Characterization and Probiotic Potential of Levilactobacillus brevis DPL5: A Novel Strain Isolated from Human Breast Milk with Antimicrobial Properties Against Biofilm-Forming Staphylococcus aureus
<p>Optical density (600 nm) after culturing in the presence of different sugars in a <span class="html-italic">Lactobacillus brevis</span> DPL5.</p> "> Figure 2
<p>Effect of different concentrations of sodium chloride on the growth of <span class="html-italic">Levilactobacillus brevis</span> DPL5.</p> "> Figure 3
<p>Survival of <span class="html-italic">L. brevis</span> DPL5 in different acidic conditions.</p> "> Figure 4
<p>Antagonistic activity against nasal <span class="html-italic">Staphylococcus aureus</span> strain: Plug diffusion test with 24 h (<b>A</b>), 48 h (<b>B</b>), and 72 h (<b>C</b>) <span class="html-italic">L. brevis</span> DPL5 cultivated on MRS agar. Agar well diffusion test showing the activity of <span class="html-italic">L. brevis</span> DPL5 cell-free supernatant (50 µL) after anaerobic cultivation in MRS broth for 24 h (<b>D</b>) and 48 h (<b>E</b>).</p> "> Figure 5
<p>Effect of different concentrations of lyophilized <span class="html-italic">L. brevis</span> DPL5 cell-free supernatant on the intensity of biofilm formation in nasal <span class="html-italic">S. aureus</span> strains.</p> "> Figure 6
<p>Confirmation of the <span class="html-italic">L. brevis</span> DPL5 via genome-to-genome comparisons in TYGS.</p> "> Figure 7
<p>Genomic maps of the clusters of the lanthipeptide class IV, T3PKS region, and RiPP-like region of the <span class="html-italic">L. brevis</span> DPL5.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Breast Milk Sample Collection
2.2. Bacterial Isolation and Identification and Culture Conditions
2.3. Probiotic Potential Assessment
2.3.1. Assimilation of Different Types of Carbon Sources and Osmotic Sensitivity
2.3.2. Bile Salt Tolerance
2.3.3. Acid Tolerance
2.3.4. Determination of Antibiotic Susceptibility
2.4. Preparation and Lyophilization of L. brevis Cell-Free Supernatant (LCFS)
2.5. Antagonistic Activity Against S. aureus
2.6. Minimum Inhibitory Concentration (MIC) Assay
2.7. Microtiter Plate Assay and Anti-Biofilm Activity
2.8. DNA Extraction, Sequencing, and Assembly
2.8.1. Genome-Based Identification and MultiLocus Sequence Typing (MLST)
2.8.2. Genome Annotation
2.9. Statistical Analysis
3. Results
3.1. Assimilation of Different Types of Carbon Sources and Osmotic Sensitivity
3.2. Bile Salt Tolerance
3.3. Acid Tolerance
3.4. Determination of Antibiotic Susceptibility
3.5. Antagonistic Effect of L. brevis DPL5 Using Plug-Diffusion and Well-Diffusion Methods
3.6. Antimicrobial Activity of DPL5
3.7. Genomic Exploration of L. brevis DPL5 through Whole Genome-Sequencing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lyons, K.E.; Ryan, C.A.; Dempsey, E.M.; Ross, R.P.; Stanton, C. Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health. Nutrients 2020, 12, 1039. [Google Scholar] [CrossRef]
- Asenova, A.; Hristova, H.; Ivanova, S.; Miteva, V.; Zhivkova, I.; Stefanova, K.; Moncheva, P.; Nedeva, T.; Urshev, Z.; Marinova-Yordanova, V.; et al. Identification and Characterization of Human Breast Milk and Infant Fecal Cultivable Lactobacilli Isolated in Bulgaria: A Pilot Study. Microorganisms 2024, 12, 1839. [Google Scholar] [CrossRef]
- Zhang, X.; Mushajiang, S.; Luo, B.; Tian, F.; Ni, Y.; Yan, W. The Composition and Concordance of Lactobacillus Populations of Infant Gut and the Corresponding Breast-Milk and Maternal Gut. Front. Microbiol. 2020, 11, 597911. [Google Scholar] [CrossRef]
- Shewale, R.N.; Sawale, P.D.; Khedkar, C.D.; Singh, A. Selection Criteria for Probiotics: A Review. Int. J. Probiotics Prebiotics 2014, 9, 17–22. [Google Scholar]
- Binda, S.; Hill, C.; Johansen, E.; Obis, D.; Pot, B.; Sanders, M.E.; Tremblay, A.; Ouwehand, A.C. Criteria to Qualify Microorganisms as “Probiotic” in Foods and Dietary Supplements. Front. Microbiol. 2020, 11, 1662. [Google Scholar] [CrossRef]
- Li, S.W.; Watanabe, K.; Hsu, C.C.; Chao, S.H.; Yang, Z.H.; Lin, Y.J.; Chen, C.C.; Cao, Y.M.; Huang, H.C.; Chang, C.H.; et al. Bacterial Composition and Diversity in Breast Milk Samples from Mothers Living in Taiwan and Mainland China. Front. Microbiol. 2017, 8, 965. [Google Scholar] [CrossRef]
- Piqué, N.; Berlanga, M.; Miñana-Galbis, D. Health Benefits of Heat-Killed (Tyndallized) Probiotics: An Overview. Int. J. Mol. Sci. 2019, 20, 2534. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Curtis, N. Breast Milk Microbiota: A Review of the Factors That Influence Composition. J. Infect. 2020, 81, 78–88. [Google Scholar] [CrossRef]
- Soto, A.; Martín, V.; Jiménez, E.; Mader, I.; Rodríguez, J.M.; Fernández, L. Lactobacilli and Bifidobacteria in Human Breast Milk: Influence of Antibiotherapy and Other Host and Clinical Factors. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Łubiech, K.; Twarużek, M. Lactobacillus Bacteria in Breast Milk. Nutrients 2020, 12, 3783. [Google Scholar] [CrossRef]
- Ayivi, R.D.; Gyawali, R.; Krastanov, A.; Aljaloud, S.O.; Worku, M.; Tahergorabi, R.; da Silva, R.C.; Ibrahim, S.A. Lactic Acid Bacteria: Food Safety and Human Health Applications. Dairy 2020, 1, 202–232. [Google Scholar] [CrossRef]
- Daif, A.; Zer, Y.; Erinmez, M. Lactobacillus Species in Breast Milk: Do They Get Affected by Birth Style? Clin. Exp. Health Sci. 2022, 12, 390–395. [Google Scholar] [CrossRef]
- Rahmati-Joneidabad, M.; Alizadeh Behbahani, B.; Taki, M.; Hesarinejad, M.A.; Said Toker, O. Evaluation of the Probiotic, Anti-Microbial, Anti-Biofilm, and Safety Properties of Levilactobacillus Brevis Lb13H. LWT 2024, 207, 116636. [Google Scholar] [CrossRef]
- Lee, Y.S.; Yu, H.Y.; Kwon, M.; Lee, S.H.; Park, J.I.; Seo, J.; Kim, S.K. Probiotic Characteristics and Safety Assessment of Lacticaseibacillus Casei KGC1201 Isolated from Panax Ginseng. J. Microbiol. Biotechnol. 2023, 33, 519–526. [Google Scholar] [CrossRef]
- Park, E.J.; Chun, J.; Cha, C.J.; Park, W.S.; Jeon, C.O.; Bae, J.W. Bacterial Community Analysis during Fermentation of Ten Representative Kinds of Kimchi with Barcoded Pyrosequencing. Food Microbiol. 2012, 30, 197–204. [Google Scholar] [CrossRef]
- FAO/WHO. Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria-Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food; FAO: Rome, Italy, 2001. [Google Scholar]
- De Chiara, I.; Marasco, R.; Della Gala, M.; Fusco, A.; Donnarumma, G.; Muscariello, L. Probiotic Properties of Lactococcus Lactis Strains Isolated from Natural Whey Starter Cultures. Foods 2024, 13, 957. [Google Scholar] [CrossRef]
- Deng, Z.; Hou, K.; Zhao, J.; Wang, H. The Probiotic Properties of Lactic Acid Bacteria and Their Applications in Animal Husbandry. Curr. Microbiol. 2022, 79, 22. [Google Scholar] [CrossRef] [PubMed]
- Tuo, Y.; Song, X.; Song, Y.; Liu, W.; Tang, Y.; Gao, Y.; Jiang, S.; Qian, F.; Mu, G. Screening Probiotics from Lactobacillus Strains According to Their Abilities to Inhibit Pathogen Adhesion and Induction of Pro-Inflammatory Cytokine IL-8. J. Dairy Sci. 2018, 101, 4822–4829. [Google Scholar] [CrossRef]
- EFSA BIOHAZ Panel (Panel on Biological Hazards). Update of the List of QPS-Recommended Biological Agents Intentionally Added to Food or Feed as Notified to EFSA 4: Suitability of Taxonomic Units Notified to EFSA Until March 2016; EFSA J 14:E04522; EFSA: Parma, Italy, 2016. [Google Scholar]
- Kim, S.H.; Kim, W.J.; Kang, S.S. Inhibitory Effect of Bacteriocin-Producing Lactobacillus Brevis DF01 and Pediococcus Acidilactici K10 Isolated from Kimchi on Enteropathogenic Bacterial Adhesion. Food Biosci. 2019, 30, 100425. [Google Scholar] [CrossRef]
- Kim, N.N.; Kim, W.J.; Kang, S.S. Anti-Biofilm Effect of Crude Bacteriocin Derived from Lactobacillus Brevis DF01 on Escherichia Coli and Salmonella Typhimurium. Food Control 2019, 98, 274–280. [Google Scholar] [CrossRef]
- Hojjati, M.; Behabahani, B.A.; Falah, F. Aggregation, Adherence, Anti-Adhesion and Antagonistic Activity Properties Relating to Surface Charge of Probiotic Lactobacillus Brevis Gp104 against Staphylococcus Aureus. Microb. Pathog. 2020, 147, 104420. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus Aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed]
- Grundmann, H.; Aanensen, D.M.; Van Den Wijngaard, C.C.; Spratt, B.G.; Harmsen, D.; Friedrich, A.W.; Sabat, A.J.; Muilwijk, J.; Monen, J.; Tami, A.; et al. Geographic Distribution of Staphylococcus Aureus Causing Invasive Infections in Europe: A Molecular-Epidemiological Analysis. PLoS Med. 2010, 7, e1000215. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Tang, Z.Y.; Cui, S.Y.; Ma, Z.B.; Deng, H.; Kong, W.L.; Yang, L.W.; Lin, C.; Xiong, W.G.; Zeng, Z.L. Biofilm Production Ability, Virulence and Antimicrobial Resistance Genes in Staphylococcus Aureus from Various Veterinary Hospitals. Pathogens 2020, 9, 264. [Google Scholar] [CrossRef]
- Rushdy, A.A.; Gomaa, E.Z. Antimicrobial Compounds Produced by Probiotic Lactobacillus Brevis Isolated from Dairy Products. Ann. Microbiol. 2013, 63, 81–90. [Google Scholar] [CrossRef]
- Azam, M.; Srivastava, R.; Ahmed, T. Isolation and Characterization of Bacteriocin Producing Levilactobacillus Brevis Strain ABRIINW-K from Buffalo Dung. J. Pure Appl. Microbiol. 2024, 18, 2137–2146. [Google Scholar] [CrossRef]
- Bergey, D.H. Vol 3: The Firmicutes. In Bergey’s Manual of Systematic Bacteriology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2009. [Google Scholar]
- Menconi, A.; Kallapura, G.; Latorre, J.D.; Morgan, M.J.; Pumford, N.R.; Hargis, B.M.; Tellez, G. Identification and Characterization of Lactic Acid Bacteria in a Commercial Probiotic Culture. Biosci. Microbiota Food Health 2014, 33, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Melo, T.A.; Dos Santos, T.F.; De Almeida, M.E.; Junior, L.A.G.F.; Andrade, E.F.; Rezende, R.P.; Marques, L.M.; Romano, C.C. Inhibition of Staphylococcus Aureus Biofilm by Lactobacillus Isolated from Fine Cocoa. BMC Microbiol. 2016, 16, 1–9. [Google Scholar] [CrossRef]
- Sharma, P.; Tomar, S.K.; Sangwan, V.; Goswami, P.; Singh, R. Antibiotic Resistance of Lactobacillus Sp. Isolated from Commercial Probiotic Preparations. J. Food Saf. 2016, 36, 38–51. [Google Scholar] [CrossRef]
- Haryani, Y.; Halid, N.A.; Guat, G.S.; Nor-Khaizura, M.A.R.; Hatta, M.A.M.; Sabri, S.; Radu, S.; Hasan, H. High Prevalence of Multiple Antibiotic Resistance in Fermented Food-Associated Lactic Acid Bacteria in Malaysia. Food Control 2023, 147, 109558. [Google Scholar] [CrossRef]
- György, É.; Laslo, É.; Antal, M.; András, C.D. Antibiotic Resistance Pattern of the Allochthonous Bacteria Isolated from Commercially Available Spices. Food Sci. Nutr. 2021, 9, 4550–4560. [Google Scholar] [CrossRef]
- Čuvalová, A.; Kmeť, V. Inhibition of Staphylococcus Aureus Biofilm by Lactobacillus Supernatant and Plant Extracts. J. Food Nutr. Res. 2018, 57, 250. [Google Scholar]
- Elleuch, L.; Shaaban, M.; Smaoui, S.; Mellouli, L.; Karray-Rebai, I.; Fourati-Ben Fguira, L.; Shaaban, K.A.; Laatsch, H. Bioactive Secondary Metabolites from a New Terrestrial Streptomyces Sp. TN262. Appl. Biochem. Biotechnol. 2010, 162, 579–593. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Magaldi, S.; Mata-Essayag, S.; Hartung De Capriles, C.; Perez, C.; Colella, M.T.; Olaizola, C.; Ontiveros, Y. Well Diffusion for Antifungal Susceptibility Testing. Int. J. Infect. Dis. 2004, 8, 39–45. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Methods for Diluition Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, 9th ed.; CLSI Document M07-A9; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Tatusova, T.; Dicuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of Microbial Genomes Using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic Resistome Surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef] [PubMed]
- Doster, E.; Lakin, S.M.; Dean, C.J.; Wolfe, C.; Young, J.G.; Boucher, C.; Belk, K.E.; Noyes, N.R.; Morley, P.S. MEGARes 2.0: A Database for Classification of Antimicrobial Drug, Biocide and Metal Resistance Determinants in Metagenomic Sequence Data. Nucleic Acids Res. 2020, 48, D561–D569. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zheng, D.; Zhou, S.; Chen, L.; Yang, J. VFDB 2022: A General Classification Scheme for Bacterial Virulence Factors. Nucleic Acids Res 2022, 50, D912–D917. [Google Scholar] [CrossRef] [PubMed]
- Gänzle, M.G.; Follador, R. Metabolism of Oligosaccharides and Starch in Lactobacilli: A Review. Front. Microbiol. 2012, 3, 340. [Google Scholar] [CrossRef]
- Goh, Y.J.; Klaenhammer, T.R. Genetic Mechanisms of Prebiotic Oligosaccharide Metabolism in Probiotic Microbes. Annu. Rev. Food Sci. Technol. 2015, 6, 137–156. [Google Scholar] [CrossRef] [PubMed]
- Becerra, J.E.; Yebra, M.J.; Monedero, V. An L-Fucose Operon in the Probiotic Lactobacillus Rhamnosus GG Is Involved in Adaptation to Gastrointestinal Conditions. Appl. Environ. Microbiol. 2015, 81, 3880–3888. [Google Scholar] [CrossRef] [PubMed]
- Saier, M.H.; Ye, J.J.; Klinke, S.; Nino, E. Identification of an Anaerobically Induced Phosphoenolpyruvate-Dependent Fructose-Specific Phosphotransferase System and Evidence for the Embden-Meyerhof Glycolytic Pathway in the Heterofermentative Bacterium Lactobacillus Brevis. J. Bacteriol. 1996, 178, 314–316. [Google Scholar] [CrossRef]
- Ye, J.J.; Saier, M.H. Allosteric Regulation of the Glucose:H+ Symporter of Lactobacillus Brevis: Cooperative Binding of Glucose and HPr(Ser-P). J. Bacteriol. 1995, 177, 1900–1902. [Google Scholar] [CrossRef]
- Cui, S.; Zhao, J.; Liu, X.; Chen, Y.Q.; Zhang, H.; Chen, W. Maximum-Biomass Prediction of Homofermentative Lactobacillus. J. Biosci. Bioeng. 2016, 122, 52–57. [Google Scholar] [CrossRef]
- Glaasker, E.; Konings, W.N.; Poolman, B. Osmotic Regulation of Intracellular Solute Pools in Lactobacillus Plantarum. J. Bacteriol. 1996, 178, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Sleator, R.D.; Hill, C. Bacterial Osmoadaptation: The Role of Osmolytes in Bacterial Stress and Virulence. FEMS Microbiol. Rev. 2002, 26, 49–71. [Google Scholar] [CrossRef] [PubMed]
- Dodoo, C.C.; Wang, J.; Basit, A.W.; Stapleton, P.; Gaisford, S. Targeted Delivery of Probiotics to Enhance Gastrointestinal Stability and Intestinal Colonisation. Int. J. Pharm. 2017, 530, 224–229. [Google Scholar] [CrossRef]
- Wang, C.; Cui, Y.; Qu, X. Mechanisms and Improvement of Acid Resistance in Lactic Acid Bacteria. Arch. Microbiol. 2018, 200, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Hart, C.A.; Sales, D.; Roberts, N.B. Bacterial Killing in Gastric Juice—Effect of PH and Pepsin on Escherichia Coli and Helicobacter Pylori. J. Med. Microbiol. 2006, 55, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Mättö, J.; Alakomi, H.L.; Vaari, A.; Virkajärvi, I.; Saarela, M. Influence of Processing Conditions on Bifidobacterium Animalis Subsp. Lactis Functionality with a Special Focus on Acid Tolerance and Factors Affecting It. Int. Dairy. J. 2006, 16, 1029–1037. [Google Scholar] [CrossRef]
- Sarbini, S.; Hung, P.; Hassan, S. Evaluation of Bacteria Isolated from the Gastrointestinal Tract of Termites (Coptotermes Curvignathus) as Potential Probiotics. J. Agric. Food Dev. 2019, 5, 63–70. [Google Scholar] [CrossRef]
- Fontana, A.; Falasconi, I.; Molinari, P.; Treu, L.; Basile, A.; Vezzi, A.; Campanaro, S.; Morelli, L. Genomic Comparison of Lactobacillus Helveticusstrains Highlights Probiotic Potential. Front. Microbiol. 2019, 10, 1380. [Google Scholar] [CrossRef]
- Panghal, A.; Jaglan, S.; Sindhu, N.; Anshid, V.; Sai Charan, M.V.; Surendran, V.; Chhikara, N. Microencapsulation for Delivery of Probiotic Bacteria. In Nanotechnology in the Life Sciences; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Chuah, L.O.; Shamila-Syuhada, A.K.; Liong, M.T.; Rosma, A.; Thong, K.L.; Rusul, G. Physio-Chemical, Microbiological Properties of Tempoyak and Molecular Characterisation of Lactic Acid Bacteria Isolated from Tempoyak. Food Microbiol. 2016, 58, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Nozari, S.; Faridvand, Y.; Etesami, A.; Ahmad Khan Beiki, M.; Miresmaeili Mazrakhondi, S.A.; Abdolalizadeh, J. Potential Anticancer Effects of Cell Wall Protein Fractions from Lactobacillus Paracasei on Human Intestinal Caco-2 Cell Line. Lett. Appl. Microbiol. 2019, 69, 148–154. [Google Scholar] [CrossRef]
- Anisimova, E.A.; Yarullina, D.R. Antibiotic Resistance of LACTOBACILLUS Strains. Curr. Microbiol. 2019, 76, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Campedelli, I.; Mathur, H.; Salvetti, E.; Clarke, S.; Rea, M.C.; Torriani, S.; Ross, R.P.; Hill, C.; O’Toole, P.W. Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp. Appl. Environ. Microbiol. 2019, 85, e01738-18. [Google Scholar] [CrossRef]
- Anisimova, E.; Gorokhova, I.; Karimullina, G.; Yarullina, D. Alarming Antibiotic Resistance of Lactobacilli Isolated from Probiotic Preparations and Dietary Supplements. Antibiotics 2022, 11, 1557. [Google Scholar] [CrossRef] [PubMed]
- Rokon-Uz-Zaman, M.; Bushra, A.; Pospo, T.A.; Runa, M.A.; Tasnuva, S.; Parvin, M.S.; Islam, M.T. Detection of Antimicrobial Resistance Genes in Lactobacillus Spp. from Poultry Probiotic Products and Their Horizontal Transfer among Escherichia coli. Vet. Anim. Sci. 2023, 20, 100292. [Google Scholar] [CrossRef]
- Das, D.J.; Shankar, A.; Johnson, J.B.; Thomas, S. Critical Insights into Antibiotic Resistance Transferability in Probiotic Lactobacillus. Nutrition 2020, 69, 110567. [Google Scholar] [CrossRef] [PubMed]
- Sabdaningsih, A.; Cristianawati, O.; Sibero, M.T.; Nuryadi, H.; Radjasa, O.K.; Sabdono, A.; Trianto, A. Screening Antibacterial Agent from Crude Extract of Marine-Derived Fungi Associated with Soft Corals against MDR-Staphylococcus Haemolyticus. IOP Conf. Ser. Earth Environ. Sci. 2017, 55, 012026. [Google Scholar] [CrossRef]
- Sikorska, H.; Smoragiewicz, W. Role of Probiotics in the Prevention and Treatment of Meticillin-Resistant Staphylococcus Aureus Infections. Int. J. Antimicrob. Agents 2013, 42, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, C.; Donders, G.G.; Palmeira-de-Oliveira, R.; Queiroz, J.A.; Tomaz, C.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, A. Bacteriocin Production of the Probiotic Lactobacillus Acidophilus KS400. AMB Express 2018, 8, 153. [Google Scholar] [CrossRef] [PubMed]
- Koohestani, M.; Moradi, M.; Tajik, H.; Badali, A. Effects of Cell-Free Supernatant of Lactobacillus Acidophilus LA5 and Lactobacillus Casei 431 against Planktonic Form and Biofilm of Staphylococcus Aureus. Vet. Res. Forum 2018, 9, 301–306. [Google Scholar] [CrossRef]
- Colautti, A.; Orecchia, E.; Comi, G.; Iacumin, L. Lactobacilli, a Weapon to Counteract Pathogens through the Inhibition of Their Virulence Factors. J. Bacteriol. 2022, 204, e0027222. [Google Scholar] [CrossRef]
- Fornitano, A.; Amendola, I.; Santos, S.; Silva, C.; Leao, M. Lactobacillus Rhamnosus versus Staphylococcus Aureus: Influence on Growth and Expression of Virulence Factors. J. Dent. Maxillofac. Res. 2019, 2, 29–33. [Google Scholar] [CrossRef]
- Yüksek, F.K.; Gümüş, D.; Turan, D.B.T.B.; Nakipoğlu, Y.; Adaletï, R.; Küçüker, A.M. Cell-Free Supernatants of Lactobacilli Inhibit Methicilin-Resistant Staphylococcus Aureus, Vancomycin-Resistant Enterococcus and Carbapenem-Resistant Klebsiella Strains. Ege Tıp Dergisi 2021, 60, 332–339. [Google Scholar] [CrossRef]
- Ramezani, M.; Zainodini, N.; Hakimi, H.; Zarandi, E.R.; Bagheri, V.; Bahramabadi, R.; Zare-Bidaki, M. Cell-Free Culture Supernatants of Lactobacilli Modify the Expression of Virulence Factors Genes in Staphylococcus Aureus. Jundishapur J. Microbiol. 2019, 12, e96806. [Google Scholar] [CrossRef]
- Fang, F.; Xu, J.; Li, Q.; Xia, X.; Du, G. Characterization of a Lactobacillus Brevis Strain with Potential Oral Probiotic Properties. BMC Microbiol. 2018, 18, 1–9. [Google Scholar] [CrossRef]
- Singh, V.; Ganger, S.; Patil, S. Characterization of Lactobacillus Brevis with Potential Probiotic Properties and Biofilm Inhibition against Pseudomonas Aeruginosa. Proceedings 2020, 66, 14. [Google Scholar] [CrossRef]
- Al Kassaa, I.; Hober, D.; Hamze, M.; Chihib, N.E.; Drider, D. Antiviral Potential of Lactic Acid Bacteria and Their Bacteriocins. Probiotics Antimicrob. Proteins 2014, 6, 177–185. [Google Scholar] [CrossRef]
- Saidi, N.; Saderi, H.; Owlia, P.; Soleimani, M. Anti-Biofilm Potential of Lactobacillus Casei and Lactobacillus Rhamnosus Cell-Free Supernatant Extracts against Staphylococcus Aureus. Adv. Biomed. Res. 2023, 12, 50. [Google Scholar] [CrossRef] [PubMed]
- Bnfaga, A.A.; Lee, K.W.; Than, L.T.L.; Amin-Nordin, S. Antimicrobial and Immunoregulatory Effects of Lactobacillus Delbrueckii 45E against Genitourinary Pathogens. J. Biomed. Sci. 2023, 30, 1–19. [Google Scholar] [CrossRef]
- Chi, H.; Holo, H. Synergistic Antimicrobial Activity Between the Broad Spectrum Bacteriocin Garvicin KS and Nisin, Farnesol and Polymyxin B Against Gram-Positive and Gram-Negative Bacteria. Curr. Microbiol. 2018, 75, 272–277. [Google Scholar] [CrossRef]
- Parastan, R.; Kargar, M.; Solhjoo, K.; Kafilzadeh, F. Staphylococcus Aureus Biofilms: Structures, Antibiotic Resistance, Inhibition, and Vaccines. Gene Rep. 2020, 20, 100739. [Google Scholar] [CrossRef]
- Okuda, K.I.; Zendo, T.; Sugimoto, S.; Iwase, T.; Tajima, A.; Yamada, S.; Sonomoto, K.; Mizunoe, Y. Effects of Bacteriocins on Methicillin-Resistant Staphylococcus Aureus Biofilm. Antimicrob. Agents Chemother. 2013, 57, 5572–5579. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, Y.; Luo, X.; Chen, X.; Wang, G. Impact of Cell-Free Supernatant of Lactic Acid Bacteria on Staphylococcus Aureus Biofilm and Its Metabolites. Front. Vet. Sci. 2023, 10, 01184989. [Google Scholar] [CrossRef] [PubMed]
- Prete, R.; Long, S.L.; Joyce, S.A.; Corsetti, A. Genotypic and Phenotypic Characterization of Food-Associated Lactobacillus Plantarum Isolates for Potential Probiotic Activities. FEMS Microbiol. Lett. 2021, 367, fnaa076. [Google Scholar] [CrossRef]
- Xu, H.; Liu, W.; Zhang, W.; Yu, J.; Song, Y.; Menhe, B.; Zhang, H.; Sun, Z. Use of Multilocus Sequence Typing to Infer Genetic Diversity and Population Structure of Lactobacillus Plantarum Isolates from Different Sources. BMC Microbiol. 2015, 15, 241. [Google Scholar] [CrossRef]
- Abriouel, H.; Pérez Montoro, B.; Casimiro-Soriguer, C.S.; Pérez Pulido, A.J.; Knapp, C.W.; Caballero Gómez, N.; Castillo-Gutiérrez, S.; Estudillo-Martínez, M.D.; Gálvez, A.; Benomar, N. Insight into Potential Probiotic Markers Predicted in Lactobacillus Pentosus MP-10 Genome Sequence. Front. Microbiol. 2017, 8, 891. [Google Scholar] [CrossRef]
- Mollova, D.; Gozmanova, M.; Apostolova, E.; Yahubyan, G.; Iliev, I.; Baev, V. Illuminating the Genomic Landscape of Lactiplantibacillus Plantarum PU3—A Novel Probiotic Strain Isolated from Human Breast Milk, Explored through Nanopore Sequencing. Microorganisms 2023, 11, 2440. [Google Scholar] [CrossRef]
- Rodionov, D.A.; Arzamasov, A.A.; Khoroshkin, M.S.; Iablokov, S.N.; Leyn, S.A.; Peterson, S.N.; Novichkov, P.S.; Osterman, A.L. Micronutrient Requirements and Sharing Capabilities of the Human Gut Microbiome. Front. Microbiol. 2019, 10, 1316. [Google Scholar] [CrossRef]
- Albarracin, L.; Raya Tonetti, F.; Fukuyama, K.; Suda, Y.; Zhou, B.; Baillo, A.A.; Fadda, S.; Saavedra, L.; Kurata, S.; Hebert, E.M.; et al. Genomic Characterization of Lactiplantibacillus Plantarum Strains Possessing Differential Antiviral Immunomodulatory Activities. Bacteria 2022, 1, 136–160. [Google Scholar] [CrossRef]
- Abriouel, H.; Casado Muñoz, M.d.C.; Lavilla Lerma, L.; Pérez Montoro, B.; Bockelmann, W.; Pichner, R.; Kabisch, J.; Cho, G.S.; Franz, C.M.A.P.; Gálvez, A.; et al. New Insights in Antibiotic Resistance of Lactobacillus Species from Fermented Foods. Food Res. Int. 2015, 78, 465–481. [Google Scholar] [CrossRef]
- Onyango, S.O.; Juma, J.; De Paepe, K.; Van de Wiele, T. Oral and Gut Microbial Carbohydrate-Active Enzymes Landscape in Health and Disease. Front. Microbiol. 2021, 12, 653448. [Google Scholar] [CrossRef]
- Sanders, M.E.; Akkermans, L.M.A.; Haller, D.; Hammerman, C.; Heimbach, J.; Hörmannsperger, G.; Huys, G.; Levy, D.D.; Lutgendorff, F.; Mack, D.; et al. Safety Assessment of Probiotics for Human Use. Gut Microbes 2010, 1, 164–185. [Google Scholar] [CrossRef]
- Lacombe-Harvey, M.È.; Brzezinski, R.; Beaulieu, C. Chitinolytic Functions in Actinobacteria: Ecology, Enzymes, and Evolution. Appl. Microbiol. Biotechnol. 2018, 102, 7219–7230. [Google Scholar] [CrossRef]
- Travin, D.Y.; Bikmetov, D.; Severinov, K. Translation-Targeting RiPPs and Where to Find Them. Front. Genet. 2020, 11, 226. [Google Scholar] [CrossRef]
- Han, S.-W.; Won, H.-S. Advancements in the Application of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs). Biomolecules 2024, 14, 479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, J.; Kalimuthu, S.; Liu, J.; Song, Z.M.; He, B.B.; Cai, P.; Zhong, Z.; Feng, C.; Neelakantan, P.; et al. A Systematically Biosynthetic Investigation of Lactic Acid Bacteria Reveals Diverse Antagonistic Bacteriocins That Potentially Shape the Human Microbiome. Microbiome 2023, 11, 91. [Google Scholar] [CrossRef]
Medium | Bile Salts Concentration (%) | ||
---|---|---|---|
0.3% | 1% | 3% | |
MRS | 72 ± 0.31 | 41 ± 0.23 | 6 ± 0.34 |
MRS with 7% lactose | 84 ± 051 | 52 ± 0.24 | 10 ± 0.13 |
Antibiotic Category | Name of Antibiotics | Dosage (µg) | Diameter of Inhibition Circle (mm) | Drug Sensitivity |
---|---|---|---|---|
Aminoglycosides | Amikacin | 30 | 11.32 ± 0.41 | R |
Tetracyclines | Tetracycline | 30 | 22.07 ± 1.15 | S |
Cephalosporins | Ceftazidime | 10 | 19.03 ± 0.68 | S |
Cefazolin | 30 | 22.51 ± 0.98 | S | |
Ceftriaxon | 30 | 9.61 ± 0.58 | R | |
Cefepime | 30 | 21.45 ± 0.83 | S | |
Quinolones | Ciprofloxacin | 5 | 21.5 ± 1.25 | S |
β-Lactamase inhibitor complex | Ampicillin/Sulbactam | 10 | 26.08 ± 1.05 | S |
Biofilm Inhibitory Concertation | Bacteriostatic Concentration | Bactericidal Concentration | |||||||
---|---|---|---|---|---|---|---|---|---|
BIC50 | BIC75 | BIC99 | MIC50 | MIC75 | MIC99 | BC50 | BC75 | BC99 | |
Estimate probability | 9.847 | 13.589 | 29.908 | 26.23 | 31.64 | 44.88 | 28.304 | 36.656 | 69.048 |
Lower Bound | 8.291 | 11.366 | 21.749 | 22.91 | 27.86 | 38.76 | 24.111 | 31.415 | 52.738 |
Upper Bound | 11.831 | 17.704 | 53.759 | 30.45 | 37.42 | 55.71 | 33.229 | 46.198 | 117.907 |
Probiotic Activity | Genes |
---|---|
Acid and bile tolerance | rpsS, pepF, kup, fabH, guaA, uvrA, dltA, dltC, dltD, pyk, recA, atpC, atpD, atpG, atpA, atpH, atpF, atpE, atpB, |
Acid stress/bile resistance/temperature | grpE, dnaJ, luxS, dnaK, eno, pgk. pgi, tpiA, gap, uvrA, nhaC |
Adhesion | tuf, lspA |
Antioxidant | msrA, msrB, trxA, tpx, nrdH, mntH |
Bile resistance | rplD, rpsC, rplE, rplF, rpsE, argS, lpdA, glnA, pyrG |
Cell wall formation or adhesion | murA |
Cold stress | rnr |
Immunomodulation | dltB, dltC, dltD |
Ionic and heavy metal stress resistance | corA |
Oxidative stress | msrB |
Proteases | clpX |
Temperature stress | hrcA, hslV, htpX |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iliev, I.; Yahubyan, G.; Apostolova-Kuzova, E.; Gozmanova, M.; Mollova, D.; Iliev, I.; Ilieva, L.; Marhova, M.; Gochev, V.; Baev, V. Characterization and Probiotic Potential of Levilactobacillus brevis DPL5: A Novel Strain Isolated from Human Breast Milk with Antimicrobial Properties Against Biofilm-Forming Staphylococcus aureus. Microorganisms 2025, 13, 160. https://doi.org/10.3390/microorganisms13010160
Iliev I, Yahubyan G, Apostolova-Kuzova E, Gozmanova M, Mollova D, Iliev I, Ilieva L, Marhova M, Gochev V, Baev V. Characterization and Probiotic Potential of Levilactobacillus brevis DPL5: A Novel Strain Isolated from Human Breast Milk with Antimicrobial Properties Against Biofilm-Forming Staphylococcus aureus. Microorganisms. 2025; 13(1):160. https://doi.org/10.3390/microorganisms13010160
Chicago/Turabian StyleIliev, Ivan, Galina Yahubyan, Elena Apostolova-Kuzova, Mariyana Gozmanova, Daniela Mollova, Iliya Iliev, Lena Ilieva, Mariana Marhova, Velizar Gochev, and Vesselin Baev. 2025. "Characterization and Probiotic Potential of Levilactobacillus brevis DPL5: A Novel Strain Isolated from Human Breast Milk with Antimicrobial Properties Against Biofilm-Forming Staphylococcus aureus" Microorganisms 13, no. 1: 160. https://doi.org/10.3390/microorganisms13010160
APA StyleIliev, I., Yahubyan, G., Apostolova-Kuzova, E., Gozmanova, M., Mollova, D., Iliev, I., Ilieva, L., Marhova, M., Gochev, V., & Baev, V. (2025). Characterization and Probiotic Potential of Levilactobacillus brevis DPL5: A Novel Strain Isolated from Human Breast Milk with Antimicrobial Properties Against Biofilm-Forming Staphylococcus aureus. Microorganisms, 13(1), 160. https://doi.org/10.3390/microorganisms13010160