Differential Immunological Responses of Adult Domestic and Bighorn Sheep to Inoculation with Mycoplasma ovipneumoniae Type Strain Y98
<p><span class="html-italic">M. ovipneumoniae</span> detected on nasal swabs using a quantitative PCR in DS and BHS. (<b>A</b>) Cycle thresholds (Cq) measured from DNA extracted from nasal swabs. BHS are represented by open circles (○) and DS are represented by open triangles (Δ). The solid line is the standard curve limit of quantification (33.52 Cq) associated with ten copies of genomic equivalents. (<b>B</b>) Bacterial genomic equivalents calculated on a per-nasal-swab basis. The line indicates the limit of quantification (500 copies per swab) at the standard which measures ten bacterial copies. Fractions in DS bars indicate the number of subjects detected per the five animals enrolled in the study. Asterisks indicate a <span class="html-italic">p</span>-value < 0.05 and error bars represent the standard error.</p> "> Figure 2
<p>Clinical signs noted in bighorn and domestic sheep following inoculation with <span class="html-italic">M. ovipneumoniae</span>. Coughing was scored daily based on presence (1) or absence (0). The weekly clinical score was calculated by summing the daily scores for the week. In contrast, nasal discharge severity was observed twice a day and marked as a 0 to 5, where 0 = no discharge, 1 = mild discharge, 2 = moderate discharge, 3 = moderately severe discharge, 4 = severe discharge, and 5 = excessive discharge. Each animal’s weekly nasal discharge score was calculated by averaging the week’s scores and dividing by the number of times the animal was observed. Each point represents an individual animal enrolled in the study and asterisks indicate a <span class="html-italic">p</span>-value < 0.05.</p> "> Figure 3
<p>Peripheral leukocyte profiles in BHS and DS. (<b>A</b>) Percent of resting cellular populations calculated by observing 100 cells during manual differentials. Open bars are BHS and closed bars are DS. (<b>B</b>) Mean percent of neutrophils (black), lymphocytes (blue), and monocytes (orange) from the total leukocyte population for each species over the course of observation using flow cytometry. Bighorn sheep are represented by open circles (○) and domestic sheep are represented by solid circles (●). Both graphs have standard error incorporated and a <span class="html-italic">p</span>-value < 0.05 indicated by an * or <0.005 indicated by **. Significance in (<b>B</b>) is a comparison between the labeled day and day minus seven.</p> "> Figure 4
<p>Gating strategies for leukocyte cell type and adhesin markers. Each density dot plot is from seven days prior to inoculation and is based on the total leukocyte population. Side-scatter (SSC) and autofluorescence were used to differentiate between neutrophils, eosinophils, and peripheral blood mononuclear cells (PBMCs) in the left-hand image for each cluster of differentiation. The right-hand image for either marker shows the gating used to distinguish dim and bright populations of CD172a, as well as upper right and lower right populations of CD62L-positive lymphocytes.</p> "> Figure 5
<p>CD11b MFI in PBMCs following inoculation with <span class="html-italic">M. ovipneumoniae</span>. The asterisk indicates a <span class="html-italic">p</span>-value < 0.05 and is comparing the day marked to day minus seven.</p> "> Figure 6
<p>Adhesin expression changes in neutrophils and PBMCs following inoculation. CD172a is blue and CD62L is black, with UR having solid lines and LR having dashed lines. (<b>A</b>) The median fluorescence intensity for either marker in neutrophils, (<b>B</b>) the MFI for CD62L UR and LR measured in PBMCs, and (<b>C</b>) the MFI for CD172a+ in PBMCs. Significance is marked to the upper right of the graphed data point, where points that overlap are indicated by either DS or BHS. A <span class="html-italic">p</span>-value < 0.05 is indicated by * and <0.005 indicated by **, where the labeled day is compared to day minus seven.</p> "> Figure 7
<p>CD14 abundance in neutrophil and PBMC populations following inoculation. Solid lines are neutrophils and dashed lines are PBMCs. Asterisks mark the day in question for comparison to day minus seven, where * is a <span class="html-italic">p</span>-value < 0.05 and ** is a <span class="html-italic">p</span>-value < 0.005.</p> "> Figure 8
<p>Pre-inoculation serum cytokine concentrations. (<b>A</b>) Cytokines with values below 1000 pg/mL and (<b>B</b>) those with values above 1000 pg/mL. A <span class="html-italic">p</span>-value < 0.05 is marked with an asterisk.</p> "> Figure 9
<p>Serum cytokine fold change relative to day one post-inoculation. Serum concentrations measured each week were divided by day one cytokine concentrations to achieve a relative fold change. BHS are represented by open black circles, while DS are represented by open blue triangles. A <span class="html-italic">p</span>-value < 0.05 is labeled with an asterisk and represents significant difference to day one or between species.</p> "> Figure 10
<p>BHS and DS serum antibodies to Mycoplasma ovipneumoniae pre-inoculation and 28-days post-inoculation. The ladder and associated kDa values are in the first sample lane. Thereafter, the pre-sample is in the first lane for each animal in the inoculation study and is followed by the 28-day post-inoculation (dPI) serum sample.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Propagation of M. ovipneumoniae Inoculum
2.2. Animals, Inoculation, Monitoring, and Sampling
2.3. M. ovipneumoniae and Leukotoxin A PCR
2.4. Flow Cytometric Assessment of Leukocyte Clusters of Differentiation Molecules
2.5. Multiplex Assay of Serum Cytokines/Chemokines
2.6. Immunocapillary Assay
2.7. Statistical Analysis
3. Results
3.1. Post-Inoculation Detection of M. ovipneumoniae DNA and Measured Clinical Signs Consistent with Upper Respiratory Disease
3.2. Peripheral Leukocyte Profile Pre- and Post-Inoculation
3.3. Immune Cell Surface Markers
3.4. Time Course Changes in Surface Integrin Markers
3.5. Time Course Changes in Surface Adhesins
3.6. Time Course Changes in CD14 and CD16
3.7. Measurement of Serum Cytokines from Baseline and Post-Inoculation
3.8. Antibody Response to M. ovipneumoniae Following Inoculation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Highland, M.A.; Herndon, D.R.; Bender, S.C.; Hansen, L.; Gerlach, R.F.; Beckmen, K.B. Mycoplasma ovipneumoniae in Wildlife Species beyond Subfamily Caprinae. Emerg. Infect. Dis. 2018, 24, 2384–2386. [Google Scholar] [CrossRef] [PubMed]
- Besser, T.E.; Frances Cassirer, E.; Highland, M.A.; Wolff, P.; Justice-Allen, A.; Mansfield, K.; Davis, M.A.; Foreyt, W. Bighorn sheep pneumonia: Sorting out the cause of a polymicrobial disease. Prev. Vet. Med. 2013, 108, 85–93. [Google Scholar] [CrossRef]
- Besser, T.E.; Cassirer, E.F.; Potter, K.A.; VanderSchalie, J.; Fischer, A.; Knowles, D.P.; Herndon, D.R.; Rurangirwa, F.R.; Weiser, G.C.; Srikumaran, S. Association of Mycoplasma ovipneumoniae infection with population-limiting respiratory disease in free-ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis). J. Clin. Microbiol. 2008, 46, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.E.; Keir, W.A.; Gilmour, J.S. The pathogenicity of Mycoplasma ovipneumoniae and Mycoplasma arginini in ovine and caprine tracheal organ cultures. J. Comp. Pathol. 1985, 95, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Alley, M.R.; Ionas, G.; Clarke, J.K. Chronic non-progressive pneumonia of sheep in New Zealand—A review of the role of Mycoplasma ovipneumoniae. N. Z. Vet. J. 1999, 47, 155–160. [Google Scholar] [CrossRef]
- Lindstrom, L.; Tauni, F.A.; Vargmar, K. Bronchopneumonia in Swedish lambs: A study of pathological changes and bacteriological agents. Acta Vet. Scand. 2018, 60, 54. [Google Scholar] [CrossRef] [PubMed]
- Besser, T.E.; Cassirer, E.F.; Potter, K.A.; Lahmers, K.; Oaks, J.L.; Shanthalingam, S.; Srikumaran, S.; Foreyt, W.J. Epizootic pneumonia of bighorn sheep following experimental exposure to Mycoplasma ovipneumoniae. PLoS ONE 2014, 9, e110039. [Google Scholar] [CrossRef]
- Hernandez, J.B.R.; Kim, P.Y. Epidemiology Morbidity and Mortality; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Johnson, T.; Jones, K.; Jacobson, B.T.; Schearer, J.; Adams, N.; Thornton, I.; Mosdal, C.; Jones, S.; Jutila, M.; Rynda-Apple, A.; et al. Experimental infection of specific-pathogen-free domestic lambs with Mycoplasma ovipneumoniae causes asymptomatic colonization of the upper airways that is resistant to antibiotic treatment. Vet. Microbiol. 2022, 265, 109334. [Google Scholar] [CrossRef] [PubMed]
- Foggie, A.; Jones, G.E.; Buxton, D. The experimental infection of specific pathogen free lambs with Mycoplasma ovipneumoniae. Res. Vet. Sci. 1976, 21, 28–35. [Google Scholar] [CrossRef]
- USDA. Mycoplasma Ovipneumonia on U.S. Sheep Operations; USDA–APHIS–VS–CEAH–NAHMS: Fort Collins, CO, USA, 2015; pp. 1–3. [Google Scholar]
- Grossman, P.C.; Schneider, D.A.; Herndon, D.R.; Knowles, D.P.; Highland, M.A. Differential pulmonary immunopathology of domestic sheep (Ovis aries) and bighorn sheep (Ovis canadensis) with Mycoplasma ovipneumoniae infection: A retrospective study. Comp. Immunol. Microbiol. Infect. Dis. 2021, 76, 101641. [Google Scholar] [CrossRef]
- Wood, M.E.; Fox, K.A.; Jennings-Gaines, J.; Killion, H.J.; Amundson, S.; Miller, M.W.; Edwards, W.H. How Respiratory Pathogens Contribute to Lamb Mortality in a Poorly Performing Bighorn Sheep (Ovis canadensis) Herd. J. Wildlife Dis. 2017, 53, 126–130. [Google Scholar] [CrossRef]
- Cassirer, E.F.; Manlove, K.R.; Plowright, R.K.; Besser, T.E. Evidence for strain-specific immunity to pneumonia in bighorn sheep. J. Wildl. Manag. 2017, 81, 133–143. [Google Scholar] [CrossRef]
- Johnson, B.M.; Stroud-Settles, J.; Roug, A.; Manlove, K. Disease Ecology of a Low-Virulence Mycoplasma ovipneumoniae Strain in a Free-Ranging Desert Bighorn Sheep Population. Animals 2022, 12, 1029. [Google Scholar] [CrossRef]
- Moberg, E. Factors Influencing Mortality of Bighorn Sheep (Ovis canadensis). In Wildlife and Fisheries Sciences; South Dakota State University: Brookings, SD, USA, 2023. [Google Scholar]
- Highland, M.A.; Schneider, D.A.; White, S.N.; Madsen-Bouterse, S.A.; Knowles, D.P.; Davis, W.C. Differences in leukocyte differentiation molecule abundances on domestic sheep (Ovis aries) and bighorn sheep (Ovis canadensis) neutrophils identified by flow cytometry. Comp. Immunol. Microbiol. Infect. Dis. 2016, 46, 40–46. [Google Scholar] [CrossRef]
- Dassanayake, R.P.; Shanthalingam, S.; Liu, W.; Casas, E.; Srikumaran, S. Differential Susceptibility of Bighorn Sheep (Ovis canadensis) and Domestic Sheep (Ovis aries) Neutrophils to Mannheimia haemolytica Leukotoxin is not due to Differential Expression of Cell Surface CD18. J. Wildl. Dis. 2017, 53, 625–629. [Google Scholar] [CrossRef]
- Herndon, D.R.; Beckmen, K.B.; Highland, M.A. Draft Genome Sequence of a Novel Mycoplasma Species Identified from the Respiratory Tract of an Alaska Moose (Alces alces gigas). Microbiol. Resour. Announc. 2021, 10, e01371-20. [Google Scholar] [CrossRef]
- AlHajri, S.M.; Cunha, C.W.; Nicola, A.V.; Aguilar, H.C.; Li, H.; Taus, N.S. Ovine Herpesvirus 2 Glycoproteins B, H, and L Are Sufficient for, and Viral Glycoprotein Ov8 Can Enhance, Cell-Cell Membrane Fusion. J. Virol. 2017, 91, e02454-16. [Google Scholar] [CrossRef] [PubMed]
- Robinson, E.; Schulein, C.; Jacobson, B.T.; Jones, K.; Sago, J.; Huber, V.; Jutila, M.; Bimczok, D.; Rynda-Apple, A. Pathophysiology of Influenza D Virus Infection in Specific-Pathogen-Free Lambs with or without Prior Mycoplasma ovipneumoniae Exposure. Viruses 2022, 14, 1422. [Google Scholar] [CrossRef] [PubMed]
- Mousel, M.R.; White, S.N.; Herndon, M.K.; Herndon, D.R.; Taylor, J.B.; Becker, G.M.; Murdoch, B.M. Genes involved in immune, gene translation and chromatin organization pathways associated with Mycoplasma ovipneumoniae presence in nasal secretions of domestic sheep. PLoS ONE 2021, 16, e0247209. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.A.; Weiser, G.C.; Hunter, D.L.; Ward, A.C. Use of a polymerase chain reaction method to detect the leukotoxin gene lktA in biogroup and biovariant isolates of Pasteurella haemolytica and P trehalosi. Am. J. Vet. Res. 1999, 60, 1402–1406. [Google Scholar] [CrossRef]
- Dassanayake, R.P.; Shanthalingam, S.; Herndon, C.N.; Lawrence, P.K.; Frances Cassirer, E.; Potter, K.A.; Foreyt, W.J.; Clinkenbeard, K.D.; Srikumaran, S. Mannheimia haemolytica serotype A1 exhibits differential pathogenicity in two related species, Ovis canadensis and Ovis aries. Vet. Microbiol. 2009, 133, 366–371. [Google Scholar] [CrossRef]
- McAuliffe, L.; Hatchell, F.M.; Ayling, R.D.; King, A.I.; Nicholas, R.A. Detection of Mycoplasma ovipneumoniae in Pasteurella-vaccinated sheep flocks with respiratory disease in England. Vet. Rec. 2003, 153, 687–688. [Google Scholar] [CrossRef]
- Smith, H.E.; Jacobs, R.M.; Smith, C. Flow cytometric analysis of ovine peripheral blood lymphocytes. Can. J. Vet. Res. 1994, 58, 152–155. [Google Scholar]
- Mazzone, A.; Ricevuti, G. Leukocyte CD11/CD18 integrins: Biological and clinical relevance. Haematologica 1995, 80, 161–175. [Google Scholar]
- Konrad, F.M.; Wohlert, J.; Gamper-Tsigaras, J.; Ngamsri, K.C.; Reutershan, J. How Adhesion Molecule Patterns Change While Neutrophils Traffic through the Lung during Inflammation. Mediat. Inflamm. 2019, 2019, 1208086. [Google Scholar] [CrossRef]
- Arbones, M.L.; Ord, D.C.; Ley, K.; Ratech, H.; Maynard-Curry, C.; Otten, G.; Capon, D.J.; Tedder, T.F. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1994, 1, 247–260. [Google Scholar] [CrossRef]
- Ciesielska, A.; Matyjek, M.; Kwiatkowska, K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol. Life Sci. 2021, 78, 1233–1261. [Google Scholar] [CrossRef] [PubMed]
- Yeap, W.H.; Wong, K.L.; Shimasaki, N.; Teo, E.C.Y.; Quek, J.K.S.; Yong, H.X.; Diong, C.P.; Bertoletti, A.; Linn, Y.C.; Wong, S.C. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes. Sci. Rep 2016, 6, 34310. [Google Scholar] [CrossRef]
- Fox, K.A.; MacGlover, C.A.W.; Blecha, K.A.; Stenglein, M.D. Assessing shared respiratory pathogens between domestic (Ovis aries) and bighorn (Ovis canadensis) sheep; Methods for multiplex PCR, amplicon sequencing, and bioinformatics to characterize respiratory flora. PLoS ONE 2023, 18, e0293062. [Google Scholar] [CrossRef]
- Pennock, N.D.; White, J.T.; Cross, E.W.; Cheney, E.E.; Tamburini, B.A.; Kedl, R.M. T cell responses: Naive to memory and everything in between. Adv. Physiol. Educ. 2013, 37, 273–283. [Google Scholar] [CrossRef]
- Chen, G.; Sun, L.; Kato, T.; Okuda, K.; Martino, M.B.; Abzhanova, A.; Lin, J.M.; Gilmore, R.C.; Batson, B.D.; O’Neal, Y.K.; et al. IL-1beta dominates the promucin secretory cytokine profile in cystic fibrosis. J. Clin. Invest. 2019, 129, 4433–4450. [Google Scholar] [CrossRef] [PubMed]
- Suwara, M.I.; Green, N.J.; Borthwick, L.A.; Mann, J.; Mayer-Barber, K.D.; Barron, L.; Corris, P.A.; Farrow, S.N.; Wynn, T.A.; Fisher, A.J.; et al. IL-1alpha released from damaged epithelial cells is sufficient and essential to trigger inflammatory responses in human lung fibroblasts. Mucosal Immunol. 2014, 7, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Huard, A.; Mora, J.; da Silva, P.; Brune, B.; Weigert, A. IL-36 family cytokines in protective versus destructive inflammation. Cell. Signal 2020, 75, 109773. [Google Scholar] [CrossRef] [PubMed]
- Shams, F.; Moravvej, H.; Hosseinzadeh, S.; Mostafavi, E.; Bayat, H.; Kazemi, B.; Bandehpour, M.; Rostami, E.; Rahimpour, A.; Moosavian, H. Overexpression of VEGF in dermal fibroblast cells accelerates the angiogenesis and wound healing function: In vitro and in vivo studies. Sci. Rep. 2022, 12, 18529. [Google Scholar] [CrossRef]
- Malmberg, J.L.; Allen, S.E.; Jennings-Gaines, J.E.; Johnson, M.; Luukkonen, K.L.; Robbins, K.M.; Cornish, T.E.; Smiley, R.A.; Wagler, B.L.; Gregory, Z.; et al. Pathology of Chronic Mycoplasma ovipneumoniae Carriers in a Declining Bighorn Sheep (Ovis canadensis) Population. J. Wildl. Dis. 2024, 60, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, R.; Herndon, C.N.; Shanthalingam, S.; Dassanayake, R.P.; Bavananthasivam, J.; Potter, K.A.; Knowles, D.P.; Foreyt, W.J.; Srikumaran, S. Defective bacterial clearance is responsible for the enhanced lung pathology characteristic of pneumonia in bighorn sheep. Vet. Microbiol. 2011, 153, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Elhmouzi-Younes, J.; Boysen, P.; Pende, D.; Storset, A.K.; Le Vern, Y.; Laurent, F.; Drouet, F. Ovine CD16+/CD14− blood lymphocytes present all the major characteristics of natural killer cells. Vet. Res. 2010, 41, 4. [Google Scholar] [CrossRef]
- Dienz, O.; Eaton, S.M.; Bond, J.P.; Neveu, W.; Moquin, D.; Noubade, R.; Briso, E.M.; Charland, C.; Leonard, W.J.; Ciliberto, G.; et al. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J. Exp. Med. 2009, 206, 69–78. [Google Scholar] [CrossRef]
- Madhurantakam, S.; Lee, Z.J.; Naqvi, A.; Prasad, S. Importance of IP-10 as a biomarker of host immune response: Critical perspective as a target for biosensing. Curr. Res. Biotechnol. 2023, 5, 100130. [Google Scholar] [CrossRef]
- Li, M.Y.; Chen, Y.; Li, H.H.; Yang, D.H.; Zhou, Y.L.; Chen, Z.M.; Zhang, Y.Y. Serum CXCL10/IP-10 may be a potential biomarker for severe pneumonia in children. BMC Infect. Dis. 2021, 21, 909. [Google Scholar] [CrossRef]
- Haziot, A.; Tsuberi, B.Z.; Goyert, S.M. Neutrophil CD14: Biochemical properties and role in the secretion of tumor necrosis factor-alpha in response to lipopolysaccharide. J. Immunol. 1993, 150, 5556–5565. [Google Scholar] [CrossRef]
- Wang, M.; Feng, J.; Zhou, D.; Wang, J. Bacterial lipopolysaccharide-induced endothelial activation and dysfunction: A new predictive and therapeutic paradigm for sepsis. Eur. J. Med. Res. 2023, 28, 339. [Google Scholar] [CrossRef]
- Luderitz, O.; Freudenberg, M.A.; Galanos, C.; Lehmann, V.; Rietschel, E.T.; Shaw, D.H. Lipopolysaccharides of Gram-Negative Bacteria. Curr. Top. Membr. Trans. 1982, 17, 79–151. [Google Scholar]
- Shimizu, T. Inflammation-inducing Factors of Mycoplasma pneumoniae. Front. Microbiol. 2016, 7, 414. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Varasteh, S.; van Putten, J.P.M.; Folkerts, G.; Braber, S. Mannheimia haemolytica and lipopolysaccharide induce airway epithelial inflammatory responses in an extensively developed ex vivo calf model. Sci. Rep. 2020, 10, 13042. [Google Scholar] [CrossRef]
- Hodgson, P.D.; Aich, P.; Stookey, J.; Popowych, Y.; Potter, A.; Babiuk, L.; Griebel, P.J. Stress significantly increases mortality following a secondary bacterial respiratory infection. Vet. Res. 2012, 43, 21. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madsen-Bouterse, S.A.; Herndon, D.R.; Grossman, P.C.; Rivolta, A.A.; Fry, L.M.; Murdoch, B.M.; Piel, L.M.W. Differential Immunological Responses of Adult Domestic and Bighorn Sheep to Inoculation with Mycoplasma ovipneumoniae Type Strain Y98. Microorganisms 2024, 12, 2658. https://doi.org/10.3390/microorganisms12122658
Madsen-Bouterse SA, Herndon DR, Grossman PC, Rivolta AA, Fry LM, Murdoch BM, Piel LMW. Differential Immunological Responses of Adult Domestic and Bighorn Sheep to Inoculation with Mycoplasma ovipneumoniae Type Strain Y98. Microorganisms. 2024; 12(12):2658. https://doi.org/10.3390/microorganisms12122658
Chicago/Turabian StyleMadsen-Bouterse, Sally A., David R. Herndon, Paige C. Grossman, Alejandra A. Rivolta, Lindsay M. Fry, Brenda M. Murdoch, and Lindsay M. W. Piel. 2024. "Differential Immunological Responses of Adult Domestic and Bighorn Sheep to Inoculation with Mycoplasma ovipneumoniae Type Strain Y98" Microorganisms 12, no. 12: 2658. https://doi.org/10.3390/microorganisms12122658
APA StyleMadsen-Bouterse, S. A., Herndon, D. R., Grossman, P. C., Rivolta, A. A., Fry, L. M., Murdoch, B. M., & Piel, L. M. W. (2024). Differential Immunological Responses of Adult Domestic and Bighorn Sheep to Inoculation with Mycoplasma ovipneumoniae Type Strain Y98. Microorganisms, 12(12), 2658. https://doi.org/10.3390/microorganisms12122658