Identification of Causal Relationships between Gut Microbiota and Influenza a Virus Infection in Chinese by Mendelian Randomization
<p>Overview of the process of Mendelian randomization analysis and major assumptions.</p> "> Figure 2
<p>Causal effects of gut microbiota on H7N9 susceptibility. Summary of Mendelian randomization (MR) estimates derived from inverse variance weighted (IVW), weighted median (WM), and MR–Egger analyses. CI denotes confidence interval; OR, odds ratio; SNPs, single nucleotide polymorphisms. “s_”, “g_”, “f_” are species, genus, and family, respectively.</p> "> Figure 3
<p>Causal effects of gut microbiota on H1N1 severity. Summary of Mendelian randomization (MR) estimates obtained from inverse variance weighted (IVW), weighted median (WM), and MR–Egger analyses. CI, confidence interval; SNPs, single nucleotide polymorphisms. “s_”, “g_”, “f_” are species, genus, and family, respectively.</p> "> Figure 4
<p>Visualization of connected protein-protein interaction networks using Cytoscape. (<b>A</b>) The network of overlapped genes between H7N9 susceptibility and microbiota features. (<b>B</b>) The network of overlapped genes between H1N1 severity and microbiota features. Node size and color correspond to the respective degrees, while edge weight and color are proportional to the STRING confidence score.</p> "> Figure 5
<p>Gene Ontology pathway enrichment analysis performed on (<b>A</b>) 216 genes annotated from instrumental variables for pairs of microbial features and H7N9 susceptibility with potential causal relationships in Mendelian randomization (MR), and (<b>B</b>) 314 genes annotated from IVs for pairs of microbial features and H1N1 severity with potential causal relationships in MR. BP: biological process, CC: cellular component, MF: molecular function.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Gut Microbiome Data
2.3. H7N9 Susceptibility and H1N1 Severity GWAS Data
2.4. Selection of IVs
2.5. Two-Sample MR Analysis
2.6. Sensitivity Analysis
2.7. Biological Annotation
3. Results
3.1. Effect of Gut Microbiota on H7N9 Susceptibility
3.2. Effect of Gut Microbiota on H1N1 Severity
3.3. Biological Annotation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petrova, V.N.; Russell, C.A. The evolution of seasonal influenza viruses. Nat. Rev. Microbiol. 2018, 16, 47–60. [Google Scholar] [CrossRef]
- Li, Y.T.; Linster, M.; Mendenhall, I.H.; Su, Y.C.F.; Smith, G.J.D. Avian influenza viruses in humans: Lessons from past outbreaks. Br. Med. Bull. 2019, 132, 81–95. [Google Scholar] [CrossRef]
- World Health Organization. Influenza (Seasonal). Available online: https://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal) (accessed on 3 October 2023).
- Pinto, R.M.; Bakshi, S.; Lytras, S.; Zakaria, M.K.; Swingler, S.; Worrell, J.C.; Herder, V.; Hargrave, K.E.; Varjak, M.; Cameron-Ruiz, N.; et al. BTN3A3 evasion promotes the zoonotic potential of influenza A viruses. Nature 2023, 619, 338–347. [Google Scholar] [CrossRef]
- Chen, Y.; Graf, L.; Chen, T.; Liao, Q.; Bai, T.; Petric, P.P.; Zhu, W.; Yang, L.; Dong, J.; Lu, J.; et al. Rare variant MX1 alleles increase human susceptibility to zoonotic H7N9 influenza virus. Science 2021, 373, 918–922. [Google Scholar] [CrossRef]
- Everitt, A.R.; Clare, S.; Pertel, T.; John, S.P.; Wash, R.S.; Smith, S.E.; Chin, C.R.; Feeley, E.M.; Sims, J.S.; Adams, D.J.; et al. IFITM3 restricts the morbidity and mortality associated with influenza. Nature 2012, 484, 519–523. [Google Scholar] [CrossRef]
- Ciancanelli, M.J.; Huang, S.X.; Luthra, P.; Garner, H.; Itan, Y.; Volpi, S.; Lafaille, F.G.; Trouillet, C.; Schmolke, M.; Albrecht, R.A.; et al. Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 2015, 348, 448–453. [Google Scholar] [CrossRef]
- Brody, H. The gut microbiome. Nature 2020, 577, S5. [Google Scholar] [CrossRef]
- Quan, Y.; Zhang, K.X.; Zhang, H.Y. The gut microbiota links disease to human genome evolution. Trends Genet. 2023, 39, 451–461. [Google Scholar] [CrossRef]
- Chiu, L.; Bazin, T.; Truchetet, M.E.; Schaeverbeke, T.; Delhaes, L.; Pradeu, T. Protective Microbiota: From Localized to Long-Reaching Co-Immunity. Front. Immunol. 2017, 8, 1678. [Google Scholar] [CrossRef]
- Trompette, A.; Gollwitzer, E.S.; Yadava, K.; Sichelstiel, A.K.; Sprenger, N.; Ngom-Bru, C.; Blanchard, C.; Junt, T.; Nicod, L.P.; Harris, N.L.; et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014, 20, 159–166. [Google Scholar] [CrossRef]
- McAleer, J.P.; Kolls, J.K. Contributions of the intestinal microbiome in lung immunity. Eur. J. Immunol. 2018, 48, 39–49. [Google Scholar] [CrossRef]
- Woodall, C.A.; McGeoch, L.J.; Hay, A.D.; Hammond, A. Respiratory tract infections and gut microbiome modifications: A systematic review. PLoS ONE 2022, 17, e0262057. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, J.; Feng, J.-W.; Hu, X.-T.; Wang, T.; Gong, W.-X.; Huang, K.; Guo, Y.-X.; Zou, Z.; Lin, X.; et al. Influenza infection elicits an expansion of gut population of endogenous Bifidobacterium animalis which protects mice against infection. Genome Biol. 2020, 21, 99. [Google Scholar] [CrossRef]
- Dilantika, C.; Sedyaningsih, E.R.; Kasper, M.R.; Agtini, M.; Listiyaningsih, E.; Uyeki, T.M.; Burgess, T.H.; Blair, P.J.; Putnam, S.D. Influenza virus infection among pediatric patients reporting diarrhea and influenza-like illness. BMC Infect. Dis. 2010, 10, 3. [Google Scholar] [CrossRef]
- Gu, S.; Chen, Y.; Wu, Z.; Chen, Y.; Gao, H.; Lv, L.; Guo, F.; Zhang, X.; Luo, R.; Huang, C.; et al. Alterations of the Gut Microbiota in Patients with Coronavirus Disease 2019 or H1N1 Influenza. Clin. Infect. Dis. 2020, 71, 2669–2678. [Google Scholar] [CrossRef]
- Qin, N.; Zheng, B.; Yao, J.; Guo, L.; Zuo, J.; Wu, L.; Zhou, J.; Liu, L.; Guo, J.; Ni, S.; et al. Influence of H7N9 virus infection and associated treatment on human gut microbiota. Sci. Rep. 2015, 5, 14771. [Google Scholar] [CrossRef]
- Marrella, V.; Nicchiotti, F.; Cassani, B. Microbiota and Immunity during Respiratory Infections: Lung and Gut Affair. Int. J. Mol. Sci. 2024, 25, 4051. [Google Scholar] [CrossRef]
- Davies, N.M.; Holmes, M.V.; Davey Smith, G. Reading Mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ (Clin. Res. Ed.) 2018, 362, k601. [Google Scholar] [CrossRef]
- Chen, H.; Ye, B.; Su, W.; Song, Y.; Sun, P.L.; Zhou, X.; Zhang, G. The causal role of gut microbiota in susceptibility and severity of COVID-19: A bidirectional Mendelian randomization study. J. Med. Virol. 2023, 95, e28880. [Google Scholar] [CrossRef]
- Xu, Q.; Ni, J.J.; Han, B.X.; Yan, S.S.; Wei, X.T.; Feng, G.J.; Zhang, H.; Zhang, L.; Li, B.; Pei, Y.F. Causal Relationship Between Gut Microbiota and Autoimmune Diseases: A Two-Sample Mendelian Randomization Study. Front. Immunol. 2021, 12, 746998. [Google Scholar] [CrossRef]
- Xu, F.; Gan, X.; Tao, Y.; Li, D.; Xie, P.; Liu, F.; Yang, F.; Ma, Y. Association between gut microbiota and influenza: A bidirectional two-sample mendelian randomization study. BMC Infect. Dis. 2023, 23, 692. [Google Scholar] [CrossRef]
- Liu, X.; Tong, X.; Zou, Y.; Lin, X.; Zhao, H.; Tian, L.; Jie, Z.; Wang, Q.; Zhang, Z.; Lu, H.; et al. Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome. Nat. Genet. 2022, 54, 52–61. [Google Scholar] [CrossRef]
- Li, M.; Chen, Y.; Chen, T.; Hu, S.; Chen, L.; Shen, L.; Li, F.; Yang, J.; Sun, Y.; Wang, D.; et al. A host-based whole genome sequencing study reveals novel risk loci associated with severity of influenza A(H1N1)pdm09 infection. Emerg. Microbes Infect. 2021, 10, 123–131. [Google Scholar] [CrossRef]
- National Health Commission of the People’s Republic of China; National Administration of Traditional Chinese Medicine. Protocol for diagnosis and treatment of influenza (2019 version). Chin. J. Clin. Infect. Dis. 2019, 12, 451–455. [Google Scholar]
- Shang, W.; Zhang, S.; Qian, H.; Pan, X.; Huang, S.; Wen, Z.; Liu, J.; Chen, D. Association of gut microbiota with COVID-19 susceptibility and severity: A two-sample Mendelian randomization study. J. Med. Virol. 2023, 95, e28734. [Google Scholar] [CrossRef]
- Palmer, T.M.; Lawlor, D.A.; Harbord, R.M.; Sheehan, N.A.; Tobias, J.H.; Timpson, N.J.; Davey Smith, G.; Sterne, J.A. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat. Methods Med. Res. 2012, 21, 223–242. [Google Scholar] [CrossRef]
- Pierce, B.L.; Ahsan, H.; Vanderweele, T.J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int. J. Epidemiol. 2011, 40, 740–752. [Google Scholar] [CrossRef]
- Burgess, S.; Butterworth, A.; Thompson, S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 2013, 37, 658–665. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017, 32, 377–389. [Google Scholar] [CrossRef]
- Verbanck, M.; Chen, C.Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef]
- Cohen, J.F.; Chalumeau, M.; Cohen, R.; Korevaar, D.A.; Khoshnood, B.; Bossuyt, P.M. Cochran’s Q test was useful to assess heterogeneity in likelihood ratios in studies of diagnostic accuracy. J. Clin. Epidemiol. 2015, 68, 299–306. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Malone, J.; Holloway, E.; Adamusiak, T.; Kapushesky, M.; Zheng, J.; Kolesnikov, N.; Zhukova, A.; Brazma, A.; Parkinson, H. Modeling sample variables with an Experimental Factor Ontology. Bioinformatics 2010, 26, 1112–1118. [Google Scholar] [CrossRef]
- Kohler, S.; Gargano, M.; Matentzoglu, N.; Carmody, L.C.; Lewis-Smith, D.; Vasilevsky, N.A.; Danis, D.; Balagura, G.; Baynam, G.; Brower, A.M.; et al. The Human Phenotype Ontology in 2021. Nucleic Acids Res. 2021, 49, D1207–D1217. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8 (Suppl. S4), S11. [Google Scholar] [CrossRef]
- Watanabe, K.; Stringer, S.; Frei, O.; Umicevic Mirkov, M.; de Leeuw, C.; Polderman, T.J.C.; van der Sluis, S.; Andreassen, O.A.; Neale, B.M.; Posthuma, D. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 2019, 51, 1339–1348. [Google Scholar] [CrossRef]
- Gene Ontology, C.; Aleksander, S.A.; Balhoff, J.; Carbon, S.; Cherry, J.M.; Drabkin, H.J.; Ebert, D.; Feuermann, M.; Gaudet, P.; Harris, N.L.; et al. The Gene Ontology knowledgebase in 2023. Genetics 2023, 224, iyad031. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef]
- Blander, J.M.; Longman, R.S.; Iliev, I.D.; Sonnenberg, G.F.; Artis, D. Regulation of inflammation by microbiota interactions with the host. Nat. Immunol. 2017, 18, 851–860. [Google Scholar] [CrossRef]
- Budden, K.F.; Gellatly, S.L.; Wood, D.L.; Cooper, M.A.; Morrison, M.; Hugenholtz, P.; Hansbro, P.M. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol. 2017, 15, 55–63. [Google Scholar] [CrossRef]
- Thaiss, C.A.; Zmora, N.; Levy, M.; Elinav, E. The microbiome and innate immunity. Nature 2016, 535, 65–74. [Google Scholar] [CrossRef]
- Ruff, W.E.; Greiling, T.M.; Kriegel, M.A. Host-microbiota interactions in immune-mediated diseases. Nat. Rev. Microbiol. 2020, 18, 521–538. [Google Scholar] [CrossRef]
- Bradley, K.C.; Finsterbusch, K.; Schnepf, D.; Crotta, S.; Llorian, M.; Davidson, S.; Fuchs, S.Y.; Staeheli, P.; Wack, A. Microbiota-Driven Tonic Interferon Signals in Lung Stromal Cells Protect from Influenza Virus Infection. Cell Rep. 2019, 28, 245–256.e4. [Google Scholar] [CrossRef]
- Ichinohe, T.; Pang, I.K.; Kumamoto, Y.; Peaper, D.R.; Ho, J.H.; Murray, T.S.; Iwasaki, A. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. USA 2011, 108, 5354–5359. [Google Scholar] [CrossRef]
- Legoux, F.; Salou, M.; Lantz, O. MAIT Cell Development and Functions: The Microbial Connection. Immunity 2020, 53, 710–723. [Google Scholar] [CrossRef]
- van Wilgenburg, B.; Loh, L.; Chen, Z.; Pediongco, T.J.; Wang, H.; Shi, M.; Zhao, Z.; Koutsakos, M.; Nüssing, S.; Sant, S.; et al. MAIT cells contribute to protection against lethal influenza infection in vivo. Nat. Commun. 2018, 9, 4706. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, K.; Ma, X.; He, P. Clostridium species as probiotics: Potentials and challenges. J. Anim. Sci. Biotechnol. 2020, 11, 24. [Google Scholar] [CrossRef]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef]
- Byndloss, M.X.; Olsan, E.E.; Rivera-Chávez, F.; Tiffany, C.R.; Cevallos, S.A.; Lokken, K.L.; Torres, T.P.; Byndloss, A.J.; Faber, F.; Gao, Y.; et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 2017, 357, 570–575. [Google Scholar] [CrossRef]
- Varga, T.; Czimmerer, Z.; Nagy, L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim. Biophys. Acta 2011, 1812, 1007–1022. [Google Scholar] [CrossRef]
- Alex, S.; Lange, K.; Amolo, T.; Grinstead, J.S.; Haakonsson, A.K.; Szalowska, E.; Koppen, A.; Mudde, K.; Haenen, D.; Al-Lahham, S.; et al. Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor γ. Mol. Cell. Biol. 2013, 33, 1303–1316. [Google Scholar] [CrossRef]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef]
- Antunes, K.H.; Fachi, J.L.; de Paula, R.; da Silva, E.F.; Pral, L.P.; Dos Santos, A.; Dias, G.B.M.; Vargas, J.E.; Puga, R.; Mayer, F.Q.; et al. Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nat. Commun. 2019, 10, 3273. [Google Scholar] [CrossRef]
- Park, J.; Kim, M.; Kang, S.G.; Jannasch, A.H.; Cooper, B.; Patterson, J.; Kim, C.H. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 2015, 8, 80–93. [Google Scholar] [CrossRef]
- Leylabadlo, H.E.; Ghotaslou, R.; Feizabadi, M.M.; Farajnia, S.; Moaddab, S.Y.; Ganbarov, K.; Khodadadi, E.; Tanomand, A.; Sheykhsaran, E.; Yousefi, B.; et al. The critical role of Faecalibacterium prausnitzii in human health: An overview. Microb. Pathog. 2020, 149, 104344. [Google Scholar] [CrossRef]
- Demirci, M.; Tokman, H.B.; Uysal, H.K.; Demiryas, S.; Karakullukcu, A.; Saribas, S.; Cokugras, H.; Kocazeybek, B.S. Reduced Akkermansia muciniphila and Faecalibacterium prausnitzii levels in the gut microbiota of children with allergic asthma. Allergol. Immunopathol. 2019, 47, 365–371. [Google Scholar] [CrossRef]
- Li, W.; Zhu, Y.; Liao, Q.; Wang, Z.; Wan, C. Characterization of gut microbiota in children with pulmonary tuberculosis. BMC Pediatr. 2019, 19, 445. [Google Scholar] [CrossRef]
- Vernocchi, P.; Del Chierico, F.; Russo, A.; Majo, F.; Rossitto, M.; Valerio, M.; Casadei, L.; La Storia, A.; De Filippis, F.; Rizzo, C.; et al. Gut microbiota signatures in cystic fibrosis: Loss of host CFTR function drives the microbiota enterophenotype. PLoS ONE 2018, 13, e0208171. [Google Scholar] [CrossRef]
- Yeoh, Y.K.; Zuo, T.; Lui, G.C.; Zhang, F.; Liu, Q.; Li, A.Y.; Chung, A.C.; Cheung, C.P.; Tso, E.Y.; Fung, K.S.; et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021, 70, 698–706. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Zhang, D.; Ma, W.L.; Wang, X. Linking the gut microbiota to persistent symptoms in survivors of COVID-19 after discharge. J. Microbiol. 2021, 59, 941–948. [Google Scholar] [CrossRef]
- Ma, J.; Wu, M.; Wang, Z.; Yang, D.; Hou, S.; Cheng, Y.; Wang, H.; Yan, Y.; Sun, J. Pre-exposure to Streptococcus suis improved survival of influenza virus co-infection in mice. Vet. Microbiol. 2021, 258, 109071. [Google Scholar] [CrossRef]
- d’Ettorre, G.; Ceccarelli, G.; Marazzato, M.; Campagna, G.; Pinacchio, C.; Alessandri, F.; Ruberto, F.; Rossi, G.; Celani, L.; Scagnolari, C.; et al. Challenges in the Management of SARS-CoV2 Infection: The Role of Oral Bacteriotherapy as Complementary Therapeutic Strategy to Avoid the Progression of COVID-19. Front. Med. 2020, 7, 389. [Google Scholar] [CrossRef]
- Castelli, V.; d’Angelo, M.; Lombardi, F.; Alfonsetti, M.; Antonosante, A.; Catanesi, M.; Benedetti, E.; Palumbo, P.; Cifone, M.G.; Giordano, A.; et al. Effects of the probiotic formulation SLAB51 in in vitro and in vivo Parkinson’s disease models. Aging 2020, 12, 4641–4659. [Google Scholar] [CrossRef]
- Mitchell, J. Streptococcus mitis: Walking the line between commensalism and pathogenesis. Mol. Oral Microbiol. 2011, 26, 89–98. [Google Scholar] [CrossRef]
- Strickland, D.K.; Gonias, S.L.; Argraves, W.S. Diverse roles for the LDL receptor family. Trends Endocrinol. Metab. TEM 2002, 13, 66–74. [Google Scholar] [CrossRef]
- Garcia-Etxebarria, K.; Bracho, M.A.; Galan, J.C.; Pumarola, T.; Castilla, J.; Ortiz de Lejarazu, R.; Rodriguez-Dominguez, M.; Quintela, I.; Bonet, N.; Garcia-Garcera, M.; et al. No Major Host Genetic Risk Factor Contributed to A(H1N1)2009 Influenza Severity. PLoS ONE 2015, 10, e0135983. [Google Scholar] [CrossRef]
- Chin, C.R.; Brass, A.L. A genome wide RNA interference screening method to identify host factors that modulate influenza A virus replication. Methods 2013, 59, 217–224. [Google Scholar] [CrossRef]
- Karlas, A.; Machuy, N.; Shin, Y.; Pleissner, K.P.; Artarini, A.; Heuer, D.; Becker, D.; Khalil, H.; Ogilvie, L.A.; Hess, S.; et al. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 2010, 463, 818–822. [Google Scholar] [CrossRef]
- Uhl, G.R.; Martinez, M.J. PTPRD: Neurobiology, genetics, and initial pharmacology of a pleiotropic contributor to brain phenotypes. Ann. N. Y Acad. Sci. 2019, 1451, 112–129. [Google Scholar] [CrossRef]
- Uhl, G.R.; Martinez, M.J.; Paik, P.; Sulima, A.; Bi, G.H.; Iyer, M.R.; Gardner, E.; Rice, K.C.; Xi, Z.X. Cocaine reward is reduced by decreased expression of receptor-type protein tyrosine phosphatase D (PTPRD) and by a novel PTPRD antagonist. Proc. Natl. Acad. Sci. USA 2018, 115, 11597–11602. [Google Scholar] [CrossRef]
- Tomita, H.; Cornejo, F.; Aranda-Pino, B.; Woodard, C.L.; Rioseco, C.C.; Neel, B.G.; Alvarez, A.R.; Kaplan, D.R.; Miller, F.D.; Cancino, G.I. The Protein Tyrosine Phosphatase Receptor Delta Regulates Developmental Neurogenesis. Cell Rep. 2020, 30, 215–228.e215. [Google Scholar] [CrossRef]
- Huang, X.; Qin, F.; Meng, Q.; Dong, M. Protein tyrosine phosphatase receptor type D (PTPRD)-mediated signaling pathways for the potential treatment of hepatocellular carcinoma: A narrative review. Ann. Transl. Med. 2020, 8, 1192. [Google Scholar] [CrossRef]
- Hsu, H.C.; Lapke, N.; Chen, S.J.; Lu, Y.J.; Jhou, R.S.; Yeh, C.Y.; Tsai, W.S.; Hung, H.Y.; Hsieh, J.C.; Yang, T.S.; et al. PTPRT and PTPRD Deleterious Mutations and Deletion Predict Bevacizumab Resistance in Metastatic Colorectal Cancer Patients. Cancers 2018, 10, 314. [Google Scholar] [CrossRef]
- Ning, H.; Chiu, S.H.; Xu, X.; Ma, Y.; Chen, J.L.; Yang, G. The Immunosuppressive Roles of PD-L1 during Influenza A Virus Infection. Int. J. Mol. Sci. 2023, 24, 8586. [Google Scholar] [CrossRef]
- Julkunen, I.; Sareneva, T.; Pirhonen, J.; Ronni, T.; Melen, K.; Matikainen, S. Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression. Cytokine Growth Factor. Rev. 2001, 12, 171–180. [Google Scholar] [CrossRef]
- Dejana, E.; Orsenigo, F.; Lampugnani, M.G. The role of adherens junctions and VE-cadherin in the control of vascular permeability. J. Cell Sci. 2008, 121, 2115–2122. [Google Scholar] [CrossRef]
- Jackel, S.; Kiouptsi, K.; Lillich, M.; Hendrikx, T.; Khandagale, A.; Kollar, B.; Hormann, N.; Reiss, C.; Subramaniam, S.; Wilms, E.; et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood 2017, 130, 542–553. [Google Scholar] [CrossRef]
- Hiyoshi, M.; Indalao, I.L.; Yano, M.; Yamane, K.; Takahashi, E.; Kido, H. Influenza A virus infection of vascular endothelial cells induces GSK-3β-mediated β-catenin degradation in adherens junctions, with a resultant increase in membrane permeability. Arch. Virol. 2015, 160, 225–234. [Google Scholar] [CrossRef]
Exposure | Method | Heterogeneity | Pleiotropy Egger Intercept Pval | MR–PRESSO Global Test Pval | ||
---|---|---|---|---|---|---|
Q | Q_df | Q_pval | ||||
f_Coriobacteriaceae | MR–Egger | 9.371 | 12 | 0.671 | 0.830 | 0.754 |
IVW | 9.419 | 13 | 0.741 | |||
f_Leuconostocaceae | MR–Egger | 8.736 | 9 | 0.462 | 1.000 | 0.592 |
IVW | 8.736 | 10 | 0.557 | |||
g_Mobiluncus | MR–Egger | 28.293 | 17 | 0.042 | 0.961 | 0.083 |
IVW | 28.298 | 18 | 0.058 | |||
g_Rahnella | MR–Egger | 6.428 | 10 | 0.778 | 0.098 | 0.600 |
IVW | 9.751 | 11 | 0.553 | |||
s_Citrobacter youngae | MR–Egger | 6.861 | 10 | 0.738 | 0.433 | 0.766 |
IVW | 7.529 | 11 | 0.755 | |||
s_Clostridium hylemonae | MR–Egger | 3.534 | 9 | 0.939 | 0.198 | 0.858 |
IVW | 5.469 | 10 | 0.858 | |||
s_Clostridium ramosum | MR–Egger | 6.906 | 13 | 0.907 | 0.978 | 0.930 |
IVW | 6.907 | 14 | 0.938 | |||
s_Coprococcus catus | MR–Egger | 13.319 | 13 | 0.424 | 0.106 | 0.347 |
IVW | 16.410 | 14 | 0.289 | |||
s_Desulfovibrio alaskensis | MR–Egger | 3.362 | 6 | 0.762 | 0.970 | 0.878 |
IVW | 3.364 | 7 | 0.849 | |||
s_Eubacterium cellulosolvens | MR–Egger | 0.018 | 2 | 0.991 | 0.773 | 0.983 |
IVW | 0.127 | 3 | 0.988 | |||
s_Slackia exigua | MR–Egger | 5.910 | 12 | 0.921 | 0.390 | 0.913 |
IVW | 6.706 | 13 | 0.917 | |||
s_Streptococcus mitis | MR–Egger | 7.813 | 12 | 0.800 | 0.184 | 0.701 |
IVW | 9.798 | 13 | 0.710 | |||
s_Streptococcus peroris | MR–Egger | 5.576 | 6 | 0.472 | 0.213 | 0.430 |
IVW | 7.515 | 7 | 0.377 | |||
s_Streptococcus sanguinis | MR–Egger | 4.667 | 9 | 0.862 | 0.433 | 0.862 |
IVW | 5.339 | 10 | 0.867 |
Exposure | Method | Heterogeneity | Pleiotropy Egger Intercept Pval | MR–PRESSO Global Test Pval | ||
---|---|---|---|---|---|---|
Q | Q_df | Q_pval | ||||
f_Sutterellaceae | MR–Egger | 10.309 | 17 | 0.890 | 0.612 | 0.911 |
IVW | 10.576 | 18 | 0.911 | |||
g_Acetivibrio | MR–Egger | 8.999 | 11 | 0.622 | 0.894 | 0.725 |
IVW | 9.018 | 12 | 0.701 | |||
g_Ethanoligenens | MR–Egger | 4.722 | 9 | 0.858 | 0.593 | 0.894 |
IVW | 5.029 | 10 | 0.889 | |||
g_Subdoligranulum | MR–Egger | 4.104 | 13 | 0.990 | 0.611 | 0.992 |
IVW | 4.375 | 14 | 0.993 | |||
g_Yersinia | MR–Egger | 2.935 | 6 | 0.817 | 0.499 | 0.850 |
IVW | 3.453 | 7 | 0.840 | |||
s_Bacteroides_thetaiotaomicron | MR–Egger | 15.037 | 18 | 0.659 | 0.366 | 0.673 |
IVW | 15.897 | 19 | 0.664 | |||
s_Bacteroides_xylanisolvens | MR–Egger | 6.308 | 8 | 0.613 | 0.408 | 0.645 |
IVW | 7.071 | 9 | 0.630 | |||
s_Clostridiales_genomosp._BVAB3 | MR–Egger | 9.242 | 9 | 0.415 | 0.719 | 0.535 |
IVW | 9.384 | 10 | 0.496 | |||
s_Eubacterium_biforme | MR–Egger | 17.371 | 22 | 0.743 | 0.680 | 0.790 |
IVW | 17.546 | 23 | 0.782 | |||
s_Faecalibacterium_prausnitzii | MR–Egger | 24.531 | 29 | 0.702 | 0.203 | 0.706 |
IVW | 26.226 | 30 | 0.664 | |||
s_Neisseria_gonorrhoeae | MR–Egger | 5.220 | 8 | 0.734 | 0.793 | 0.821 |
IVW | 5.294 | 9 | 0.808 | |||
s_Roseburia_intestinalis | MR–Egger | 1.476 | 5 | 0.916 | 0.331 | 0.873 |
IVW | 2.636 | 6 | 0.853 | |||
s_Streptococcus_parasanguinis | MR–Egger | 12.312 | 18 | 0.831 | 0.528 | 0.862 |
IVW | 12.726 | 19 | 0.852 | |||
s_Streptococcus_suis | MR–Egger | 7.267 | 13 | 0.888 | 0.754 | 0.914 |
IVW | 7.369 | 14 | 0.920 | |||
s_Treponema_vince | MR–Egger | 14.963 | 15 | 0.454 | 0.147 | 0.413 |
IVW | 17.306 | 16 | 0.366 | |||
s_Turicibacter_sanguinis | MR–Egger | 3.302 | 5 | 0.653 | 0.382 | 0.671 |
IVW | 4.219 | 6 | 0.647 | |||
s_Veillonella_atypica | MR–Egger | 9.639 | 12 | 0.648 | 0.217 | 0.584 |
IVW | 11.338 | 13 | 0.583 | |||
MF0032:glutamate_degradation_III | MR–Egger | 8.588 | 17 | 0.952 | 0.294 | 0.948 |
IVW | 9.761 | 18 | 0.939 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Q.; Wang, F.; Zhou, W.; Liao, G.; Zhang, H.; Shu, Y.; Chen, Y. Identification of Causal Relationships between Gut Microbiota and Influenza a Virus Infection in Chinese by Mendelian Randomization. Microorganisms 2024, 12, 1170. https://doi.org/10.3390/microorganisms12061170
Liao Q, Wang F, Zhou W, Liao G, Zhang H, Shu Y, Chen Y. Identification of Causal Relationships between Gut Microbiota and Influenza a Virus Infection in Chinese by Mendelian Randomization. Microorganisms. 2024; 12(6):1170. https://doi.org/10.3390/microorganisms12061170
Chicago/Turabian StyleLiao, Qijun, Fuxiang Wang, Wudi Zhou, Guancheng Liao, Haoyang Zhang, Yuelong Shu, and Yongkun Chen. 2024. "Identification of Causal Relationships between Gut Microbiota and Influenza a Virus Infection in Chinese by Mendelian Randomization" Microorganisms 12, no. 6: 1170. https://doi.org/10.3390/microorganisms12061170
APA StyleLiao, Q., Wang, F., Zhou, W., Liao, G., Zhang, H., Shu, Y., & Chen, Y. (2024). Identification of Causal Relationships between Gut Microbiota and Influenza a Virus Infection in Chinese by Mendelian Randomization. Microorganisms, 12(6), 1170. https://doi.org/10.3390/microorganisms12061170