resident gut microbiota of
gilthead sea bream using a new perspective. To achieve these goals, information from
previously published gilthead sea bream feeding trials [37–39] was used herein as a unified
starting matrix. Such an approach allowed us to evaluate in juvenile fish the effect of
different dietary protein sources on the gut-associated bacterial community of fish with the
same genetic background, kept in the same experimental facility for the entire duration
of the trials. Through this multi-trial approach, we aimed to modify the classical idea
of microbiota biomarkers into a new paradigm that combines the following multiple
factors: (i) taxonomic classification, (ii) role in the bacterial network and (iii) functional
contribution to the binomial host–microbiota organization. Such a methodology does not
only represent an exclusive advance in aquaculture, but rather it can be widely applied to
other microbiome studies, where an ecological–functional analysis of the environment or
holobiont system is required.

2. Materials and Methods
2.1. Experimental Microbial Datasets

The three microbiota datasets used in this study originate from feeding trials con-
ducted in parallel (spring–summer 2020) at the indoor marine research infrastructure of
the Institute of Aquaculture of Torre de la Sal, using a marine flow through system under
natural light and temperature conditions (40◦5′N; 0◦10′ E). All fish had the same origin
(AVRAMAR, Burriana, Spain) and were fed close to the visual satiety with the following
different diet formulations: (i) a plant-based diet supplemented with an of egg white
hydrolysate preparation [37]; (ii) a free-fish meal diet with a high inclusion level of insect
meal and fermented biomass of single cell proteins (SCP) [39] and (iii) a fish meal-replacer
of processed animal proteins (PAPs) and SCPs, for a partial (50%) or total (100%) fish meal
replacement [38]. According to these feed formulations, the resulting fish groups were
re-named as NOPAP-PP, NOPAP-SCP and PAP, respectively (Table S1). In all cases, the
amplicon sequencing targeting the hypervariable 16S rRNA gene with V3–V4 primers
was used for the analysis of the microbiota composition using the Illumina MiSeq system
(Illumina Inc., San Diego, CA, USA) at the Genomics Unit from the Madrid Science Park
Foundation (FPCM, Campus de Cantoblanco, Madrid, Spain). Up to 844 Operational
Taxonomic Units (OTUs) were assigned using the Ribosomal Database Project (RDP). Bac-
terial taxonomy was then updated according to SILVA v138.1 database, one of the most
referenced and updated 16S rRNA databases. Sample depth was normalized by total sum
scaling and then made proportional to the total sequencing depth [40].

2.2. The Inferred Metagenome

The analysis of the functional profile of the three gut microbiota datasets was per-
formed by uploading the taxa raw counts to the SAMBA platform, and the fasta file with all
the sequences associated to a given bacterial taxon. As already described [31], the inferred
metagenome analysis was performed using PICRUSt2 protocol, assigning metagenomic
functions using the Kyoto Encyclopedia of Genes and Genomes database (KEGG) [41]. To
evaluate the possible differences in significantly impacted pathways due to the nutritional
intervention, pathway analysis was performed independently within each experimental
feeding trial.
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2.3. The Bayesian Network Construction

All the data from the three microbial datasets were used to perform a functional meta-
analysis of the gut microbiota using a BN approach. For this purpose, the construction of
several BNs was carried out using the SAMBA tool. In brief, the BNs were built under the
following parameters: bacterial taxa were normalized using Equation (1); taxa with a zero
total counts of normalized data were removed; to fit the model, the Zero-inflated Negative
Binomial (ZINB) distribution of the normalized microbial abundances was used and the
strength of each connection (edge) in the model was calculated using Bayesian information
criterion (BIC) and mutual information (MI) criterion, fixing the threshold at MI < 0.05 and
BIC < 0. To further deepen the analysis, once the BN was obtained, the identification of
clusters of nodes densely connected was performed using the Leiden community detection
method [42]. Then, to infer their metabolic and functional profile, for each cluster, an
enrichment was carried out using the clusterProfiler 4.0 R package [43] based on the KEGG
database for the pathway functional annotation protocol.

NCij =
Xij × ∑N

n=1 Xin(
∑T

t=1 Xtj

) (1)

where NCij is the normalized count for a taxon i in a concrete sample j; Xij is the raw counts
of a concrete taxon i in a specific sample j; N is the number of samples in the dataset and T
is the number of taxa in the dataset.

2.4. Statistical Analysis

The identification of statistical differences between the experimental groups in the
taxonomic bacterial profile was determined by the Kruskal–Wallis test, with a significant
threshold of p < 0.05, while the differences regarding the inferred metagenome analysis
were performed with the R Bioconductor package DESeq2 (version 1.42.1) using default
parameters. The metagenomic pathways were considered differentially represented using
an FDR corrected significance threshold (p-adjusted) of 0.05. The comparison between
the bacterial profiles of the three different bacterial datasets was analyzed by partial least-
squares discriminant analysis (PLS-DA) using EZinfo v3.0 (Umetrics, Umeå, Sweden).
The outlier’s identification was performed using Hotelling’s T2 statistic, setting a 95%
confidence limit for T2. The quality of the PLS-DA model obtained was evaluated by
the parameters R2Y (cum) and Q2 (cum). A validation test of the PLS-DA model was
performed using the Bioconductor R package ropls, consisting of 500 random permutations.
The OTUs that most contributed to group separation were determined by the minimum
variable importance in the projection (VIP) values, using a VIP threshold ≥ 1.2. The
analysis of the significance of the functional enrichment of the BN clusters was calculated
with clusterProfiler package, using a hypergeometric test. This statistical test evaluated
whether the number of selected OTUs in each cluster, and enriched for a given pathway,
is greater than what would be expected by chance. The background data used for this
comparison were taken from the list of OTUs and sequences obtained so far by the group
of Nutrigenomics and Fish Growth Endocrinology of the Institute of Aquaculture Torre de
la Sal (IATS-CSIC), Spain (approximately 20k sequences). Significance values were then
adjusted for multiple testing using the Benjamini–Hochberg method to control the false
discovery rate (FDR), ensuring that the likelihood of type I errors was minimized across
the tests conducted.
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3. Results
3.1. The Discordance of Taxonomical and Functional Microbiota Profiles

For assessing the differences between the taxonomical and functional profile of the
intestinal microbiota composition, an inferred metagenome analysis was performed. Con-
sidering each feeding trial separately, the results showed that at a lower taxonomic level,
the microbiota populations exhibited a high variability not only among the experimental
groups (Table S2), but also considering an inter-sample evaluation. In fact, Figure 1a illus-
trates the high heterogeneity at a genus level of the taxa distribution along the different
samples, and the impossibility of delineating a common pattern within or between the
three trials.
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Conversely, the profiles obtained by the inferred metagenome defined a metabolic 
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KEGG pathways level 2). The same organization scheme is achieved regardless of the level 
defined by the KEGG database. This conserved functional distribution is confirmed by the 
absence of significant differences in the potential metabolic capacity between groups 
within the same trial for each one of the recognized pathways (see Table S3).

3.2. Discriminant Analysis Unveiled the Core Discriminant Microbiota

To further confirm the different microbial profile among the three feeding trials, a 
multivariate analysis was performed and statistically validated by a permutation test (Fig-
ure S1). The resulting PLSDA model (Figure 2a) showed a clear separation of the three 
experimental groups along the two components, which together account for 94% of the 

Figure 1. This is a stacked bar chart representing the taxonomic profile (a), reported as relative
abundance of bacterial genera, and the inferred functional profile (b), reported as the level 3 KEGG
metabolic pathways. Each column represents each sample considered. Samples are grouped accord-
ing to the feeding trials (NOPAP-PP, PAP, NOPAP-SCP).

Conversely, the profiles obtained by the inferred metagenome defined a metabolic
pathways distribution, which clearly suggests a conserved pattern of functions (Figure 1b;
KEGG pathways level 2). The same organization scheme is achieved regardless of the level
defined by the KEGG database. This conserved functional distribution is confirmed by
the absence of significant differences in the potential metabolic capacity between groups
within the same trial for each one of the recognized pathways (see Table S3).

3.2. Discriminant Analysis Unveiled the Core Discriminant Microbiota

To further confirm the different microbial profile among the three feeding trials, a
multivariate analysis was performed and statistically validated by a permutation test
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(Figure S1). The resulting PLSDA model (Figure 2a) showed a clear separation of the three
experimental groups along the two components, which together account for 94% of the
observed variance (R2Y (cum), p < 0.02) and 87% of the predicted variance (Q2 (cum),
p < 0.02). The separation between the three groups was driven by a total of 157 bacteria
having a VIP value > 1.2. Between all the datasets considered, the number of bacteria
shared by all the three experiments was 227 (Figure 2b). From this group of common
taxa, the core microbiota was calculated using an increasing restriction gradient filter. The
results, shown in the concentric circle nested diagram (Figure 2c), highlighted 48 bacteria
that were represented in more than 50% of all the analyzed samples (C), 16 of which were
present in more than 50% of samples of each experiment (B) and 10 bacteria which account
for more than 50% of the sample of each experimental group within each trial (A). The
complete list of core microbiota, which together represent the average of 45% of the total
bacterial population, is detailed (average abundance in each experiment/total abundance)
in Table S4.
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tion, a meta-analysis was carried out through the construction of a stochastic BN using 
the merged dataset taken from the combination of the three feeding trials. The structure 
was designed to only focus on the microbial interactions using the taxa counts 

Figure 2. The two-dimensional PLS-DA score plot represents the distribution of the samples between
the first two components in the model of the NOPAP-PP, PAP and NOPAP-SCP feeding trials.
Four samples belonging to the NOPAP trial were excluded from the model because considered
as outliers (a). Venn diagram reporting unique and shared taxa considering the total intestinal
microbiota datasets of the three feeding trials (b). Concentric circle nested diagram representing the
core microbiota within the 227 common taxa identified, divided by the rank of restrictiveness of the
applied filter (c).
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3.3. Independent Bayesian Network Meta-Analysis Revealed Reliable Gut Microbiota and
Diet Associations

To identify the positive and negative causal connections within the bacterial popu-
lation, a meta-analysis was carried out through the construction of a stochastic BN using
the merged dataset taken from the combination of the three feeding trials. The structure
was designed to only focus on the microbial interactions using the taxa counts distribu-
tion, without considering the potential contribution of diet as a qualitative experimental
variable. The resulting network (Figure 3) was composed of a total of 413 nodes involved
in 117 edges and grouped in 41 clusters, after the application of the Leiden community
detection method.
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From the 48 bacteria identified as core microbiota, only 17 taxa were highly intercon-
nected within the network reported in Figure 4, following the previously established cat-
egories (A; B; C). Within this list, 70% of the nodes in total act as parents (100% Par) in the 
edges in which they are involved. This aspect confers great importance on the core micro-
biota as it can influence a large portion of the remaining bacterial population. In addition 
to its role in the network, Figure 4 also reports the average abundance and the normalized 
counts of the core microbiota. As already indicated, these bacteria together represent an 
abundant fraction of the microbiota, and so they reflect a valid sample of the whole pro-
karyotic community associated with each trial. From this perspective, the tendency exhib-
ited in the three different abundance profiles was to cluster together the NOPAP-PP and 
NOPAP-SCP microbiota patterns, while the PAP group emerges as a different taxa count 
distribution. This feature confirms the strong influence of the diet on gut microbiota, 
bringing together the two experimental groups that share a more similar feed composition 
among the three feeding trials.

Figure 3. Bayesian network constructed using the three feeding trial merged datasets. The model only
reports the microbial interactions, obtained by the taxa counts distribution. Green arrows represent
positive interactions between nodes, while red arrows represent negative dependences. The core
microbiota nodes are represented by the circles with the outline in bold in the figure.

From the 48 bacteria identified as core microbiota, only 17 taxa were highly inter-
connected within the network reported in Figure 4, following the previously established
categories (A; B; C). Within this list, 70% of the nodes in total act as parents (100% Par) in
the edges in which they are involved. This aspect confers great importance on the core
microbiota as it can influence a large portion of the remaining bacterial population. In
addition to its role in the network, Figure 4 also reports the average abundance and the
normalized counts of the core microbiota. As already indicated, these bacteria together
represent an abundant fraction of the microbiota, and so they reflect a valid sample of
the whole prokaryotic community associated with each trial. From this perspective, the
tendency exhibited in the three different abundance profiles was to cluster together the
NOPAP-PP and NOPAP-SCP microbiota patterns, while the PAP group emerges as a differ-
ent taxa count distribution. This feature confirms the strong influence of the diet on gut
microbiota, bringing together the two experimental groups that share a more similar feed
composition among the three feeding trials.
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Figure 4. Dot plot representing the core microbiota taxa which actively participate in the edges of 
the BN reported in Figure 3. In the table, the core sub-groups are reported, as indicated in Figure 2c, 
the belonging cluster in the BN, the centrality degree (C. Degree), which represents the total number 
of edges where the node is involved and the percentage of parent (Par %), which indicates the per-
centage that the node plays in the role of parent compared to the total of its connections. Taxa are 
colored depending on the core sub-groups, as indicated in Figure 2c. In the dot plot, color scale 
represents the mean relative abundance, in percentage, of each taxon within each group. The size of 
the dots represents normalized counts in each group.

3.4. Combined Bayesian Network Analysis Disclosed a Highly Interconnected Core Microbiota 
with Changes in Diet Composition

Following the dietary-driven effects upon the core gut microbiota, the construction 
of two different BNs was considered. The first BN, defined as NOPAP, combined the mi-
crobiota datasets of the NOPAP-PP and NOPAP-SCP trials (Figure 5a); while the second 
BN, defined as PAP, only referred to the PAP-SCP trial (Figure 5b). Contrary to the model 
reported in Figure 3, these networks were constructed using the qualitative variable 
“Diet”, which allowed information to be obtained on the distribution of taxa with respect 
to their dependence on the experimental variable. The complete list of nodes and edges 
for both BNs is reported in Table S5. The two constructed BNs present the same structure, 
as follows: the Cluster 0, which contains the nodes isolated from the network and without 
connections with it; clusters of nodes which are involved in edges, but not directly/indi-
rectly connected with the experimental variables, and only represent a range from 4 to 
10% of the total number of edges (grey clusters in Figure 5) and clusters which present a 
direct/indirect connection with the variable “Diet”, which represent the rest of the total 
edges (the BN reported in Figure 5). According to all this, in the network, the modelled 
gut microbiota almost covers 100% of the taxa abundances (99.78 and 99.69% for NOPAP 
and PAP BNs, respectively). Within this percentage, the nodes connected to the experi-
mental variable represent the majority, accounting for 69.28% in NOPAP BN and 55.43% 

Figure 4. Dot plot representing the core microbiota taxa which actively participate in the edges of
the BN reported in Figure 3. In the table, the core sub-groups are reported, as indicated in Figure 2c,
the belonging cluster in the BN, the centrality degree (C. Degree), which represents the total number
of edges where the node is involved and the percentage of parent (Par %), which indicates the
percentage that the node plays in the role of parent compared to the total of its connections. Taxa
are colored depending on the core sub-groups, as indicated in Figure 2c. In the dot plot, color scale
represents the mean relative abundance, in percentage, of each taxon within each group. The size of
the dots represents normalized counts in each group.

3.4. Combined Bayesian Network Analysis Disclosed a Highly Interconnected Core Microbiota with
Changes in Diet Composition

Following the dietary-driven effects upon the core gut microbiota, the construction
of two different BNs was considered. The first BN, defined as NOPAP, combined the
microbiota datasets of the NOPAP-PP and NOPAP-SCP trials (Figure 5a); while the second
BN, defined as PAP, only referred to the PAP-SCP trial (Figure 5b). Contrary to the model
reported in Figure 3, these networks were constructed using the qualitative variable “Diet”,
which allowed information to be obtained on the distribution of taxa with respect to their
dependence on the experimental variable. The complete list of nodes and edges for both
BNs is reported in Table S5. The two constructed BNs present the same structure, as follows:
the Cluster 0, which contains the nodes isolated from the network and without connections
with it; clusters of nodes which are involved in edges, but not directly/indirectly connected
with the experimental variables, and only represent a range from 4 to 10% of the total
number of edges (grey clusters in Figure 5) and clusters which present a direct/indirect
connection with the variable “Diet”, which represent the rest of the total edges (the BN
reported in Figure 5). According to all this, in the network, the modelled gut microbiota
almost covers 100% of the taxa abundances (99.78 and 99.69% for NOPAP and PAP BNs,
respectively). Within this percentage, the nodes connected to the experimental variable
represent the majority, accounting for 69.28% in NOPAP BN and 55.43% in PAP BN;
meanwhile, the bacteria not connected to the main structure only represent a minor fraction
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of the population. Within the two BNs, Figure 5c, d report the presence of the core
microbiota in the nodes and in the edges, respectively. These results show that for both
networks, the ratio between core taxa and the total number of nodes remains almost
constant in Cluster 0 and in the nodes connected to the variable. Instead, in the group of the
taxa not connected to the Diet, the core bacteria only represent the 3% in the NOPAP BN,
while they constitute 66% of the total in the PAP BN. Regarding the edges, the proportions
of core taxa were the same between the two models.
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connected to the variable (Sum %). The bar plot representing the number of core microbial taxa 
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core microbiota is involved or not, compared to the total number of dependencies, for both the mod-
els (d).

3.5. Functional Redundancy Analysis

The results of the functional enrichment analysis of the clusters recognized by the 
NOPAP and PAP BNs is reported in Table 1. Up to four and eight clusters exhibit a sig-
nificant function enrichment in NOPAP and PAP BNs, respectively. These results suggest 
that groups of highly inter-connected bacteria can determine functional specialization, but 
at the same time confirms the functional redundancy of microbiota, as different clusters 
within the same population can express the same function.

Figure 5. Bayesian networks representing NOPAP (a) and PAP (b) models. Circles represent bacterial
taxa and squares represent the experimental variable (Diet). The tables report numbers and colors of
the clusters (cluster 0 and the clusters colored in grey are not represented in the figure), the relative
abundance of the taxa composing each cluster (Abun %) and the sum of the relative abundances
according to the following groups: cluster 0; clusters connected to the variable, clusters not connected
to the variable (Sum %). The bar plot representing the number of core microbial taxa compared to the
total number of nodes belonging to the three categories already defined, for both the models, NOPAP
and PAP BNs (c). The bar plot representing the number of edges in which the core microbiota is
involved or not, compared to the total number of dependencies, for both the models (d).

3.5. Functional Redundancy Analysis

The results of the functional enrichment analysis of the clusters recognized by the
NOPAP and PAP BNs is reported in Table 1. Up to four and eight clusters exhibit a
significant function enrichment in NOPAP and PAP BNs, respectively. These results suggest
that groups of highly inter-connected bacteria can determine functional specialization, but
at the same time confirms the functional redundancy of microbiota, as different clusters
within the same population can express the same function.
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Table 1. List of significant (p-adjusted < 0.05) functional enrichments obtained for both NOPAP and
PAP models and divided by the clusters that express them.

NOPAP

Clusters Level 2 Description Ratio Bg Ratio p Value p. Adjust

2

Biosynthesis of other secondary
metabolites

Flavone and flavonol
biosynthesis 5/19 182/3364 0.003 0.033

Biosynthesis of other secondary
metabolites Biosynthesis of various alkaloids 3/19 58/3364 0.004 0.037

Folding, sorting and degradation Proteasome 8/19 440/3364 0.002 0.026

Immune system RIG-I-like receptor signaling
pathway 10/19 420/3364 <0.001 0.001

5

Biosynthesis of other secondary
metabolites Staurosporine biosynthesis 5/11 239/3364 0.001 0.014

Biosynthesis of other secondary
metabolites Isoflavonoid biosynthesis 3/11 95/3364 0.003 0.022

Digestive system Bile secretion 5/11 183/3364 <0.001 0.011
Endocrine system Relaxin signaling pathway 2/11 12/3364 0.001 0.014

Endocrine system Parathyroid hormone synthesis,
secretion and action 4/11 146/3364 0.001 0.014

Endocrine system Melanogenesis 3/11 84/3364 0.002 0.021
Immune system Platelet activation 2/11 22/3364 0.002 0.021
Infectious disease: bacterial Yersinia infection 3/11 107/3364 0.004 0.026
Metabolism of terpenoids and

polyketides
Biosynthesis of type II polyketide
products 3/11 136/3364 0.008 0.044

Nervous system Retrograde endocannabinoid
signaling 3/11 97/3364 0.003 0.022

Signaling molecules and
interaction ECM-receptor interaction 2/11 36/3364 0.006 0.033

7
Immune system RIG-I-like receptor signaling

pathway 11/33 420/3364 0.001 0.037

Biosynthesis of other secondary
metabolites

Flavone and flavonol
biosynthesis 7/33 182/3364 0.002 0.037

8 Biosynthesis of other secondary
metabolites Indole alkaloid biosynthesis 5/11 212/3364 <0.001 0.013

PAP

1

Folding, sorting and degradation Proteasome 9/17 440/3364 <0.001 0.004
Digestive system Bile secretion 6/17 183/3364 <0.001 0.004
Biosynthesis of other secondary

metabolites
Biosynthesis of various other
secondary metabolites 7/17 331/3364 0.001 0.009

3 Endocrine system Parathyroid hormone synthesis,
secretion and action 4/10 146/3364 0.001 0.034

4

Cell growth and death Cellular senescence 2/10 20/3364 0.001 0.009

Circulatory system Vascular smooth muscle
contraction 2/10 20/3364 0.001 0.009

Circulatory system Adrenergic signaling in
cardiomyocytes 2/10 38/3364 0.005 0.015

Digestive system Gastric acid secretion 2/10 33/3364 0.004 0.013
Digestive system Bile secretion 3/10 183/3364 0.014 0.035

Endocrine system Regulation of lipolysis in
adipocytes 3/10 25/3364 <0.001 0.002

Endocrine system Melanogenesis 4/10 84/3364 <0.001 0.002
Endocrine system Relaxin signaling pathway 2/10 12/3364 0.001 0.006
Endocrine system Oxytocin signaling pathway 3/10 64/3364 0.001 0.008
Endocrine system GnRH signaling pathway 3/10 72/3364 0.001 0.009
Endocrine system Renin secretion 4/10 209/3364 0.002 0.009

Endocrine system Aldosterone synthesis and
secretion 2/10 32/3364 0.004 0.013
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Table 1. Cont.

NOPAP

Clusters Level 2 Description Ratio Bg Ratio p Value p. Adjust

4

Environmental adaptation Circadian entrainment 2/10 26/3364 0.002 0.009
Immune system Platelet activation 2/10 22/3364 0.002 0.009

Immune system RIG-I-like receptor signaling
pathway 5/10 420/3364 0.004 0.014

Immune system C-type lectin receptor signaling
pathway 2/10 38/3364 0.005 0.015

Nervous system Cholinergic synapse 2/10 22/3364 0.002 0.009
Nervous system Long-term potentiation 2/10 25/3364 0.002 0.009

Nervous system Retrograde endocannabinoid
signaling 3/10 97/3364 0.002 0.009

Sensory system Inflammatory mediator regulation
of TRP channels 2/10 22/3364 0.002 0.009

Signal transduction Ras signaling pathway 3/10 68/3364 0.001 0.008
Signal transduction NF-kappa B signaling pathway 2/10 25/3364 0.002 0.009
Signal transduction TNF signaling pathway 2/10 25/3364 0.002 0.009
Signal transduction VEGF signaling pathway 2/10 26/3364 0.002 0.009
Signal transduction Apelin signaling pathway 2/10 38/3364 0.005 0.015
Signal transduction Calcium signaling pathway 3/10 151/3364 0.008 0.022
Signal transduction Sphingolipid signaling pathway 3/10 170/3364 0.012 0.03

5
Xenobiotics biodegradation and

metabolism Bisphenol degradation 2/3 68/3364 0.001 0.043

Infectious disease: bacterial Yersinia infection 2/3 107/3364 0.003 0.043

6 Lipid metabolism Steroid biosynthesis 4/6 259/3364 <0.001 0.012

7 Biosynthesis of other secondary
metabolites

Flavone and flavonol
biosynthesis 3/4 182/3364 0.001 0.011

8 Biosynthesis of other secondary
metabolites Staurosporine biosynthesis 5/13 239/3364 0.001 0.043

9 Transcription Spliceosome 1/3 18/3364 0.016 0.048

This feature was further corroborated by the comparisons made between the two trial
networks. In fact, as reported in Figure 6a, from the total of 44 metabolic functions identi-
fied, only 11 were significantly expressed by both models, and included relaxin signaling
pathways, parathyroid hormone synthesis, bile secretion, flavone and flavonol biosynthe-
sis, endocannabinoid signaling pathway and staurosporine biosynthesis, among others.
For each shared function, the number of bacteria involved in its expression was ana-
lyzed. The results underlined how there is an almost total lack of taxonomic overlap
between the two profiles in the expression of the same function. In fact, as illustrated in
Figure 6b, less than 4% of the bacteria that appear in both models are involved in the same
metabolic pathway.

Apart from this small fraction, the list of unique bacteria at genus level that expressed a
significant enrichment in the two BN models are shown in Figure 7. Although the influence
of the diet can modify the microbiota structure enhancing its functional plasticity, which is
reflected in the higher variability at a low taxonomical level, at a higher classification level
(Phylum), the distribution of taxa follows the normal gut microbiota profile of gilthead sea
bream, characterized by the major abundance of Pseudomonadota, and to a lesser extent
by Actinomycetota and Bacillota.
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classification level (Phylum), the distribution of taxa follows the normal gut microbiota 
profile of gilthead sea bream, characterized by the major abundance of Pseudomonadota, 
and to a lesser extent by Actinomycetota and Bacillota.

Figure 7. Sankey diagrams reporting the list of genera and Phyla which express the 11 inferred met-
abolic functions, associated to the NOPAP (a) and PAP (b) conditions.

4. Discussion
The blooming of the microbiome studies during the last decades has brought to light 

the high taxonomic variability and functional stability in the bacterial communities in 
oceans, soils and holobionts [4,29,44–48]. Such observation is in line with our meta-analy-
sis approach in which the bacterial variability disclosed within and between each one of 
the three analyzed feeding trials corroborated and extended the notion that the diet is a 
main regulator of the gut microbiota in fish [18,24,49–51]. Moreover, the inferred func-
tional enrichment of bacteria taxons disclosed a similar KEGG (level 3) functional pattern 
regardless of trial in terms of the ratio and presence/absence of a given function (Figure 
1). This is the usual pattern in humans [8,52,53], but also in plants, macroalgae and animal 
[10,54–56] bacterial–host associations, which suggests a similar evolutionary trend along 
all biological systems. This makes sense under a high variable host–microbiota scenario 
that has evolved to achieve a certain balance and stability at the same time, in order to 
guarantee the success in dealing with disturbing events [26,57,58]. In other words, very 
distant phylogenetically microorganisms could be able to express the same specific func-
tions, meaning that a great taxonomical modification does not automatically mean a sub-
stantial remodeling of the bacterial metabolic capacity [9,11,54]. Certainly, when compar-
ing marine-farmed fish strains of gilthead sea bream [16,18] and European sea bass [17] 
with a different growth potentiality, it appears that the gut microbial combination that 
provides a high microbiome taxonomic variability and functional redundancy is not the 
most advantageous and profitable situation in terms of fish performance. Therefore, the 
identification of the particular bacterial groups commanding the effects of a determined 
genetic or nutritional intervention arises as necessary for identifying the main factors reg-
ulating the microbial community. Our approach, based on a combination of core microbi-
ota and BN calculation, represents one of the first steps towards this goal.

The definition of a healthy gut microbiota under a specific condition is now a recur-
rent topic in aquaculture, because the microbial community inhabiting within and sur-
rounding farmed fish contributes directly to productivity in terms of growth, disease re-
sistance and animal welfare [59–61]. However, our approach aimed to transcend the 
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analysis approach in which the bacterial variability disclosed within and between each
one of the three analyzed feeding trials corroborated and extended the notion that the
diet is a main regulator of the gut microbiota in fish [18,24,49–51]. Moreover, the inferred
functional enrichment of bacteria taxons disclosed a similar KEGG (level 3) functional
pattern regardless of trial in terms of the ratio and presence/absence of a given function
(Figure 1). This is the usual pattern in humans [8,52,53], but also in plants, macroalgae
and animal [10,54–56] bacterial–host associations, which suggests a similar evolutionary
trend along all biological systems. This makes sense under a high variable host–microbiota
scenario that has evolved to achieve a certain balance and stability at the same time, in
order to guarantee the success in dealing with disturbing events [26,57,58]. In other words,
very distant phylogenetically microorganisms could be able to express the same specific
functions, meaning that a great taxonomical modification does not automatically mean
a substantial remodeling of the bacterial metabolic capacity [9,11,54]. Certainly, when
comparing marine-farmed fish strains of gilthead sea bream [16,18] and European sea
bass [17] with a different growth potentiality, it appears that the gut microbial combination
that provides a high microbiome taxonomic variability and functional redundancy is not
the most advantageous and profitable situation in terms of fish performance. Therefore, the
identification of the particular bacterial groups commanding the effects of a determined
genetic or nutritional intervention arises as necessary for identifying the main factors
regulating the microbial community. Our approach, based on a combination of core
microbiota and BN calculation, represents one of the first steps towards this goal.

The definition of a healthy gut microbiota under a specific condition is now a recurrent
topic in aquaculture, because the microbial community inhabiting within and surrounding
farmed fish contributes directly to productivity in terms of growth, disease resistance and
animal welfare [59–61]. However, our approach aimed to transcend the simple characteri-
zation of gut microbiota, passing through the identification of microbial associations that
can account for the most relevant and active portion of the whole microbial community
from a holobiont point of view. In the present study, the first step taken in this direction
was to calculate the core microbiota shared from the three feeding trials, each one with
different diet formulations but with some overlapping. Such approach rendered a highly
conserved core microbiota across feeding trials, which was composed of 10 genera (Vibrio,
Bacillus, Pseudomonas, Sphingomonas, Acinetobacter, Corynebacterium, Clostridium, Staphylo-
coccus, Enterococcus and Streptococcus) after the application of restrictive filters (Figure 2).
This list is in accordance with previous studies, which have indicated a core microbial
population mostly composed by generalist taxa that might be able to use a wider range
of resources and to occupy different niches and host compartments [25,62,63]. However,
this consideration of core microbiota is limited to a taxonomic perspective and does not
consider its real functional role within the community [26,27,29,64]. In this regard, one
of the first definitions of functional core microbiota was introduced by Lemanceau and
coworkers [65], who considered the microorganisms as mere vehicles of genes (replicators)
that have the potential to exert essential functions with a main impact on the growth and
health of the holobiont system. We aimed to go further with the BN approach, which
highlighted the important functional role of the core microbiota acting as parents in most
of the established hierarchical relationships. However, it remains elusive whether this is a
constant trait on a temporal or spatial basis when considering different productive and/or
biological sources of variation, as stated before by several authors [27,66]. Anyway, the
study of the core microbiota represents an effective strategy for pinpointing a representa-
tive sub-group of the entire population. Moreover, within this subset, the identification
of microbial associations and the effect of the diet variable was easier to compare and
evaluate, reinforcing the importance of a small list of bacteria in the maintenance and
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regulation of the host–microbial cross talk, but also upon the control and stability of the
entire bacterial community through the synthesis and processing of certain metabolites and
signal molecules [27,67].

On a closer look, the separate identification of the core microbiota in each feeding trial
shaped a relatively high similarity of NOPAP-PP and NOPAP-SCP fish groups, tearing
apart the PAP group, which was mainly driven by the Vibrio, Staphylococcus, Sphingomonas,
Gordonia, Bradyrhizobium and Novosphingobium genera (Figures 3 and 4). These results
are aligned to the gut microbial differences already reported when comparing fish fed
with diets enriched in PAP and NOPAP ingredients [37–39]. Based on this evidence, a
second approach recalculated two different BNs (one for NOPAP fish and one for PAP fish)
including the effect of the variable diet in the resulting bacterial networks. Interestingly,
both models exhibited the significant influence of the diet on the microbial community,
connecting up to ~130 taxa representing more than the 50% of the total bacterial abundance
(~70% in NOPAP; ~56% in PAP). Therefore, the introduction of the variable diet induced
the re-calculation of the causal dependencies between bacteria, increasing the number of
interconnected bacteria. Despite this, the core microbiota still played an important role at
the hierarchical level in both PAP and NOPAP BNs, representing almost 50% of the total
bacterial population (Figure 5). Moreover, the results showed that the core takes part in
about half of the network relationships (47.5% in NOPAP; 51.3% in PAP BN).

As a general trend, the identification of the heavily connected variable is a crucial
feature in network science due to its wider applicability and capacity to solve several
associated problems, but also to visualize and quantify sub-groups of nodes, generally
defined as modules or communities, which can have particular properties participating
in dynamic processes [68,69]. In agreement with this, the Leiden clustering algorithm
classified our annotated bacteria with strict stochastic relationships. Among them, the
isolated nodes included in cluster 0 represented a low, but consistent (~10%), fraction
of the intestinal microbiota not correlated with the variable diet. This cluster contained
bacteria belonging to the Photobacterium, Propionibacterium and Actinomyces genera in the
NOPAP BN; and Psychrobacter, Actinobacillus and Bacteroides in the PAP BN. The presence
of this bacteria is a common feature in a wide range of species, including Atlantic salmon
(Salmo salar), Atlantic cod (Gadus morhua), gilthead sea bream and fine flounder (Paralichthys
adspersus), though our results might suggest that their presence is mostly independent of the
nutritional background [37,38,70–75]. The role of these nodes in the gut microbial network
is still under evaluation and clarification, but they remained separate from the principal
hierarchical structure. Conversely, the rest of the clusters that encompassed bacteria with
the variable diet become especially relevant for evaluating the nutritionally regulated
microbiota, which emphasized the ability of these bacterial associations to potentially
express or take part in specific metabolic pathways not necessarily distributed equally
within a larger bacterial population. Following this pattern, some functions were widely
distributed among different bacteria clusters (Table 1). Interestingly, overlapping KEGG
pathways were also found between PAP and NOPAP BNs, which referred among others to
flavone and flavonoid biosynthesis, bile secretion, the relaxin signaling pathway, retrograde
endocannabinoid signaling and staurosporine biosynthesis (Figure 6a). Whitin this list,
those functions related to the metabolism of bile salts and flavonoids are part of the
bacteria–host associations. Thus, numerous microbial taxa, including members of lactic
acid bacteria, and the genera Clostridium and Bacteroides [76], have been shown to be
able to hydrolyze and oxidize primary bile acids through the action of stereospecific
hydroxysteroid dehydrogenases [77]. In addition, strictly anaerobic bacteria, such as the
genus Clostridium XIVa and XI, are capable of further biotransformation of bile acids,
rendering the formation of secondary bile acids derivates. These molecules are important
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for the intestinal homeostasis, as they can be used by the host for nutritional purposes,
but also because they act as modulators of the bacterial populations, both promoting the
bacteria capable of metabolizing these substrates and inhibiting the intestine colonization
by other microbial competitors [78]. Likewise, gut microbiota can play an important role
in the metabolism of flavonoids, contributing to activating these compounds and making
them more bioavailable to the host. Certainly, studies in humans have demonstrated
that the resulting end products help to improve intestinal health and mitigate metabolic
disease [79,80]. Similar positive results have been documented in fish, where the addition
of flavonoids in the diet promoted growth and flesh quality, reducing the risk of oxidative
stress [81,82].

According to all the above findings [16,83–85], a full comprehension of the gut micro-
biota function in fish is still far away [16,83–85]. This gap in the knowledge is intrinsic to
the microbiota variability, which complicates the measurement of the real contribution of
each bacterial population to the host’s physiology. Despite this, some promising results
were described herein for some of the metabolic pathways, which resulted in positive
correlation with abundant taxa like Vibrio, Photobacterium and Propionibacterium [37–39].
Similar relevant host–bacteria associations have been observed by Piazzon et al. (2020)
and Naya-Català et al. (2022), who described a better physiological adaptation and a
more plastic microbiota in genetically selected gilthead sea bream families for enhanced
growth [16,18]. The microbial community can, in fact, be an effective actor in many bio-
chemical reactions that can have local effects or reach distant organs, such as the nervous
system, modulating in turn the behavioral patterns and contributing to the success of the
holobiont fitness [86–89]. However, in line with a largely documented functional redun-
dancy [7,11,54], our results highlighted that almost all the microorganisms associated to a
given function were clearly different in the PAP and NOPAPA BNs. This main outcome
confirmed the metabolic plasticity of the bacteria, but also unveiled the specific effect of
the PAP and NOPAP diet formulations in the modulation and reorganization of the whole
microbiota population. However, detailed indications on the association between bacteria
and diet are difficult to find in the literature as they are scarce and fragmentary. Several
authors have in fact described changes in some microbiota taxa focusing more on changes
in the proximal composition of feed, or hardly reaching low taxonomic levels, such as
genera or species [90,91]. In this context, the two different lists of bacteria in Figure 7
represent a step forward in the discovery of a strong link that joins the presence/abundance
of certain microorganisms with a given feed ingredient. These groups in fact contain bac-
teria associated with NOPAP (e.g., Vibrio, Marinomonas, Propionibacterium, Brevundimonas,
Staphylococcus), and PAP feeds (e.g., Tetrasphaera, Paracoccus, Bacillus, Clostridium XIVa,
Streptococcus), in addition to some bacteria taxa (Acinetobacter, Bacillus, Arthrobacter and
Enterobacter) previously identified as core microbiota. Ultimately, their strict stochastic
dependency with the diet makes these genera the first candidates to be defined as reliable
microbiota biomarkers, combining taxonomy classification, community hierarchy and
functional contribution. From this perspective, these results emphasize the need to increase
the number of pivotal prokaryotic indicators associated with precise farming conditions.
To achieve this goal, corroborate the present results and obtain more robust models and
predictions, it will be necessary to feed the system with more data. Further development
of this work will rely on specific experimental setups, designed to emphasize the effects
of environmental variables important for aquaculture, such as water temperature, salinity
and oxygen level, and considering longitudinal studies to reveal the temporal evolutions of
microbiota. Finally, the ultimate step in this research will consider the integration of metage-
nomic, transcriptomic and metabolomic data, using SAMBA as a multi-omics platform, to
discover in detail the intimate connections between microbiota, host, diet and environment.
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5. Conclusions
The results of this study, from a computational and a meta-analysis perspective,

highlighted the high taxonomical variability and functional redundancy of the intestinal mi-
crobiota composition of gilthead sea bream, bringing to light these intrinsic characteristics
also in the aquaculture sector, in which these features are still underestimated. Although
very useful in a natural environment, the highest microbial biodiversity and functional
plasticity may not be the most profitable scenario in a producing farming condition. For
this reason, the identification of the most influential multi-factorial markers within the
microbiota population is crucial in understanding the interconnection between bacteria
and host and to maximize the benefits. To achieve this goal, the approach used in this work
was developed around the definition of a robust core microbiota and the construction of
Bayesian networks. The achieved results confirmed the crucial importance of the core mi-
crobiota as an effective synthesis unit of the whole microbiota populations, also introducing
an innovative protocol to determine the structural hierarchy and the functional profiles of
the different clusters of bacteria in response to a distinct nutritional background. Several
and repetitive applications of this protocol will ultimately reinforce the comprehension
of the cross-talk within the holobiont system, integrating the contribution of the healthy
core microbiota and the novel microbiota biomarkers, associated with precise farming and
environmental conditions, but defined using a new paradigm which combine taxonomy,
community organization and functional features. This sequence of processes makes the
present perspective a useful improvement for increasing the knowledge about fish intestinal
microbiota. Such new information, together with their future experimental and empirical
confirmations, will fill the existing gaps in aquaculture, allowing further development of
the sector through the modulation and investigation of those small differences in the fish
microbiome that functional redundancy and taxonomic variability can mask.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms13010198/s1, Figure S1: graphical representation
of the validation of the PLS-DA model by random permutations. Representation of the contribution
of each component to variance explained (R2Y) and predicted (Q2), driving the separation of the
three experiments (NOPAP-PP, PAP, NOPAP-SCP); Table S1: ingredients and chemical composition
of experimental diets used in the three different feeding trials used (NOPAP-PP, PAP, NOPAP-SCP),
as reported in the published works [37–39]; Table S2: complete list of taxa represented in Figure 1a
reporting their relative abundance in each experimental groups within each experiment (NOPAP-PP,
PAP, NOPAP-SCP) and the p-value, obtained by Kruskal–Wallis test between groups; Table S3: results
of DESeq analysis carried out on the inferred metagenomic functional enrichment analysis of the
three experiments (NOPAP-PP, PAP, NOPAP-SCP), using the whole microbiota populations. The
results are reported for each comparison within each experiment and divided by both level 2 and
level 3 of KEGG pathway description assignations; Table S4: complete list of nodes representing the
core microbiota within the merged BN reported in Figure 3, classified by the categories (A; B; C)
showed in Figure 2c, and reporting their relative abundances in each experiment (NOPAP-PP, PAP,
NOPAP-SCP); Table S5: complete list of nodes and edges of both BNs (NOPAP; PAP) illustrated in
Figure 5a,b. The nodes report the core microbiota category, the number of clusters of which it is part,
the centrality degree (C. Degree), the value of parent (Par %), and its total average abundance. The
edges report the parent taxa and the child taxa, indicating for both the cluster of which each node is
part, the BIC, MI value and the score which together define the strength of each causal dependency
of both models.
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