Evidence of a Viable but Nonculturable (VBNC) Phase in B. abortus S19 under Oxidative Stress (H2O2, -Fe2+, Bleach) and under Non-Oxidative Inhibitory Conditions (Isopropanol, Erythritol, Selenite)
<p>Susceptibility of <span class="html-italic">B. abortus</span> S19A, <span class="html-italic">B. abortus</span> ∆mglA 3.14, <span class="html-italic">B. neotomae</span> 5K33, <span class="html-italic">B. microti</span> CCM 4915, and <span class="html-italic">B.</span> 83/13 to Fe<sup>2+</sup> after 30 min of exposition as determined via (<b>a</b>) ATP content, (<b>b</b>) CFUs on TSA, and (<b>c</b>) CFUs on CYE agar.</p> "> Figure 2
<p>Susceptibility of <span class="html-italic">B. abortus</span> S19A, <span class="html-italic">B. abortus</span> ∆mglA 3.14, <span class="html-italic">B. neotomae</span> 5K33, <span class="html-italic">B. microti</span> CCM 4915, and <span class="html-italic">B.</span> 83/13 to H<sub>2</sub>O<sub>2</sub> after 30 min of exposure as determined by (<b>a</b>) ATP content, (<b>b</b>) CFU (TSA), and (<b>c</b>) CFU (CYE).</p> "> Figure 3
<p>Effects of bleach on <span class="html-italic">B. abortus</span> S19A, <span class="html-italic">B. abortus</span> ∆mglA 3.14, and <span class="html-italic">B.neotomae</span> 5K33 after 30 min of exposure, as determined by ATP content (<b>c</b>), CFU on TSA (<b>a</b>), and CFU on CYE agar (<b>b</b>).</p> "> Figure 4
<p>Selenite effect on <span class="html-italic">B. abortus</span> S19A and <span class="html-italic">B. abortus</span> ∆mglA 3.14 after 30 min of room temperature exposure as determined via ATP ontent (<b>c</b>), CFU on TSA (<b>a</b>), and CFU on CYE agar (<b>b</b>).</p> "> Figure 5
<p>Erythritol effect on <span class="html-italic">B. abortus</span> S19A, <span class="html-italic">B. abortus</span> ∆mglA 3.14, and <span class="html-italic">B. neotomae</span> 5K33, after 1–24 h as determined via ATP content (<b>a</b>) and CFU on TSA (<b>b</b>).</p> "> Figure 6
<p>Effects of 70% isopropanol on <span class="html-italic">B. abortus</span> S19A, <span class="html-italic">B. abortus</span> ∆mglA 3.14, and <span class="html-italic">B. neotomae</span> 5K33 after 30 min of exposition as determined by ATP content (<b>b</b>), CFU on TSA (<b>c</b>), and CFU on CYE agar (<b>a</b>).</p> "> Figure 7
<p>Membrane integrity as determined by live/dead experiments for <span class="html-italic">B. abortus</span> S19, <span class="html-italic">B. abortus</span> ΔmglA, and <span class="html-italic">B. neotomae</span> 5K33, (<b>a</b>) +Fe<sup>2+</sup>, (<b>b</b>) isopropanol, and (<b>c</b>) H<sub>2</sub>O<sub>2</sub>.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Bacterial Strains
2.2. Survival Experiments under Oxidative Stress
2.3. Determination of Viability of Bacteria
2.3.1. Determination of Colony Forming Units (CFU)
2.3.2. Determination of Intracellular ATP Content
2.3.3. Membrane Integrity
2.4. Statistics
3. Results
3.1. Survival of Brucella in Fe2+ as Determined by CFU and ATP Content
3.2. Survival of Brucella in H2O2 as Determined by CFU and ATP Content
3.3. Survival of Brucella in a Laboratory Standard Environment Containing Bleach as Determined by CFU and ATP Content
3.4. Effects of Selenite on CFU and ATP Content, Respectively, and ATP/CFU Quotients
3.5. Effect of Erythritol on CFU and ATP Content and Effect on ATP/CFU Ratios
3.6. Effects of Isopropanol on CFU and ATP Content and ATP/CFU Ratios
3.7. Determination of Membrane Integrity
3.8. Bacterial Growth Comparison on TSA versus CYE Agar (Standard Plating Efficacy without Oxidative Stress)
4. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacob, J.; Finke, A.; Mielke, M. Survival of Brucella abortus S19 and other Brucella spp. in the presence of oxidative stress and within macrophages. Folia Microbiol. 2020, 65, 148–154. [Google Scholar] [CrossRef]
- Moreno, E.; Moriyon, I. The genus Brucella. Prokaryotes 2006, 5, 315–456. [Google Scholar]
- Sangari, F.J.; Grilló, M.J.; De Bagüés, M.; González-Carrero, M.I.; García-Lobo, J.M.; Blasco, J.; Agüero, J. The defect in the metabolism of erythritol of the Brucella abortus B19 vaccine strain is unrelated with its attenuated virulence in mice. Vaccine 1998, 16, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Barbier, T.; Zuniga-Ripab, A.; Moussaa, S.; Ploviera, H.; Sternon, J.F.; Lazaro-Anton, L.; Conde-Alvarez, R.; De Bolle, X.; Lriarte, M.; Moriyon, I.; et al. Brucella central carbon metabolism: An update. Crit. Rev. Microbiol. 2018, 44, 182–211. [Google Scholar] [CrossRef] [PubMed]
- Rollins, D.M.; Colwell, R.R. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 1986, 52, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.; Martin, W.; Höller, C. Characterization of Viable but Nonculturable Stage of C. coli, characterized with respect to Electron Microscopic findings, Whole Cell Protein and Lipooligosaccharide patterns. Zentralbl. Mikrobiol. 1993, 148, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Boehnke, K.F.; Eaton, K.A.; Fontaine, C.; Brewster, R.; Wu, J.; Eisenberg, J.N.S.; Valdivieso, M.; Baker, L.H.; Xi, C. Reduced infectivity of waterborne viable but nonculturable Helicobacter pylori strain SS1 in mice. Helicobacter 2017, 22, e12391. [Google Scholar] [CrossRef] [PubMed]
- Hua, J.; Ho, B. Is the coccoid form of Helicobacter pylori viable? Microbios 1996, 87, 103–112. [Google Scholar] [PubMed]
- Forsman, M.; Henningson, E.W.; Larsson, E.; Johansson, T.; Sandstrã¶M, G. Francisella tularensis does not manifest virulence in viable but non-culturable state. FEMS Microbiol. Ecol. 2000, 31, 217–224. [Google Scholar] [CrossRef]
- Linke, S. Untersuchungen zur Erhöhten Toleranz von Biofilmassoziierten Mikroorganismen und Die Ausbildung von VBNC-Zuständen bei Pseudomonas aeruginosa Gegenüber Chlorabspaltenden Verbindungen. Ph.D. Thesis, Universität Bonn, Bonn, Germany, 2012. [Google Scholar]
- Alexander, E.; Pham, D.; Steck, T.R. The Viable-but-Nonculturable Condition is induced by Copper in Agrobacterium tumefaciens and Rhizobium leguminosarum. Appl. Environ. Microbiol. 1999, 65, 3754–3756. [Google Scholar] [CrossRef]
- Toffanin, A.; Basaglia, M.; Ciardi, C.; Vian, P.; Povolo, S.; Casella, S. Energy content decrease and viable-not-culturable status induced by oxygen limitation coupled to the presence of nitrogen oxides in Rhizobium “hedysari”. Biol. Fertil. Soils 2000, 31, 484–488. [Google Scholar] [CrossRef]
- Crasta, O.R.; Folkerts, O.; Fei, Z.; Mane, S.P.; Evans, C.; Martino-Catt, S.; Bricker, B.; Yu, G.; Du, L.; Sobral, B.W. Genome sequence of Brucella abortus vaccine candidate S19 compared to virulent strains yields candidate virulence genes. PLoS ONE 2008, 3, e2193. [Google Scholar] [CrossRef]
- Jacob, J.; Finke, A.; Mielke, M. The mglA gene and its flanking regions in Brucella: The role of mglA in tolerance to hostile environments, Fe-metabolism and in vivo persistence. Int. J. Med Microbiol. 2012, 302, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Stoenner, H.G.; Lackman, D.B. A new species of Brucella isolated from the desert wood rat, Neotoma lepida Thomas. Am. J.Vet. Res. 1957, 99, 47–51. [Google Scholar]
- Audic, S.; Lescot, M.; Claverie, J.-M.; Scholz, H.C. Brucella microti: The genome sequence of an emerging pathogen. BMC Genom. 2009, 10, 352. [Google Scholar] [CrossRef]
- Tiller, R.V.; Gee, J.E.; Frace, M.A.; Taylor, T.K.; Setubal, J.C.; Hoffmaster, A.R.; De, B.K. Characterization of novel Brucella strains originating from wild native rodent species in North Queensland, Australia. Appl. Environ. Microbiol. 2010, 76, 5837–5845. [Google Scholar] [CrossRef] [PubMed]
- Fakruddin; Bin Mannan, K.S.; Andrews, S. Viable but Nonculturable Bacteria: Food Safety and Public Health Perspective. Int. Sch. Res. Not. 2013, 2013, 703813. [Google Scholar] [CrossRef]
- Oliver, J.D. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol. Rev. 2009, 34, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Ramamurthy, T.; Ghosh, A.; Pazhani, G.P.; Shinoda, S. Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Front. Public Health 2014, 2, 103. [Google Scholar] [CrossRef]
- Guo, L.; Wan, K.; Zhu, J.; Ye, C.; Chabi, K.; Yu, X. Detection and distribution of VBNC/viable pathogenic bacteria in full-scale drinking water treatment plants. J. Hazard. Mater. 2021, 406, 124335. [Google Scholar] [CrossRef]
- Zhu, L.; Shuai, X.; Xu, L.; Sun, Y.; Lin, Z.; Zhou, Z.; Meng, L.; Chen, H. Mechanisms underlying the effect of chlorination and UV disinfection on VBNC state Escherichia coli isolated from hospital wastewater. J. Hazard. Mater. 2022, 423, 227–228. [Google Scholar] [CrossRef] [PubMed]
- Bodor, A.; Bounedjoum, N.; Vincze, G.E.; Kis, A.E.; Laczi, K.; Bende, G.; Szilágyi, A.; Kovács, T.; Perei, K.; Rákhely, G. Challenges of unculturable bacteria: Environmental perspectives. Rev. Environ. Sci. Bio/Technol. 2020, 19, 1–22. [Google Scholar] [CrossRef]
Species/Strain | Mean RLU/LUMI Values (×106) | RLU (%) | CFU/mL (TSA) | Quota RLU-LUMI/CFU (TSA) |
---|---|---|---|---|
B. abortus S19 | 1.1 | 100 | 5.5 × 106 | 0.2 |
B. abortus S19 (+Fe2+) | 0.9 | 73 | 5.5 × 104 | 1636 |
B. abortus S19 ∆mglA | 1.7 | 100 | 8.5 × 105 | 0.2 |
B. abortus S19 ∆mglA (+Fe2+) | 1.5 | 93 | 2.7 × 103 | 556 |
B. neotomae 5K33 | 3.1 | 100 | 1.6 × 107 | 0.2 |
B. neotomae 5K33 (+Fe2+) | 3.4 | 110 | 4.9 × 106 | 0.7 |
Species/Strain | Mean RLU/LUMI Values | RLU (%) | CFU/mL (TSA) | Quota RLU-LUMI/CFU(TSA) |
---|---|---|---|---|
B. abortus S19 | 2.0 × 106 | 100 | 6.3 × 106 | 0.3 |
B. abortus S19 +0.5% H2O2 | 4.5 × 106 | 85.9 | 0 | 4.5 × 106 |
B. abortus ∆mglA | 1.8 × 106 | 100 | 6.9 × 106 | 0.3 |
B. abortus ∆mglA + 0.5% H2O2 | 1.9 × 106 | 94 | 0.15 × 106 | 12.7 |
B. neotomae 5K33 | 1.7 × 104 | 100 | 23 × 106 | 0.01 |
B. neotomae 5K33 + 0.5% H2O2 | 1.6 × 104 | 93 | 4 × 106 | 0.04 |
Species/Strain | Mean RLU/LUMI Values | RLU (%) | CFU/mL (TSA) | Quota RLU/LUMI/CFU (TSA) | CFU/mL (CYE) | Quota RLU-LUMI/CFU (CYE) |
---|---|---|---|---|---|---|
B. abortus S19 | 1.1 × 106 | 100 | 1.6 × 107 | 0.07 | 5.0 × 107 | 0.02 |
B. abortus S19 + 0.5% bleach | 1.0 × 106 | 91.5 | 0 | 1 × 106 | 0 | 1 × 106 |
B. abortus ∆mglA | 3.2 × 106 | 100 | 7.4 × 106 | 0.4 | 7.3 × 107 | 0.04 |
B. abortus ∆mglA + 0.5% bleach | 2.9 × 106 | 89.4 | 0 | 2.9 × 106 | 0 | 2.9 × 106 |
B. neotomae 5K33 | 2.8 × 106 | 100 | 6.4 × 106 | 0.4 | 1.5 × 107 | 0.19 |
B. neotomae 5K33 + 0.5% bleach | 2.8 × 106 | 97.6 | 0 | 2.8 × 106 | 1.9 × 103 | 1450 |
Species/Strain | Mean RLU/LUMI Values | RLU (%) | CFU/mL (TSA) | Quota RLU/LUMI/CFU (TSA) | CFU/mL (CYE) | Quota RLU-LUMI/CFU (CYE) |
---|---|---|---|---|---|---|
B. abortus S19 control | 1.1 × 106 | 100 | 1.3 × 107 | 0.08 | 3.8 × 107 | 0.03 |
B. abortus S19 + 10 mM selenite | 9.0 × 105 | 79.9 | 1.0 × 107 | 0.09 | 4.1 × 107 | 0.02 |
B. abortus S19 + 100 mM selenite | 2.0 × 105 | 18.0 | 6.2 × 106 | 0.03 | 4.1 × 107 | 0.005 |
B. abortus ∆mglA control | 3.2 × 106 | 100 | 6.7 × 106 | 0.5 | 7.7 × 107 | 0.04 |
B. abortus ∆mglA + 10mM selenite | 2.1 × 106 | 64.5 | 3.8 × 106 | 0.6 | 3.6 × 107 | 0.06 |
B. abortus ∆mglA +100 mM selenite | 6.5 × 105 | 20.3 | 1.6 × 106 | 0.4 | 5.6 × 107 | 0.01 |
Species/Strain/Incubation Time 1 h Erythritol | Mean RLU/LUMI (×106) | RLU (%) | CFU/mL (TSA) | Quota RLU-LUMI/CFU (TSA) |
B. abortus S19 | 1.5 | 100 | 7.0 × 106 | 0.2 |
B. abortus S19 (+ erythritol) | 1.2 | 85.6 | 4.5 × 106 | 0.3 |
B. abortus S19 ∆mglA | 1.4 | 100 | 1.2 × 107 | 0.1 |
B. abortus S19 ∆mglA (+ erythritol) | 1.1 | 76.4 | 9.7 × 107 | 0.01 |
B. neotomae 5K33 | 1.6 | 100 | 8.3 × 106 | 0.2 |
B. neotomae 5K33 (+ erythritol) | 1.6 | 99.2 | 1.1 × 107 | 0.15 |
Species/Strain/Incubation Time 24 h Erythritol | Mean RLU/LUMI Values (×106) | RLU (%) | CFU/mL (TSA) | Quota RLU/LUMI/CFU (TSA) |
B. abortus S19 | 0.83 | 100 | 9.8 × 108 | 0.0001 |
B. abortus S19 (+ erythritol) | 0.21 | 27.0 | 5.0 × 105 | 0.4 |
B. abortus S19 ∆mglA | 0.9 | 100 | 1.3 × 109 | 0.001 |
B. abortus S19 ∆mglA (+ erythritol) | 0.22 | 26.7 | 2.4 × 106 | 0.09 |
B. neotomae 5K33 | 0.85 | 100 | 8.9 × 108 | 0.001 |
B. neotomae 5K33 (+ erythritol) | 0.80 | 94.2 | 6.3 × 108 | 0.001 |
Species/Strain | Mean RLU/LUMI Values | RLU (%) | CFU/mL (TSA) | Quota RLU-LUMI/CFU (TSA) |
---|---|---|---|---|
B. abortus S19 | 2.7 × 105 | 100 | 3.1 × 107 | 0.001 |
B. abortus S19 + isopropanol | 4.5 × 103 | 1.7 | 0 | 4.5 × 103 |
B. abortus S19 ∆mglA | 7.9 × 105 | 100 | 2.4 × 107 | 0.03 |
B. abortus S19 ∆mglA + isopropanol | 1.3 × 104 | 1.5 | 0 | 1.3 × 104 |
B. neotomae 5K33 | 2.1 × 105 | 100 | 6 × 106 | 0.04 |
B. neotomae 5K33 + isopropanol | 2.2 × 104 | 4.5 | 0 | 2.2 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacob, J. Evidence of a Viable but Nonculturable (VBNC) Phase in B. abortus S19 under Oxidative Stress (H2O2, -Fe2+, Bleach) and under Non-Oxidative Inhibitory Conditions (Isopropanol, Erythritol, Selenite). Microorganisms 2024, 12, 491. https://doi.org/10.3390/microorganisms12030491
Jacob J. Evidence of a Viable but Nonculturable (VBNC) Phase in B. abortus S19 under Oxidative Stress (H2O2, -Fe2+, Bleach) and under Non-Oxidative Inhibitory Conditions (Isopropanol, Erythritol, Selenite). Microorganisms. 2024; 12(3):491. https://doi.org/10.3390/microorganisms12030491
Chicago/Turabian StyleJacob, Jens. 2024. "Evidence of a Viable but Nonculturable (VBNC) Phase in B. abortus S19 under Oxidative Stress (H2O2, -Fe2+, Bleach) and under Non-Oxidative Inhibitory Conditions (Isopropanol, Erythritol, Selenite)" Microorganisms 12, no. 3: 491. https://doi.org/10.3390/microorganisms12030491
APA StyleJacob, J. (2024). Evidence of a Viable but Nonculturable (VBNC) Phase in B. abortus S19 under Oxidative Stress (H2O2, -Fe2+, Bleach) and under Non-Oxidative Inhibitory Conditions (Isopropanol, Erythritol, Selenite). Microorganisms, 12(3), 491. https://doi.org/10.3390/microorganisms12030491