In Vivo Quantification of Surfactin Nonribosomal Peptide Synthetase Complexes in Bacillus subtilis
<p>Online monitoring of cell growth and fluorescence intensity (FI) of <span class="html-italic">B. subtilis</span> sensor strains. Optical density (<b>a</b>) and relative fluorescence intensity (<b>b</b>) were determined for the constructed <span class="html-italic">B. subtilis</span> mutant strains encoding <span class="html-italic">srfA</span> genes C-terminally fused with a <span class="html-italic">megfp</span> protein tag over a 12 h period in 96-well plate cultivations. Hence, the parental control strain BMV9 (diamond) and the sensor strains BMV25 (<span class="html-italic">srfAA</span>-<span class="html-italic">megfp</span>, green cycle), BMV26 (<span class="html-italic">srfAB</span>-<span class="html-italic">megfp</span>, cyan cycle), BMV27 (<span class="html-italic">srfAC</span>-<span class="html-italic">megfp</span>, inverted orange triangle), and BMV28 (<span class="html-italic">srfAD</span>-<span class="html-italic">megfp</span>, violet triangle) were cultured in biological triplicates.</p> "> Figure 2
<p>Fluorescence microscopic image of bacterial strains cultivated in mineral salt medium until the middle of the exponential phase. <span class="html-italic">B. subtilis</span> BMV25 (<span class="html-italic">srfAA-megfp</span>) (<b>a</b>), <span class="html-italic">B. subtilis</span> BMV26 (<span class="html-italic">srfAB-megfp</span>) (<b>b</b>), <span class="html-italic">B. subtilis</span> BMV27 (<span class="html-italic">srfAC-megfp</span>) (<b>c</b>), and <span class="html-italic">B. subtilis</span> BMV28 (<span class="html-italic">srfAD-megfp</span>) (<b>d</b>) showing the localization of surfactin-forming NRPS subunits with C-terminal-fused mEGFP protein.</p> "> Figure 3
<p>Overview of bioproduction parameters by <span class="html-italic">B. subtilis</span> sensor strains during the cultivation process. The parental <span class="html-italic">B. subtilis</span> strain BMV9 as the negative control and the sensor strains BMV25 (<span class="html-italic">srfAA</span>-<span class="html-italic">megfp</span>), BMV26 (<span class="html-italic">srfAB</span>-<span class="html-italic">megfp</span>), BMV27 (<span class="html-italic">srfAC</span>-<span class="html-italic">megfp</span>), and BMV28 (<span class="html-italic">srfAD</span>-<span class="html-italic">megfp</span>) were cultured in biological triplicates in shake flasks over a period of 33 h. During the cultivation process, surfactin (<b>a</b>), living cell numbers (<b>b</b>), and the relative number of protein molecules equivalent to mEGFP (MEFP) (<b>c</b>) were monitored.</p> "> Figure 4
<p>Calculation of the relative productivity of the surfactin-producing SrfA subunits. The correlation between the surfactin produced and the calculated MEFP for the <span class="html-italic">B. subtilis</span> sensor strains BMV25 (<span class="html-italic">srfAA</span>-<span class="html-italic">megfp</span>), BMV26 (<span class="html-italic">srfAB</span>-<span class="html-italic">megfp</span>), BMV27 (<span class="html-italic">srfAC</span>-<span class="html-italic">megfp</span>), and BMV28 (<span class="html-italic">srfAD</span>-<span class="html-italic">megfp</span>) at the beginning of the exponential growth phase until the end of cultivation after 33 h. The bar plot shows the relative bioproduction of surfactin per NRPS molecule, represented by the fluorescence of the fused mEGFP.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of B. subtilis Sensor Strains
2.2. Cultivation Media
2.3. Real-Time Monitoring of Cell Growth and Fluorescence Signals in Plate Reader
2.4. Shake Flask Cultivations and Determination of Living Cells
2.5. Surfactin Analysis
2.6. Fluorescence Signal Measurement
2.7. Expression and Purification of mEGFP
2.8. Calibration of mEGFP Activity Using FPCountR
2.9. Microscopy
3. Results
3.1. Online Monitoring of Surfactin-Producing B. subtilis Sensor Strains with NRPS Subunits Labeled with mGFP-Tags
3.2. Visual Distribution of Surfactin-Forming NRPS Subunits in B. subtilis
3.3. Calculation of Surfactin Productivity of B. subtilis Sensor Strains and Associated NRPS Molecules
3.4. Estimation of the Productivity of Surfactin-Forming NRPS Molecules
4. Discussion
5. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beal, J.; Haddock-Angelli, T.; Baldwin, G.; Gershater, M.; Dwijayanti, A.; Storch, M.; de Mora, K.; Lizarazo, M.; Rettberg, R.; with the iGEM Interlab Study Contributors. Quantification of bacterial fluorescence using independent calibrants. PLoS ONE 2018, 13, e0199432. [Google Scholar] [CrossRef]
- Chudakov, D.M.; Matz, M.V.; Lukyanov, S.; Lukyanov, K.A. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 2010, 90, 1103–1163. [Google Scholar] [CrossRef]
- Margolin, W. Green fluorescent protein as a reporter for macromolecular localization in bacterial cells. Methods 2000, 20, 62–72. [Google Scholar] [CrossRef]
- Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W.W.; Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 1994, 263, 802–805. [Google Scholar] [CrossRef]
- Webb, C.D.; Decatur, A.; Teleman, A.; Losick, R. Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. J. Bacteriol. 1995, 177, 5906–5911. [Google Scholar] [CrossRef]
- Harry, E.J.; Wake, R.G. The membrane-bound cell division protein DivIB is localized to the division site in Bacillus subtilis. Mol. Microbiol. 1997, 25, 275–283. [Google Scholar] [CrossRef]
- Miao, C.-C.; Han, L.-L.; Lu, Y.-B.; Feng, H. Construction of a high-expression system in Bacillus through transcriptomic profiling and promoter engineering. Microorganisms 2020, 8, 1030. [Google Scholar] [CrossRef]
- Lemon, K.P.; Grossman, A.D. Localization of bacterial DNA polymerase: Evidence for a factory model of replication. Science 1998, 282, 1516–1519. [Google Scholar] [CrossRef]
- Guan, C.; Cui, W.; Cheng, J.; Zhou, L.; Guo, J.; Hu, X.; Xiao, G.; Zhou, Z. Construction and development of an auto-regulatory gene expression system in Bacillus subtilis. Microb. Cell Factories 2015, 14, 150. [Google Scholar]
- Laalami, S.; Cavaiuolo, M.; Roque, S.; Chagneau, C.; Putzer, H. Escherichia coli RNase E can efficiently replace RNase Y in Bacillus subtilis. Nucleic Acids Res. 2021, 49, 4643–4654. [Google Scholar] [CrossRef]
- Felnagle, E.A.; Jackson, E.E.; Chan, Y.A.; Podevels, A.M.; Berti, A.D.; McMahon, M.D.; Thomas, M.G. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol. Pharm. 2008, 5, 191–211. [Google Scholar] [CrossRef]
- Vahidinasab, M.; Adiek, I.; Hosseini, B.; Akintayo, S.O.; Abrishamchi, B.; Pfannstiel, J.; Henkel, M.; Lilge, L.; Voegele, R.T.; Hausmann, R. Characterization of Bacillus velezensis UTB96, demonstrating improved lipopeptide production compared to the strain B. velezensis FZB42. Microorganisms 2022, 10, 2225. [Google Scholar] [CrossRef] [PubMed]
- Dussert, E.; Tourret, M.; Dupuis, C.; Noblecourt, A.; Behra-Miellet, J.; Flahaut, C.; Ravallec, R.; Coutte, F. Evaluation of antiradical and antioxidant activities of lipopeptides produced by Bacillus subtilis strains. Front. Microbiol. 2022, 13, 914713. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Begum, F.; Rabaan, A.A.; Aljeldah, M.; Al Shammari, B.R.; Alawfi, A.; Alshengeti, A.; Sulaiman, T.; Khan, A. Classification and multifaceted potential of secondary metabolites produced by Bacillus subtilis group: A comprehensive review. Molecules 2023, 28, 927. [Google Scholar] [CrossRef] [PubMed]
- Harwood, C.R.; Mouillon, J.-M.; Pohl, S.; Arnau, J. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol. Rev. 2018, 42, 721–738. [Google Scholar] [CrossRef]
- Zhao, H.; Shao, D.; Jiang, C.; Shi, J.; Li, Q.; Huang, Q.; Rajoka, M.S.R.; Yang, H.; Jin, M. Biological activity of lipopeptides from Bacillus. Appl. Microbiol. Biotechnol. 2017, 101, 5951–5960. [Google Scholar] [CrossRef]
- Jagadeesh, V.; Yoshida, T.; Uraji, M.; Okahashi, N.; Matsuda, F.; Vavricka, C.J.; Tsuge, K.; Kondo, A. Simple and Rapid Non-ribosomal Peptide Synthetase Gene Assembly Using the SEAM–OGAB Method. ACS Synth. Biol. 2022, 12, 305–318. [Google Scholar] [CrossRef]
- Coutte, F.; Lecouturier, D.; Dimitrov, K.; Guez, J.-S.; Delvigne, F.; Dhulster, P.; Jacques, P. Microbial lipopeptide production and purification bioprocesses, current progress and future challenges. Biotechnol. J. 2017, 12, 1600566. [Google Scholar] [CrossRef]
- Yu, G.; Jia, X.; Wen, J.; Wang, G.; Chen, Y. Enhancement of daptomycin production in Streptomyces roseosporus LC-51 by manipulation of cofactors concentration in the fermentation culture. World J. Microbiol. Biotechnol. 2011, 27, 1859–1868. [Google Scholar] [CrossRef]
- Geissler, M.; Heravi, K.M.; Henkel, M.; Hausmann, R. Lipopeptide biosurfactants from Bacillus species. In Biobased Surfactants; Elsevier: Amsterdam, The Netherlands, 2019; pp. 205–240. [Google Scholar]
- Yousfi, S.; Krier, F.; Deracinois, B.; Steels, S.; Coutte, F.; Frikha-Gargouri, O. Characterization of Bacillus velezensis 32a metabolites and their synergistic bioactivity against crown gall disease. Microbiol. Res. 2024, 280, 127569. [Google Scholar] [CrossRef]
- Qiao, J.; Borriss, R.; Sun, K.; Zhang, R.; Chen, X.; Liu, Y.; Liu, Y. Research advances in the identification of regulatory mechanisms of surfactin production by Bacillus: A review. Microb. Cell Factories 2024, 23, 100. [Google Scholar] [CrossRef] [PubMed]
- Jacques, P. Surfactin and other lipopeptides from Bacillus spp. In Biosurfactants: From Genes to Applications; Springer: Berlin/Heidelberg, Germany, 2011; pp. 57–91. [Google Scholar]
- Qin, W.-Q.; Fei, D.; Zhou, L.; Guo, Y.-J.; An, S.; Gong, O.-H.; Wu, Y.-Y.; Liu, J.-F.; Yang, S.-Z.; Mu, B.-Z. A new surfactin-C 17 produced by Bacillus subtilis TD7 with a low critical micelle concentration and high biological activity. New J. Chem. 2023, 47, 7604–7612. [Google Scholar] [CrossRef]
- Luo, C.; Liu, X.; Zhou, H.; Wang, X.; Chen, Z. Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions. Appl. Environ. Microbiol. 2015, 81, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Tufar, P.; Rahighi, S.; Kraas, F.I.; Kirchner, D.K.; Löhr, F.; Henrich, E.; Köpke, J.; Dikic, I.; Güntert, P.; Marahiel, M.A. Crystal structure of a PCP/Sfp complex reveals the structural basis for carrier protein posttranslational modification. Chem. Biol. 2014, 21, 552–562. [Google Scholar] [CrossRef]
- Théatre, A.; Hoste, A.C.; Rigolet, A.; Benneceur, I.; Bechet, M.; Ongena, M.; Deleu, M.; Jacques, P. Bacillus sp.: A remarkable source of bioactive lipopeptides. In Biosurfactants for the Biobased Economy; Springer: Berlin/Heidelberg, Germany, 2022; pp. 123–179. [Google Scholar]
- Rahmer, R.; Morabbi Heravi, K.; Altenbuchner, J. Construction of a super-competent Bacillus subtilis 168 using the PmtlA-comKS inducible cassette. Front. Microbiol. 2015, 6, 1431. [Google Scholar] [CrossRef]
- Wenzel, M.; Altenbuchner, J. Development of a markerless gene deletion system for Bacillus subtilis based on the mannose phosphoenolpyruvate-dependent phosphotransferase system. Microbiology 2015, 161, 1942–1949. [Google Scholar] [CrossRef]
- Willenbacher, J.; Yeremchuk, W.; Mohr, T.; Syldatk, C.; Hausmann, R. Enhancement of surfactin yield by improving the medium composition and fermentation process. AMB Express 2015, 5, 57. [Google Scholar] [CrossRef]
- Lilge, L.; Vahidinasab, M.; Adiek, I.; Becker, P.; Kuppusamy Nesamani, C.; Treinen, C.; Hoffmann, M.; Morabbi Heravi, K.; Henkel, M.; Hausmann, R. Expression of degQ gene and its effect on lipopeptide production as well as formation of secretory proteases in Bacillus subtilis strains. MicrobiologyOpen 2021, 10, e1241. [Google Scholar] [CrossRef]
- Gunetti, M.; Castiglia, S.; Rustichelli, D.; Mareschi, K.; Sanavio, F.; Muraro, M.; Signorino, E.; Castello, L.; Ferrero, I.; Fagioli, F. Validation of analytical methods in GMP: The disposable Fast Read 102® device, an alternative practical approach for cell counting. J. Transl. Med. 2012, 10, 112. [Google Scholar] [CrossRef]
- Geissler, M.; Oellig, C.; Moss, K.; Schwack, W.; Henkel, M.; Hausmann, R. High-performance thin-layer chromatography (HPTLC) for the simultaneous quantification of the cyclic lipopeptides Surfactin, Iturin A and Fengycin in culture samples of Bacillus species. J. Chromatogr. B 2017, 1044, 214–224. [Google Scholar] [CrossRef]
- de Jong, H.; Ranquet, C.; Ropers, D.; Pinel, C.; Geiselmann, J. Experimental and computational validation of models of fluorescent and luminescent reporter genes in bacteria. BMC Syst. Biol. 2010, 4, 55. [Google Scholar] [CrossRef] [PubMed]
- Kruger, N.J. The Bradford method for protein quantitation. In The Protein Protocols Handbook; Humana: Totowa, NJ, USA, 2009; pp. 17–24. [Google Scholar]
- Csibra, E.; Stan, G.-B. Absolute protein quantification using fluorescence measurements with FPCountR. Nat. Commun. 2022, 13, 6600. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.; Zhang, T. Optimization of fixation methods for observation of bacterial cell morphology and surface ultrastructures by atomic force microscopy. Appl. Microbiol. Biotechnol. 2011, 92, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Hahne, H.; Wolff, S.; Hecker, M.; Becher, D. From complementarity to comprehensiveness—Targeting the membrane proteome of growing Bacillus subtilis by divergent approaches. Proteomics 2008, 8, 4123–4136. [Google Scholar] [CrossRef]
- Treinen, C.; Magosch, O.; Hoffmann, M.; Klausmann, P.; Würtz, B.; Pfannstiel, J.; Morabbi Heravi, K.; Lilge, L.; Hausmann, R.; Henkel, M. Modeling the time course of ComX: Towards molecular process control for Bacillus wild-type cultivations. AMB Express 2021, 11, 144. [Google Scholar] [CrossRef]
- Kalamara, M.; Spacapan, M.; Mandic-Mulec, I.; Stanley-Wall, N.R. Social behaviours by Bacillus subtilis: Quorum sensing, kin discrimination and beyond. Mol. Microbiol. 2018, 110, 863–878. [Google Scholar] [CrossRef]
- Liu, S.; Tang, M.-H.; Cheng, J.-S. Fermentation optimization of surfactin production of Bacillus amyloliquefaciens HM618. Biotechnol. Appl. Biochem. 2023, 70, 38–50. [Google Scholar] [CrossRef]
- Dos Santos, L.F.M.; Coutte, F.; Ravallec, R.; Dhulster, P.; Tournier-Couturier, L.; Jacques, P. An improvement of surfactin production by B. subtilis BBG131 using design of experiments in microbioreactors and continuous process in bubbleless membrane bioreactor. Bioresour. Technol. 2016, 218, 944–952. [Google Scholar] [CrossRef]
- Hu, F.; Liu, Y.; Li, S. Rational strain improvement for surfactin production: Enhancing the yield and generating novel structures. Microb. Cell Factories 2019, 18, 42. [Google Scholar] [CrossRef]
- Dhali, D.; Coutte, F.; Arias, A.A.; Auger, S.; Bidnenko, V.; Chataigné, G.; Lalk, M.; Niehren, J.; de Sousa, J.; Versari, C. Genetic engineering of the branched fatty acid metabolic pathway of Bacillus subtilis for the overproduction of surfactin C14 isoform. Biotechnol. J. 2017, 12, 1600574. [Google Scholar] [CrossRef]
- Wu, Q.; Zhi, Y.; Xu, Y. Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. Metab. Eng. 2019, 52, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Sun, J.; Ma, Q.; Li, M.; Dou, Y.; Yang, S.; Gao, X. Improving surfactin production in Bacillus subtilis 168 by metabolic engineering. Microorganisms 2024, 12, 998. [Google Scholar] [CrossRef] [PubMed]
- Willenbacher, J.; Mohr, T.; Henkel, M.; Gebhard, S.; Mascher, T.; Syldatk, C.; Hausmann, R. Substitution of the native srfA promoter by constitutive Pveg in two B. subtilis strains and evaluation of the effect on Surfactin production. J. Biotechnol. 2016, 224, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Mück, D.; Grossmann, L.; Greiner, L.; Klausmann, P.; Henkel, M.; Lilge, L.; Weiss, J.; Hausmann, R. Surfactin from Bacillus subtilis displays promising characteristics as O/W-emulsifier for food formulations. Colloids Surf. B Biointerfaces 2021, 203, 111749. [Google Scholar] [CrossRef]
- Vahidinasab, M.; Lilge, L.; Reinfurt, A.; Pfannstiel, J.; Henkel, M.; Morabbi Heravi, K.; Hausmann, R. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis. Microb. Cell Factories 2020, 19, 205. [Google Scholar] [CrossRef]
- Klausmann, P.; Hennemann, K.; Hoffmann, M.; Treinen, C.; Aschern, M.; Lilge, L.; Morabbi Heravi, K.; Henkel, M.; Hausmann, R. Bacillus subtilis high cell density fermentation using a sporulation-deficient strain for the production of surfactin. Appl. Microbiol. Biotechnol. 2021, 105, 4141–4151. [Google Scholar] [CrossRef]
- Serror, P.; Sonenshein, A.L. CodY is required for nutritional repression of Bacillus subtilis genetic competence. J. Bacteriol. 1996, 178, 5910–5915. [Google Scholar] [CrossRef]
- Wang, J.; Guo, R.; Wang, W.; Ma, G.; Li, S. Insight into the surfactin production of Bacillus velezensis B006 through metabolomics analysis. J. Ind. Microbiol. Biotechnol. 2018, 45, 1033–1044. [Google Scholar] [CrossRef]
- Coutte, F.; Niehren, J.; Dhali, D.; John, M.; Versari, C.; Jacques, P. Modeling leucine’s metabolic pathway and knockout prediction improving the production of surfactin, a biosurfactant from Bacillus subtilis. Biotechnol. J. 2015, 10, 1216–1234. [Google Scholar] [CrossRef]
- Denisov, I.G.; Grinkova, Y.V.; Lazarides, A.A.; Sligar, S.G. Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J. Am. Chem. Soc. 2004, 126, 3477–3487. [Google Scholar] [CrossRef]
- Reuß, D.R.; Thürmer, A.; Daniel, R.; Quax, W.J.; Stülke, J. Complete genome sequence of Bacillus subtilis subsp. subtilis strain∆ 6. Genome Announc. 2016, 4, 10–1128. [Google Scholar] [CrossRef]
- Song, Y.; Lee, B.-R.; Cho, S.; Cho, Y.-B.; Kim, S.-W.; Kang, T.J.; Kim, S.C.; Cho, B.-K. Determination of single nucleotide variants in Escherichia coli DH5α by using short-read sequencing. FEMS Microbiol. Lett. 2015, 362, fnv073. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vahidinasab, M.; Thewes, L.; Abrishamchi, B.; Lilge, L.; Reiße, S.; Benatto Perino, E.H.; Hausmann, R. In Vivo Quantification of Surfactin Nonribosomal Peptide Synthetase Complexes in Bacillus subtilis. Microorganisms 2024, 12, 2381. https://doi.org/10.3390/microorganisms12112381
Vahidinasab M, Thewes L, Abrishamchi B, Lilge L, Reiße S, Benatto Perino EH, Hausmann R. In Vivo Quantification of Surfactin Nonribosomal Peptide Synthetase Complexes in Bacillus subtilis. Microorganisms. 2024; 12(11):2381. https://doi.org/10.3390/microorganisms12112381
Chicago/Turabian StyleVahidinasab, Maliheh, Lisa Thewes, Bahar Abrishamchi, Lars Lilge, Susanne Reiße, Elvio Henrique Benatto Perino, and Rudolf Hausmann. 2024. "In Vivo Quantification of Surfactin Nonribosomal Peptide Synthetase Complexes in Bacillus subtilis" Microorganisms 12, no. 11: 2381. https://doi.org/10.3390/microorganisms12112381
APA StyleVahidinasab, M., Thewes, L., Abrishamchi, B., Lilge, L., Reiße, S., Benatto Perino, E. H., & Hausmann, R. (2024). In Vivo Quantification of Surfactin Nonribosomal Peptide Synthetase Complexes in Bacillus subtilis. Microorganisms, 12(11), 2381. https://doi.org/10.3390/microorganisms12112381