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Abstract: In this paper, a state estimation method of distributed electric drive articulated
vehicle dynamics parameters based on the forgetting factor unscented Kalman filter with
singular value decomposition (SVD-UKF) is proposed. The 7DOF nonlinear dynamics
model of a distributed electric drive articulated vehicle is established. The unscented
Kalman filter algorithm is the foundation, with singular value decomposition replacing
the Cholesky decomposition. A forgetting factor is introduced to dynamically adapt the
observation noise covariance matrix in real time, resulting in a centralized parameter state
estimator for the articulated vehicle. The proposed parameter state estimation method
based on the forgetting factor SVD-UKF is simulated and compared with the unscented
Kalman filter (UKF) estimation method. Key dynamic parameters are estimated, such as
the lateral and longitudinal velocities and accelerations, angular velocity, articulated angle,
wheel speeds, and longitudinal and lateral tire forces of both the front and rear vehicle
bodies. The results show that the proposed forgetting factor SVD-UKF method outper-
forms the traditional UKF method. Furthermore, a prototype vehicle test is conducted
to compare the estimated values of various dynamic parameters with the actual values,
demonstrating minimal errors. This verifies the effectiveness of the proposed dynamic
parameter estimation method for articulated vehicles.

Keywords: articulated vehicles; distributed electric drive; state estimation; unscented
Kalman filter; forgetting factor

1. Introduction
Articulated vehicles with high mobility, high passability, and high adaptability are

widely used in mine development, emergency rescue, agriculture, forestry, and construc-
tion [1,2]. During the traveling process of articulated vehicles, obtaining the key dynamic
parameters of the vehicle is the basis for the safe operation and stability control of the
vehicle. However, some dynamic parameters are difficult to measure, and sensors are
expensive, increasing the actual production cost of articulated vehicles. On the other hand,
low-cost sensors tend to have high measurement noise and poor accuracy, necessitating
parameter state estimation methods [3–5]. Due to the special configuration of articulated
vehicles, dynamic models of articulated vehicles have more nonlinearities and more gov-
erning parameters, which increase the difficulty of estimating the dynamic parameters of
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articulated vehicles. Therefore, the study of state estimation methods for kinetic parameters
of articulated vehicles has important theoretical and engineering values.

For vehicle state parameter estimation, the main methods are model-based estimation
methods and data-based estimation methods. Model-based methods involve establishing
vehicle kinematic or dynamic models and using techniques such as least squares, Kalman
filtering, sliding mode, robust estimation, and fuzzy estimation [6–8]. Fusing and filtering
multi-sensor measurements require accurate vehicle modeling and consideration of un-
certainties and disturbance terms. Data-based methods utilize neural networks, machine
learning, and other methods [9,10] to build data-driven models using a large amount of
experimental data. These methods do not depend on a kinetic model but require a large
amount of high-quality training data. The convergence calculation speed is slow, and the
generalization is poor. Regarding the whole structure of vehicle state parameter estimation,
the methods are mainly divided into centralized estimation methods [11] and modular
estimation methods [12]. Centralized estimation methods are relatively straightforward
but demand highly accurate dynamic models, which increase the complexity of both the
vehicle model and the estimation model when the number of estimated parameters is
large. The main method is relatively more flexible, and different methods can be used for
estimation according to different states. The estimation structure is complex, with early
results significantly influencing later stages, potentially overlooking the nonlinear coupling
effects between different estimation phases.

Among the common estimation methods, the least squares method has the problem of
data saturation. The sliding mode algorithm easily produces jitter, the robust estimation of
the optimum is poor, and it is more difficult to establish complete fuzzy rules with fuzzy
estimation. In contrast, the Kalman filter and its variants demonstrate better adaptability
to nonlinear systems, offering relatively stable estimation performance and superior ac-
curacy [13]. H. Ahmadi applied an extended Kalman filter to estimate the dynamic state
parameters of a heavy articulated trailer, such as the lateral and longitudinal velocities, yaw
rate, and articulated angle, and conducted simulations on both dry and wet road surfaces to
validate the approach [14]. Zygimantas designed an extended Kalman filter to estimate the
articulated angle and truck steering angle as inputs to the system and validated it using real
vehicles [15]. H. Sah proposed two methods for estimating EKF noise parameters—particle
swarm optimization (PSO) and gradient-based optimization—and applied EKF to estimate
the steering angle, articulated angle, and the lateral and longitudinal tire forces of a tractor-
semitrailer [16]. Wang Wenwei developed a 3-DOF linear dynamic model and employed
particle filter theory to estimate the state variables of an articulated bus, including the
yaw rate, articulation rate, articulated angular velocity, and articulated angle of the front
vehicle body [17]. Gao Lulu estimated the road adhesion coefficient of an electric drive
articulated vehicle by using the least squares method with a forgetting factor and estimated
the vehicle-related state parameters using Kalman filtering [18]. Cheng used H∞ filtering
and Kalman filtering to jointly estimate the state parameters and vehicle center of mass
position of a multi-axle wheel side electric drive articulated bus and compared and ana-
lyzed the estimation effects of EKF and UKF [19]. Yang applied an improved square root
UKF to estimate the tire force and center of mass position of articulated vehicles [20]. Gao
employed a strong tracking algorithm in UKF to rapidly estimate vehicle tire forces [21].

In this paper, a 7DOF nonlinear dynamics model of distributed electric drive artic-
ulated vehicles is established. In contrast to previous research on the state estimation of
articulated vehicles, this paper establishes a centralized state estimator that contains the dy-
namic parameters of the front and rear vehicle bodies in the lateral, longitudinal, and yaw
directions, as well as the articulated angle, wheel speed, and the tire force. This prevents
early results from influencing later stages, and the estimator structure is more simplified.
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In order to improve the estimation convergence, we employ the UKF algorithm, utilizing
SVD to address the challenge of non-positive definiteness in the covariance matrix. The
convergence and accuracy of estimation are further improved by introducing a forgetting
factor, which increases the weight of more recent data. With this centralized estimator and
the proposed SVD-UKF with the forgetting factor estimation method, the convergence and
accuracy of the estimator can be improved in different environments and noises.

In Section 2, we develop a seven-degree-of-freedom (7DOF) nonlinear dynamics
model for the articulated vehicle. Section 3 provides a detailed description of the proposed
SVD-UKF parameter estimation method, including the relevant system state equations and
observation equations. The validation of the estimation algorithm through simulation is
thoroughly discussed in Section 4, where we also conduct a comparative analysis with the
UKF. In Section 5, the proposed estimation method is experimentally validated using a
prototype vehicle. Finally, we conclude the paper with a comprehensive discussion of our
findings and their implications for future research.

2. Nonlinear Dynamics Modeling of Articulated Vehicles
The articulated vehicle dynamics model is the research basis for the state estimation

of dynamics parameters, and a 7DOF nonlinear dynamics model of distributed electric
drive articulated vehicles is established. The dynamics model is shown in Figure 1, and
the related quantities applied in this paper are in the nomenclature. The model is planar,
representing a relatively slow articulated vehicle. The focus is on the lateral, longitudinal,
and yaw degrees of freedom of the front and rear bodies, while the vertical, roll, and pitch
degrees of freedom are neglected. A force analysis of the articulated vehicle is carried
out to obtain the equilibrium equations for the lateral, longitudinal, and yaw of the front
and rear vehicle bodies. Specific dynamics analysis and modeling details can be found
in a previous study [22]. The articulated vehicle dynamics model is simplified as follows:
(1) The front and rear body centers are located on the longitudinal central axis, and the
vehicle is symmetrical with respect to the longitudinal central axis. (2) The influence of the
tire camber angle and return torque on wheel dynamics is neglected. (3) Air resistance is
ignored, and the road surface is flat and two-dimensional.
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The articulated vehicle dynamics equations are shown in Equation (1). The initial
Newtonian mechanics equations and the simplification process are shown in Appendix A.

(m1 + m2)
.
vx1 = (m2 + m1)w1vy1 + m2L4

.
w2sinβ − m2L2w1

2 − m2L4w2
2cosβ+

Fx1 + Fx2 + (Fx3 + Fx4)cosβ +
(

Fy3 + Fy4
)
sinβ

(m1 + m2)
.
vy1 = m2L2

.
w1 − (m1 + m2)w1vx1 + m2L4

.
w2cosβ + m2L4w2

2sinβ+

Fy1 + Fy2 +
(

Fy3 + Fy4
)
cosβ − (Fx3 + Fx4)sinβ

I1
.

w1 = MO1 + (Fx1 − Fx2)B +
(

Fy1 + Fy2
)
(L1 + L2)− m1

( .
vy1 + vx1ω1

)
L2

I2
.

ω2 = −MO2 + (Fx3 − Fx4)B −
(

Fy3 + Fy4
)

L3 +
(

Fy1 + Fy2
)

L4cosβ

+(Fx1 + Fx2)L4sinβ − m1
( .
vy1 + vx1ω1

)
L4cosβ − m1

( .
vx1 − vy1ω1

)
L4sinβ

(1)

During the vehicle’s traveling, each wheel’s vertical load will change with the articu-
lated angle and acceleration changes. The analysis of each wheel’s vertical load is shown
in Figure 2. Due to the unique steering characteristics of articulated vehicles, the center
of mass position can be calculated based on relevant vehicle parameters, allowing for the
subsequent calculation of the vertical loads on each wheel, as shown in Equation (2). The
detailed calculation process is provided in Appendix A.

Fz1 = Llr
Ll f +Llr

Bcosθ2+∆B
2Bcosθ2

(m1 + m2)g − (Bcosθ2+∆B)(m1+m2)a′xh
2BL′cosθ2

+ Llr
Ll f +Llr

(m1+m2)a′yh
2Bcosθ2

Fz2 = Lrr
Lr f +Lrr

Bcosθ2−∆B
2Bcosθ2

(m1 + m2)g − (Bcosθ2−∆B)(m1+m2)a′xh
2BL′cosθ2

− Lrr
Lr f +Lrr

(m1+m2)a′yh
2Bcosθ2

Fz3 =
Ll f

Ll f +Llr

Bcosθ2+∆B
2Bcosθ2

(m1 + m2)g + (Bcosθ2+∆B)(m1+m2)a′xh
2BL′cosθ2

+
Ll f

Ll f +Llr

(m1+m2)a′yh
2Bcosθ2

Fz4 =
Lr f

Lr f +Lrr
Bcosθ2−∆B

2Bcosθ2
(m1 + m2)g + (Bcosθ2−∆B)(m1+m2)a′xh

2BL′cosθ2
− Lr f

Lr f +Lrr

(m1+m2)a′yh
2Bcosθ2

(2)
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In this paper, the Dugoff tire model is used, which provides a method for calculating
the forces under the combined action of lateral and longitudinal forces [23]. It is char-
acterized by a fast calculation speed, and the lateral and longitudinal forces of the tire
can be obtained from the vertical force of the tire, the side slip angle of the tire, and the
longitudinal slip rate during the calculation. The model equations are as follows: Fx = Cσ

Sti
1+Sti

f (λ)

Fy = Cα
tan(α)
1+Sti

f (λ)
(3)

where λ = µFz(1+Sti)

2
{
(CσSti)

2+(Cσtan(α))2
}1/2 f (λ) =

{
(2 − λ)λ λ < 1
1 λ ⩾ 1

. The other parameters and

the calculation process are described in Appendix B.
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3. Adaptive Forgetting Factor SVD-UKF Articulated Vehicle Dynamics
Parameter Estimation
3.1. Adaptive Forgetting Factor SVD-UKF(ASVD-UKF)

The equations of state and observation for a nonlinear discrete system are as follows:{
Xk+1 = f (x(k)) + w(k)

Zk = h(x(k)) + v(k)
(4)

where Xk+1 is the state of the system at a moment, f (x(k)) is the nonlinear equation of
state, Zk is the measured value of the system at time k, h(x(k)) is the nonlinear observation
equation, and w(k) and v(k) are the zero mean and uncorrelated white noise.

The specific procedure for calculating the UKF for this system at different moments, k,
are as follows.

The first step is to obtain the sampling points (Sigma points) and weights. Through
the unscented transformation, 2n + 1 Sigma points and the corresponding weights can
be obtained, i.e., sample point χ and weight ω , and n is the dimension of the state. The
calculation process is as follows:

χ(0) = x̄, i = 0

χ(i) = x̄ +
√
(n + λ)P, i = 1 : n

χ(i) = x̄ −
√
(n + λ)P, i = n + 1 : 2n

(5)

where x is the n-dimensional state variable; x̄ and P are the mean and covariance of x,
respectively. The weights of these sampling points are calculated as follows:

ωm
(0) =

λ
n+λ

ωc
(0) =

λ
n+λ +

(
1 − α2 + ζ

)
ωm
(i) = ωc

(i) =
1

2(n+λ)
, i = 1 : 2n

(6)

where the superscript m is the mean, c is the covariance, λ = α2(n + κ)− n, and λ is the
scaling factor, which reduces the prediction error. The value of α can control the distribution
state of the sampling points; the parameter κ is chosen by oneself, and it should be noted
that it is usually ensured that the matrix (n + λ)P is a semi-positive definite matrix.

χ(i)(k | k) =
[

x̂(k | k), x̂(k | k) +
√
(n + λ)P(k | k), x̂(k | k)−

√
(n + λ)P(k | k)

]
(7)

In the second step, the prediction is estimated for 2n + 1 Sigma points.

χ(i)(k + 1 | k) = f ([k, χ(k | k)]) (8)

In the third step, the prediction estimates and covariances of the new Sigma points
are weighted.

x̂k+1|k =
2n

∑
i=0

ωm
(i)χ(i)k+1|k (9)

Pk+1|k =
2n

∑
i=0

ωc
(i)

[
x̂k+1|k − χ(i)k+1|k

][
x̂k+1|k − χ(i)k+1|k

]T
+ Q (10)

where Q is the process noise covariance matrix.
In the fourth step, the unscented transformation is applied once again to calculate the

new set of sampling points.
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χ(i)(k + 1 | k) =
[

x̂(k + 1 | k), x̂(k + 1 | k) +
√
(n + λ)P(k + 1 | k), x̂(k + 1 | k)

√
(n + λ)P(k + 1 | k) (11)

In the fifth step, the set of points obtained from the calculation in the fourth step is
carried over to the observation equation to obtain the prediction observations.

Z(i)(k + 1 | k) = h
(

χ(i)(k + 1 | k)
)

(12)

In the sixth step, the set of points of the prediction measurements calculated in the fifth
step is weighted and summed to obtain the mean and covariance of the system prediction.

Z̄(k + 1 | k) =
2n

∑
i=0

ω(i)Z(i)(k + 1 | k) (13)

Pzkzk =
2n

∑
i=0

ω(i)
[

Z(i)(k + 1 | k)− Z̄(k + 1 | k)
][

Z(i)(k + 1 | k)− Z̄(k + 1 | k)
]T

+ R (14)

where R is the observation noise.

Pxkzk =
2n

∑
i=0

ω(i)
[

X(i)(k + 1 | k)− Z̄(k + 1 | k)
][

Z(i)(k + 1 | k)− Z̄(k + 1 | k)
]T

(15)

In the seventh step, the Kalman gain matrix is calculated to calculate the system state
update and covariance update.

K(k + 1) = Pxkzk P−1
zkzk

(16)

X̂(k + 1 | k + 1) = X̂(k + 1 | k) + K(k + 1)
[
Z(k + 1)− Ẑ(k + 1 | k)

]
(17)

P(k + 1 | k + 1) = P(k + 1 | k)− K(k + 1)Pzkzk KT(k + 1) (18)

In UKF estimation, Cholesky decomposition is typically used to handle the covariance
matrix, and it is required to be a positive definite matrix. However, in practical applications,
due to observation errors and nonlinearity, it is challenging to ensure the positive defi-
niteness of the covariance matrix, leading to decreased filter accuracy or even divergence.
SVD does not require the matrix to be positive and definite and offers high accuracy and
speed. Therefore, SVD decomposition is used instead of Cholesky decomposition. During
the unscented transformation process, the computation of sampling points based on SVD
decomposition is carried out as follows:

P = UΛVT = U

[
S 0
0 0

]
VT (19)


χ(0) = x̄, i = 0

χ(i) = x̄ +
√
(n + λ)U

√
Λ, i = 1 : n

χ(i) = x̄ −
√
(n + λ)U

√
Λ, i = n + 1 : 2n

(20)

In actual vehicle parameter state estimation, due to simplification in the process of
establishing the vehicle dynamics model, the model error caused by the vehicle’s inherent
high nonlinearity, and the measurement error caused by external interference in the process
of sensor measurement, the estimation accuracy and convergence will be affected. The
UKF is an infinite memory filter, which utilizes data from the previous estimation process
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in each update iteration. As the number of iterations increases, there is a larger proportion
of historical data and a smaller proportion of recent data. Consequently, the corrective
effect of new observation data on state estimation weakens, leading to poor suppression of
estimation errors, causing error accumulation and potentially resulting in divergence. In
addition, in the actual work of articulated vehicles, the environment is harsh, the working
conditions are complicated, and measurement noise is easily interfered with by external
uncertainties, which will lead to the reduction in estimation accuracy if it is taken as a
constant value.

To solve the above problems, it is necessary to increase the proportion of recent
data and reduce the proportion of historical data. In this paper, a forgetting factor is
introduced to adjust the observation noise covariance matrix R dynamically in real time so
as to improve the convergence of the estimation and the estimation accuracy. The noise
covariance matrix R is calculated as

Rk+1 = (1 − dk)Rk + dk ×
[

ekeT
k −

2n

∑
i=0

ωc
(i)(Zk+1 − Z̄k+1)(Zk+1 − Z̄k+1)

T

]
(21)

where ek is the residual, b is the forgetting factor, and b takes a value in the range of 0–1,
though it usually takes a value in the range of 0.9–0.99. The forgetting factor increases
the weight of recent data while gradually “forgetting” older data. Reducing the value
of the forgetting factor enhances the memory of historical data, thereby improving the
stability of the model. Conversely, increasing the value of the forgetting factor allows for
quicker adaptation to new data, thus enhancing the sensitivity. To prevent the estimator
from being overly sensitive to the selection of the forgetting factor, this paper employs a
weighted exponential decay method dk to ensure robustness. The parameters dk, ek, and dk

are calculated as follows:
ek = Zk+1 − Z̄k+1 (22)

dk =
1 − b
1 − bk (23)

The flowchart of the SVD-UKF estimation method is shown in Figure 3.
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3.2. System State Equations and Observation Equations

According to the research content of the paper, combined with the state estimation
dynamics model, the key state estimation parameters of the articulated vehicle include
lateral and longitudinal velocities, lateral and longitudinal accelerations, angular velocities,
the articulated angle of the front and rear vehicle bodies, wheel speeds, and longitudinal
and lateral forces of the tires, so the system state variables are

x(k) =
[
vx1 vy1 ax1 ay1 ω1 vx2 vy2 ax2 ay2 ω2 β ωt1 ωt2 ωt3 ωt4 Fx1 Fx2 Fx3 Fx4 Fy1 Fy2 Fy3 Fy4

]T (24)

Since the system is discrete, iterative computation is required for the before and after
moments. The system state equation can be obtained as Equation (25). Detailed formulas
are shown in Appendix C.

xi(k + 1) = xi(k) + fi∆t + wi(k) (25)

Using the IMU and other sensors, the acceleration, the angular velocity of the articu-
lated angle, and the wheel speed can be measured, so the observed quantities are

z(k) =
[
ax1 ay1 ω1 ax2 ay2 ω2 β ωt1 ωt2 ωt3 ωt4

]T (26)

The observation equations are

zi(k + 1) = H ∗ xi(k + 1) + vi(k + 1) (27)

The observation matrix H is

H =


h1

h2

. . .
h22

h23

 (28)

For which parameter h = 0 when i = 1, 2, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23, and b = 1.
Due to the electric drive and the corresponding sensors, the steering torque of the

articulated vehicle and the wheel drive torque can be used as input parameters of the
system, and the input state parameters of the system are

u = [MO Tt1 Tt2 Tt3 Tt4] (29)

4. Simulation Analysis
Based on the nonlinear dynamics model of the articulated vehicle constructed in the

paper, the parameter estimation method constructed in Section 3 is simulated and analyzed.
The UKF estimation method and the ASVD-UKF estimation method are, respectively, uti-
lized for parameter simulation estimation, and the estimation effects of the two estimation
algorithms are compared and analyzed.

4.1. Simulation Settings

The target longitudinal velocity and articulated angle of the front vehicle body are
used as target inputs, as shown in Figure 4. Each dynamic parameter of the vehicle obtained
from the nonlinear dynamics model of the articulated vehicle is used as the reference value
of each estimator in the simulation verification, the measured value of the state estimator is
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used for the mesoscopic measurement, and the whole simulation verification process is
shown in Figure 5.
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4.2. Analysis of Simulation Results

In evaluating the effectiveness of vehicle parameter estimation, metrics such as the
mean absolute error (MAE) and root mean square error (RMSE) are commonly used for
quantitative assessment. However, the MAE and root mean square error (RMSE) are
absolute measures, which are not obvious for different physical quantities as well as values
of different magnitudes, especially the relative error. The mean absolute percentage error
(MAPE), as a relative error metric, avoids the cancelation of positive and negative errors,
providing a better representation of the relative error between the estimated and true values
and expressing the error in percentage terms. The MAPE is calculated as follows:

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ xi_r − xi_e
xi_r

∣∣∣∣ (30)

Figure 6 shows the estimation results of the longitudinal and lateral velocities of the
front and rear bodies of the articulated vehicle. Overall, the ASVD-UKF estimation method
is more accurate than the UKF method. The longitudinal velocity estimation of the front
vehicle body is slightly better than the rear vehicle estimation. The MAPE values of the
estimated and reference values of the longitudinal and lateral velocities of the front and
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rear vehicle bodies are 0.63%, 0.48%, 1.25%, and 1.87%, respectively, while the MAPE
values of the UKF estimates and reference values are 2.46%, 8.60%, 5.15%, and 3.73%. The
ASVD-UKF estimation has a smaller error, and the estimation is better both in terms of
estimation accuracy and estimation convergence.
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The results of the longitudinal and lateral acceleration estimations of the front and rear
vehicle bodies are shown in Figure 7. The estimated values of ASVD-UKF and the reference
value MAPE are, respectively, 1.16%, 1.14%, 1.66%, and 1.89%. The differences in errors
between the front and rear bodies are minimal. As the velocity increases, the accelerations
of both the front and rear bodies gradually increase. At 5 s, due to the constant articulated
angle, the front and rear bodies exhibit opposite fluctuation trends. The MAPE values
of the UKF estimation and the reference value are 7.50%, 7.20%, 1.92%, and 2.41%. The
UKF method shows larger errors in longitudinal acceleration estimation, while the lateral
acceleration estimates are relatively closer to those of the ASVD-UKF method.
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Figure 7. Longitudinal and lateral acceleration estimation results. (a) Longitudinal acceleration of
front vehicle body, (b) longitudinal acceleration of rear vehicle body, (c) lateral acceleration of front
vehicle body, and (d) lateral acceleration of rear vehicle body.

Figure 8 shows the angular velocity and articulated angle of the front and rear vehicle
bodies of the articulated vehicle. Overall, both methods yield similar estimation results for
the front vehicle angular velocity and articulated angle. In the estimation of the angular
velocity of the rear vehicle body, the estimation of ASVD-UKF is slightly better than that
of UKF. The estimated and reference MAPE values of ASVD-UKF are 2.58%, 2.69%, and
2.98%, while the estimated and reference values MAPE for UKF are 2.85%, 3.37%, and
1.20%. Due to the articulated steering form, during the gradual increase in the articulated
angle, the angular velocity of the front and rear vehicle bodies at the initial moment has
the opposite trend, and the estimated values of the front and rear vehicle bodies are also
gradually stabilized after the articulated angle is kept constant.

Figure 9 shows the rotational speeds of each wheel of the articulated vehicle. As
the number of wheels increases, the wheel speeds also increase. Due to the continuous
steering of the vehicle, the wheel speeds on either side differ slightly, with tire 1 and tire
3 having higher speeds than tire 2 and tire 4. At 5 s, the wheel speed fluctuates slightly
because the articulated angle remains constant, but the overall speed remains stable. The
estimation results from both methods show minimal errors compared to the reference
values, indicating close estimation results and good tracking performance.

The estimated longitudinal tire force of each tire of the articulated vehicle is shown
in Figure 10. With the increase in velocity and acceleration, the tire longitudinal force
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increases gradually and has a similar trend. Overall, the ASVD-UKF estimation is better
than the UKF estimation in terms of estimation error and convergence. The MAPE values
for the ASVD-UKF are 0.08%, 0.10%, 0.20%, and 0.14%. In contrast, the UKF method shows
relatively better performance for tires 1 and 4, while tires 2 and 3 have larger estimation
errors and poorer convergence, with MAPE values of 7.45%, 27.6%, 61.3%, and 16.23%.

Actuators 2025, 14, x FOR PEER REVIEW 12 of 24 
 

 

  

(a) (b) 

 
(c) 

Figure 8. Angular velocity and articulated angle estimation results. (a) Angular velocity of front 

vehicle body, (b) angular velocity of rear vehicle body, and (c) articulated angle. 

  

(a) (b) 

Figure 8. Angular velocity and articulated angle estimation results. (a) Angular velocity of front
vehicle body, (b) angular velocity of rear vehicle body, and (c) articulated angle.

Actuators 2025, 14, x FOR PEER REVIEW 12 of 24 
 

 

  

(a) (b) 

 
(c) 

Figure 8. Angular velocity and articulated angle estimation results. (a) Angular velocity of front 

vehicle body, (b) angular velocity of rear vehicle body, and (c) articulated angle. 

  

(a) (b) 

Figure 9. Cont.



Actuators 2025, 14, 31 13 of 24Actuators 2025, 14, x FOR PEER REVIEW 13 of 24 
 

 

  
(c) (d) 

Figure 9. Wheel speed estimation results: (a) tire 1 speed, (b) tire 2 speed, (c) tire 3 speed, and (d) 

tire 4 speed. 

The estimated longitudinal tire force of each tire of the articulated vehicle is shown 

in Figure 10. With the increase in velocity and acceleration, the tire longitudinal force 

increases gradually and has a similar trend. Overall, the ASVD-UKF estimation is be�er 

than the UKF estimation in terms of estimation error and convergence. The MAPE values 

for the ASVD-UKF are 0.08%, 0.10%, 0.20%, and 0.14%. In contrast, the UKF method 

shows relatively be�er performance for tires 1 and 4, while tires 2 and 3 have larger 

estimation errors and poorer convergence, with MAPE values of 7.45%, 27.6%, 61.3%, and 

16.23%. 

  

(a) (b) 

  
(c) (d) 

Figure 9. Wheel speed estimation results: (a) tire 1 speed, (b) tire 2 speed, (c) tire 3 speed, and (d) tire
4 speed.
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Figure 10. Tire longitudinal force estimation results: (a) tire 1 longitudinal force, (b) tire 2 longitudinal
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The lateral force of each tire of the articulated vehicle is shown in Figure 11. As
the vehicle velocity and articulated angle increase, the lateral force of each tire gradually
increases. The rear vehicle lateral force estimates have a larger error than the front vehicle
body’s lateral force during steering. Although the ASVD-UKF estimation is still better than
the UKF estimation, the difference between the two estimation results is smaller than the
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longitudinal force. The MAPE values of the ASVD-UKF estimates to the reference values
are 3.63%, 3.88%, 4.41%, and 4.27%. The MAPE values of the UKF estimates to the reference
values are 10.6%, 10.9%, 8.74%, and 13.4%.
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5. Experimental Verification
Following a comprehensive simulation analysis, the effectiveness of the proposed

ASVD-UKF estimation method has been thoroughly validated. The results demonstrate that
the ASVD-UKF method significantly outperforms the conventional UKF method in terms
of estimation accuracy. In this section, we provide additional validation of the estimation
performance through a series of experimental tests conducted on a prototype vehicle.

5.1. Distributed Electric Drive Principle Prototype Vehicle and Test Program

In this study, we perform a detailed analysis of the motion forms, system structure, and
drive force modes of distributed electric drive articulated vehicles. Based on the principle
of similarity, we establish an experimental prototype vehicle that closely resembles the
actual vehicle. The drive wheels are selected to be hub motors with torque and speed
sensors. The steering part includes an electric actuator and linear displacement sensor,
which can measure the displacement change and calculate the change in articulated angle.
The electric actuator coaxial arrangement of the tensile force sensor can measure the entire
steering system of the tensile force. The vehicle was controlled using a laptop equipped
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with a 12th-generation Core i7 processor, which provided sufficient computational power to
facilitate real-time acquisition and storage of sensor signals. This configuration ensured that
the system could effectively manage the complex data processing requirements necessary
for the successful operation of the vehicle. The whole test principle prototype is shown in
Figure 12.
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Figure 12. Distributed electric drive principle prototype vehicle (1—vehicle frame; 2—control system;
3—steering system; 4—drive system).

Through the inertial measurement units (IMUs) on the front and rear vehicle bodies
of the test principle prototype vehicle, the longitudinal acceleration, lateral acceleration,
and angular velocity of the front and rear vehicle bodies can be obtained. The IMUs are
automotive-grade Bosch IMUs. The acquisition accuracy is 0.01 degrees to ensure the
accuracy of the acquired data. Using displacement and force sensors in the steering system,
we can calculate the articulated angle and the steering torque. The wheel speed and driving
torque are acquired through feedback from the hub motors. The obtained quantities are
brought into the estimator as control inputs and observations of the state estimation method
to estimate the key vehicle dynamics parameters. The lateral and longitudinal velocities of
the front vehicle body can be acquired by real-time kinematics (RTK), and the measured
values of each kinetic parameter obtained from each sensor are taken as the real values to
validate the state estimation method, as shown in Figure 13. In the whole driving process,
the articulated test principle prototype vehicle at a certain speed first carried out a period
of straight-line driving and then entered the steering state, and it finally carried out slewing
movement at a certain angle.

The information related to the sensors used during the experiment is shown in Table 1.

Table 1. Sensor information.

Name Quantity Location Measured Parameters

IMU 2 front and rear
bodies ax1 ay1 ω1 ax2 ay2 ω2 (Equation (26))

drive torque 4 4 hub motors Tt1 Tt2 Tt3 Tt4 (Equation (29))
steering
torque 1 steering system MO (Equation (29))

wheel speed 4 4 hub motors ωt1 ωt2 ωt3 ωt4 (Equation (26))
articulated

angle 1 steering system β

RTK 1 front body vx1 vy1 (Equation (24))
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Figure 13. Flowchart of state estimation method validation.

5.2. Analysis of Test Results

The longitudinal and lateral velocities of the front body of the articulated vehicle are
shown in Figure 14. During the first 3 s of travel, the vehicle remains in a straight-line state,
resulting in a near-zero lateral speed, while the longitudinal velocity is in the acceleration
phase. By comparing the true values with the estimated values, it can be observed that the
overall estimations of the longitudinal and lateral velocities of the front vehicle body are
quite accurate. The MAPE values between the measured values and the estimated values
are 1.30% and 3.61%, respectively, indicating a small error. Compared to the true values,
the estimated values exhibit good tracking performance, though the estimated lateral speed
is slightly smaller than the measured value.
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The angular velocity curves of the front and rear vehicle bodies are shown in Figure 15.
During straight-line driving, both the estimated values and the measured values remain
close to the zero line. During the steering process, the angular velocity of the rear vehicle
body exhibits a noticeable lag, but the estimated values still closely follow the actual
changes. In the process of traveling at a fixed angle, due to the influence of speed and road
surface, the estimated value of the front and rear vehicle bodies has some fluctuation with
the measured value, and the MAPE values of the two are 6.16% and 4.21%, respectively.
The estimation error is small and has a good following, and the estimated value of the
rear body’s angular velocity is slightly larger than the measured value. The articulated
angle has a good estimation of the estimated value during straight-line driving, steering,
and fixed-angle slewing, with an MAPE of 1.54% between the estimated value and the
measured value.
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Figure 15. Angular velocity and articulated angle estimation results. (a) Angular velocity of front
vehicle body, (b) angular velocity of rear vehicle body, and (c) articulated angle.

The longitudinal and lateral acceleration curves of the front and rear vehicle bodies
are shown in Figure 16. The longitudinal acceleration of the front and rear vehicle bodies
is better estimated, and the measured value and estimated MAPE value are 2.07% and
2.25%, indicating minimal error. However, the estimation error for the lateral acceleration is
slightly larger compared to the longitudinal acceleration, with MAPE values of 6.43% and
3.31% for the measured and estimated values. During steering and slewing, the rear body
has a relative lagging tendency, and the lateral acceleration of the rear body changes more
drastically. The estimated longitudinal acceleration is slightly smaller than the measured
value, while the estimated lateral acceleration is slightly larger than the measured value.
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Figure 16. Longitudinal and lateral acceleration estimation results. (a) Longitudinal acceleration of
front vehicle body, (b) longitudinal acceleration of rear vehicle body, (c) lateral acceleration of front
vehicle body, (d) lateral acceleration of rear vehicle body.

The wheel speed curve is shown in Figure 17. The estimated and measured MAPE val-
ues are 1.86%, 1.74%, 1.73%, and 1.63%, respectively. The estimated values are slightly lower
than the measured values, and the left wheel’s speed is higher than the right wheel’s speed,
which is due to the effect of the pendulum angular velocity during the steering process.

Actuators 2025, 14, x FOR PEER REVIEW 19 of 24 
 

 

  

(a) (b) 

  
(c) (d) 

Figure 17. Wheel speed estimation results: (a) wheel 1 speed, (b) wheel 2 speed, (c) wheel 3 speed, 

and (d) wheel 4 speed. 

6. Conclusions 

In this paper, the state estimation method of key kinetic parameters of distributed 

electric drive articulated vehicle is investigated. A 7DOF nonlinear dynamics model of a 

distributed electric drive articulated vehicle is established. Based on the UKF algorithm, a 

discrete system and observation equations for the articulated vehicle are constructed. To 

solve the problem that the covariance matrix appears to be non-positive and definite 

during the estimation process, which leads to a large error or even dispersion, Cholesky 

decomposition is replaced by SVD decomposition. A forge�ing factor is introduced to 

dynamically adjust the observation noise covariance matrix in real time, which improves 

the proportion of recent data as well as the convergence and estimation accuracy of the 

estimation. By improving the UKF algorithm in this way, the estimator is able to adapt to 

different environments and noises much be�er, thus improving the estimation. Compared 

to previous studies, this paper establishes a centralized estimator that contains more 

estimation parameters, which challenges the convergence and accuracy of the estimation. 

And it also avoids the mutual influence of the results of estimators at different levels. 

The proposed ASVD-UKF parameter state estimation method and UKF estimation 

method for articulated vehicle dynamics parameter estimation are simulated and 

compared. The simulation is performed to estimate key dynamic parameters, including 

the lateral and longitudinal velocities and accelerations, angular velocity, articulated 

angle, wheel speeds, and longitudinal and lateral tire forces of both the front and rear 

vehicle bodies. The results demonstrate that the proposed ASVD-UKF method 

outperforms the UKF estimation method, with smaller errors between the estimated 

values and reference values, indicating superior estimation performance. Through the 

Figure 17. Cont.



Actuators 2025, 14, 31 19 of 24

Actuators 2025, 14, x FOR PEER REVIEW 19 of 24 
 

 

  

(a) (b) 

  
(c) (d) 

Figure 17. Wheel speed estimation results: (a) wheel 1 speed, (b) wheel 2 speed, (c) wheel 3 speed, 

and (d) wheel 4 speed. 

6. Conclusions 

In this paper, the state estimation method of key kinetic parameters of distributed 

electric drive articulated vehicle is investigated. A 7DOF nonlinear dynamics model of a 

distributed electric drive articulated vehicle is established. Based on the UKF algorithm, a 

discrete system and observation equations for the articulated vehicle are constructed. To 

solve the problem that the covariance matrix appears to be non-positive and definite 

during the estimation process, which leads to a large error or even dispersion, Cholesky 

decomposition is replaced by SVD decomposition. A forge�ing factor is introduced to 

dynamically adjust the observation noise covariance matrix in real time, which improves 

the proportion of recent data as well as the convergence and estimation accuracy of the 

estimation. By improving the UKF algorithm in this way, the estimator is able to adapt to 

different environments and noises much be�er, thus improving the estimation. Compared 

to previous studies, this paper establishes a centralized estimator that contains more 

estimation parameters, which challenges the convergence and accuracy of the estimation. 

And it also avoids the mutual influence of the results of estimators at different levels. 

The proposed ASVD-UKF parameter state estimation method and UKF estimation 

method for articulated vehicle dynamics parameter estimation are simulated and 

compared. The simulation is performed to estimate key dynamic parameters, including 

the lateral and longitudinal velocities and accelerations, angular velocity, articulated 

angle, wheel speeds, and longitudinal and lateral tire forces of both the front and rear 

vehicle bodies. The results demonstrate that the proposed ASVD-UKF method 

outperforms the UKF estimation method, with smaller errors between the estimated 

values and reference values, indicating superior estimation performance. Through the 

Figure 17. Wheel speed estimation results: (a) wheel 1 speed, (b) wheel 2 speed, (c) wheel 3 speed,
and (d) wheel 4 speed.

6. Conclusions
In this paper, the state estimation method of key kinetic parameters of distributed

electric drive articulated vehicle is investigated. A 7DOF nonlinear dynamics model of a
distributed electric drive articulated vehicle is established. Based on the UKF algorithm,
a discrete system and observation equations for the articulated vehicle are constructed.
To solve the problem that the covariance matrix appears to be non-positive and definite
during the estimation process, which leads to a large error or even dispersion, Cholesky
decomposition is replaced by SVD decomposition. A forgetting factor is introduced to
dynamically adjust the observation noise covariance matrix in real time, which improves
the proportion of recent data as well as the convergence and estimation accuracy of the
estimation. By improving the UKF algorithm in this way, the estimator is able to adapt to
different environments and noises much better, thus improving the estimation. Compared
to previous studies, this paper establishes a centralized estimator that contains more
estimation parameters, which challenges the convergence and accuracy of the estimation.
And it also avoids the mutual influence of the results of estimators at different levels.

The proposed ASVD-UKF parameter state estimation method and UKF estimation
method for articulated vehicle dynamics parameter estimation are simulated and compared.
The simulation is performed to estimate key dynamic parameters, including the lateral
and longitudinal velocities and accelerations, angular velocity, articulated angle, wheel
speeds, and longitudinal and lateral tire forces of both the front and rear vehicle bodies. The
results demonstrate that the proposed ASVD-UKF method outperforms the UKF estimation
method, with smaller errors between the estimated values and reference values, indicating
superior estimation performance. Through the principle prototype test, the estimated
values of each kinetic parameter are compared and analyzed with the measured values,
and the MAPE is less than 7%. The estimation effect is good, so it can meet the strong
nonlinear operating characteristics of articulated vehicles, and it validates the articulated
vehicle dynamics parameter estimation method.

In this study, vehicle parameters such as the mass, moment of inertia, and center
of gravity position are assumed to be known and fixed. However, due to the significant
load variations in articulated vehicles, these parameters can change substantially and are
difficult to measure directly. In future research, the variation in vehicle body parameters
will be considered, and a combined state estimation of both vehicle body parameters and
dynamic parameters will be conducted.
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Nomenclature

O1x1y1 Front vehicle body coordinate system
O2x2y2 Rear vehicle body coordinate system
vx1 Longitudinal velocity of front vehicle body
vx2 Longitudinal velocity of rear vehicle body
vy1 Lateral velocity of front vehicle body
vy2 Lateral velocity of front vehicle body
ω1 Angular velocity of z-axis of front vehicle body
ω2 Angular velocity of z-axis of rear vehicle body
L1 Distance from center of front vehicle gravity to front axles
L2 Distance from articulated point to center of front vehicle gravity
L3 Distance from center of rear vehicle gravity to front axles
L4 Distance from articulated point to center of rear vehicle gravity
Fzj Vertical tire force (j = 1, 2, 3, 4)
Cσ Longitudinal tire stiffness
Cα Lateral tire stiffness
β Swing angle
I1 Vehicle rotational inertia of z-axis of front vehicle body
I2 Vehicle rotational inertia of z-axis of rear vehicle body
Fxj Longitudinal tire force (j = 1, 2, 3, 4)
Fyj Lateral tire force (j = 1, 2, 3, 4)
MO1 Torque of steering mechanism on front vehicle body
MO2 Torque of steering mechanism on rear vehicle body
m1 Mass of front vehicle body
m2 Mass of rear vehicle body
Fox1 Longitudinal force of steering mechanism on front vehicle body
Fox2 Longitudinal force of steering mechanism on rear vehicle body
Foy1 Lateral force of steering mechanism on front vehicle body
Foy2 Lateral force of steering mechanism on rear vehicle body
µ Friction coefficient
R Distance between hinge points of hydraulic cylinder rod and articulated point
r Distance between hinge points of hydraulic cylinder seat and articulated point
θ Initial angle of hydraulic cylinder
Sti Tire slip rate (i = 1, 2, 3, 4 )
α Tire slip angle
Tti Wheel drive torque (i = 1, 2, 3, 4)
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Appendix A
Related Calculation for Vehicle Dynamics Model

Equilibrium equations for the longitudinal, lateral, and yaw of the articulated vehicle’s
front and rear bodies:

m1
( .
vx1 − vy1ω1

)
= Fx1 + Fx2 + Fox1

m1
( .
vy1 + vx1ω1

)
= Fy1 + Fy2 − Foy1

I1
.

w1 = MO1 + (Fx1 − Fx2)B +
(

Fy1 + Fy2
)

L1 + Foy1L2

(A1)


m2

( .
vx2 − vy2ω2

)
= Fx3 + Fx4 − Fox2cosβ − Foy2sinβ

m2
( .
vy2 + vx2ω2

)
= Fy3 + Fy4 − Fox2sinβ + Foy2cosβ

I2
.

ω2 = −MO2 + (Fx3 − Fx4)B −
(

Fy3 + Fy4
)

L3 +
(

Foy2cosβ − Fox2sinβ
)

L4

(A2)

The kinematic relationships between the front and rear vehicle bodies are as follows:{
vx2 = vx1cosβ −

(
vy1 − L2ω1

)
sinβ

vy2 = vx1sinβ +
(
vy1 − L2ω1

)
cosβ − L4ω2

(A3)

{ .
vx2 =

.
vx1cosβ −

( .
vy1 − L2

.
ω1

)
sinβ −

(
vy1cosβ + vx1sinβ − L2ω1cosβ

)
(ω1 − ω2)

.
vy2 =

.
vx1sinβ +

( .
vy1 − L2

.
ω1

)
cosβ − L4

.
ω2 +

(
vx1cosβ − vy1sinβ + L2ω1sinβ

)
(ω1 −ω2)

(A4)

.
β = ω1 − ω2 (A5)

The parameters related to the calculation of the articulated vertical force distribution
are as follows:  a′x =

m1ax1cosθ1−m1ay1sinθ1+m2ax2cosθ2+m2ay2sinθ2
m1+m2

a′y =
m1ax1sinθ1+m1ay1cosθ1−m2ax2sinθ2+m2ay2cosθ2

m1+m2

(A6)



L′ =

√
(L1 + L2)

2 + (L3 + L4)
2 − 2(L1 + L2)(L3 + L4)cos(π − β

)
Lm =

√
L2

2 + L4
2 − 2L2L4cos(π − β

)
Lm f =

m2
m1+m2

Lm

Lmr =
m1

m1+m2
Lm

(A7)


θ2 = arccos (L3+L4)

2+L′2−(L1+L2)
2

2(L3+L4)L′

θ1 = β − θ2

∆B = L3sinθ2

(A8)


Ll f = Lm f + L1cosθ1 + Bsinθ1

Llr = Lmr + L3cosθ2 + Bsinθ2

Lr f = Lm f + L1cosθ1 − Bsinθ1

Lrr = Lmr + L3cosθ2 − Bsinθ2

(A9)
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Appendix B
Tire force calculation-related parameters.
Longitudinal line speed of each wheel center:

vtx1 = vx1 + Bw1

vtx2 = vx1 − Bw1

vtx3 = vx2 + Bw2

vtx4 = vx2 − Bw2

(A10)

Lateral line speed of each wheel center:{
vty1,2 = vy1 + L1w1

vty3,4 = vy2 − L3w2
(A11)

Angular acceleration, tire slip angle, and tire slip rate of each wheel:

.
ωti =

Tti − (Fxi + Fzi f )r
Iti

(A12)

αti = −arctan
vtyi

vtxi
(A13)

Sti =
vtxi − rωti

rωti
(A14)

Appendix C
For the lateral and longitudinal accelerations of the front and rear bodies, the longitu-

dinal and lateral tire forces, the fi = 0, and the remaining parameters are

f1 = w1(k)vy1(k) +

[
m2L4

.
w2(k)sinβ(k)− m2L2w2

1(k)− m2L4w2
2(k)cosβ(k) + Fx1(k)

+Fx2(k) + (Fx3(k) + Fx4(k))cosβ(k) +
(

Fy3(k) + Fy4(k)
)
sinβ(k)

]
/(m1 + m2) (A15)

f2 = −w1(k)vx1(k) +

[
m2L2

.
w1(k) + m2L4

.
w2(k)cosβ(k) + m2L4w2

2(k)sinβ(k) + Fy1(k)
+Fy2(k) +

(
Fy3(k) + Fy4(k)

)
cosβ(k)− (Fx3(k) + Fx4(k))sinβ(k)

]
/(m1 + m2) (A16)

x3(k + 1) =

[
m2L4

.
w2(k)sinβ(k)− m2L2w2

1(k)− m2L4w2
2(k)cosβ(k) + Fx1(k)

+Fx2(k) + (Fx3(k) + Fx4(k))cosβ(k) +
(

Fy3(k) + Fy4(k)
)
sinβ(k)

]
/(m1 + m2) (A17)

x4(k + 1) =

[
m2L2

.
w1(k) + m2L4

.
w2(k)cosβ(k) + m2L4w2

2(k)sinβ(k) + Fy1(k)
+Fy2(k) +

(
Fy3(k) + Fy4(k)

)
cosβ(k)− (Fx3(k) + Fx4(k))sinβ(k)

]
/(m1 + m2) (A18)

f5 =
[
MO(k) + (Fx1(k)− Fx2(k))B +

(
Fy1(k) + Fy2(k)

)
(L1 + L2)− m1

( .
vy1(k) + vx1(k)ω1(k)

)
L2

]
/I1 (A19)

f6 =
.
vx1(k)cosβ(k)−

( .
vy1(k)− L2

.
ω1(k)

)
sinβ(k)−(

vy1(k)cosβ(k) + vx1(k)sinβ(k)− L2ω1(k)cosβ(k))(ω1(k)− ω2(k))
(A20)

f7 =
.
vx1(k)sinβ(k) +

( .
vy1(k)− L2

.
ω1(k)

)
cosβ(k)− L4

.
ω2(k)

+
(
vx1(k)cosβ(k)− vy1(k)sinβ(k)+ L2ω1(k)sinβ(k))(ω1(k)− ω2(k))

(A21)

f8 =
.
vx1(k)cosβ(k)−

( .
vy1(k)− L2

.
ω1(k)

)
sinβ(k)−

(
vy1(k)cosβ(k)+

vx1(k)sinβ(k)− L2ω1(k)cosβ(k))(ω1(k)− ω2(k))− w2(k)vy2(k)
(A22)
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f9 =
.
vx1(k)sinβ(k) +

( .
vy1(k)− L2

.
ω1(k)

)
cosβ(k)− L4

.
ω2(k)

+
(
vx1(k)cosβ(k)− vy1(k)sinβ(k)+ L2ω1(k)sinβ(k))(ω1(k)− ω2(k)) + w2(k)vx2(k)

(A23)

f10 = −MO(k) + (Fx3(k)− Fx4(k))B +
(

Fy1(k) + Fy2(k)
)

L4cosβ(k)(Fx1(k)+ Fx2(k))L4sinβ(k)
−
(

Fy3(k) + Fy4(k)
)

L3 − m1
( .
vy1(k) + vx1(k)ω1(k)

)
L4cosβ(k)− m1

( .
vx1(k)− vy1(k)ω1(k)

) (A24)

f11 = ω1(k)− ω2(k) f 12 = [Tt1 − (Fx1(k) + Fz1(k) f )r]/Ir f 13 = [Tt2 − (Fx2(k) + Fz2(k) f )r]/Ir

f14 = [Tt3 − (Fx3(k) + Fz3(k) f )r]/Ir f15 = [Tt4 − (Fx4(k) + Fz4(k) f )r]/Ir
(A25)
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