Infectious Disease as a Modifiable Risk Factor for Dementia: A Narrative Review
Abstract
:1. Introduction
2. A Focus on Prevention
2.1. Viral Pathogens That Have Been Associated with Dementia
Synergistic Effect of Multiple Viruses in Association with Dementia
2.2. Non-Viral Pathogens
2.2.1. Viral Encephalitis and Bacterial Meningitis
2.2.2. Pneumonia and Sepsis
3. Infectious Disease Prevention to Reduce Dementia Risk
3.1. Vaccinations
Vaccine Surveillance and Coverage
3.2. Treatment of Infectious Diseases
3.3. Potential Mechanisms of Action Underlying Associations Between Vaccination and Antiviral Treatment and Reduced Risk of Incident Dementia
3.4. Other Behavioral or Public Health Interventions with Potential to Reduce the Incidence of Dementia
3.5. Comparison of Vaccination and Interventions in Dementia Risk Reduction
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ritchie, H.; Roser, M. Age structure. Our World in Data. 2024. Available online: https://ourworldindata.org/age-structure (accessed on 20 August 2024).
- Vespa, J.E.; Armstrong, D.M.; Medina, L. Demographic Turning Points for the United States: Population Projections for 2020 to 2060; census.gov; US Department of Commerce, Economics and Statistics Administration, US Census Bureau: Washington, DC, USA, 2018.
- Gauthier, S.; Rosa-Neto, P.; Morais, J.A.; Webster, C. World Alzheimer Report 2021: Journey Through the Diagnosis of Dementia; Alzheimer’s Disease International: London, UK, 2021. [Google Scholar]
- Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.C.; Wu, Y.T.; Prina, M. World Alzheimer Report 2015. The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends; Alzheimer’s Disease International: London, UK, 2015. [Google Scholar]
- De Cock, A.-M.; Strens, D.; Van Osta, P.; Standaert, B. Infections and hospital bed-days among aging adults: A five-year retrospective study in a Belgian general hospital. Front. Med. Technol. 2022, 4, 912469. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.E.; Hyun, D.; Jezek, A.; Samore, M.H. Mortality, Length of Stay, and Healthcare Costs Associated With Multidrug-Resistant Bacterial Infections Among Elderly Hospitalized Patients in the United States. Clin. Infect. Dis. 2022, 74, 1070–1080. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.E.; Slayton, R.B.; Stevens, V.W.; Jones, M.M.; Khader, K.; Rubin, M.A.; Jernigan, J.A.; Samore, M.H. Attributable Mortality of Healthcare-Associated Infections Due to Multidrug-Resistant Gram-Negative Bacteria and Methicillin-Resistant Staphylococcus Aureus. Infect. Control Hosp. Epidemiol. 2017, 38, 848–856. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Marchaim, D.; Chen, T.-Y.; Baures, T.; Anderson, D.J.; Choi, Y.; Sloane, R.; Schmader, K.E. Effect of nosocomial bloodstream infections on mortality, length of stay, and hospital costs in older adults. J. Am. Geriatr. Soc. 2014, 62, 306–311. [Google Scholar] [CrossRef]
- Cristina, M.L.; Spagnolo, A.M.; Giribone, L.; Demartini, A.; Sartini, M. Epidemiology and Prevention of Healthcare-Associated Infections in Geriatric Patients: A Narrative Review. Int. J. Environ. Res. Public Health 2021, 18, 5333. [Google Scholar] [CrossRef]
- Cairns, S.; Reilly, J.; Stewart, S.; Tolson, D.; Godwin, J.; Knight, P. The prevalence of health care-associated infection in older people in acute care hospitals. Infect. Control Hosp. Epidemiol. 2011, 32, 763–767. [Google Scholar] [CrossRef]
- Cummings, J.; Zhou, Y.; Lee, G.; Zhong, K.; Fonseca, J.; Cheng, F. Alzheimer’s disease drug development pipeline: 2023. Alzheimer’s Dement. 2023, 9, e12385. [Google Scholar] [CrossRef]
- Ameen, T.B.; Kashif, S.N.; Abbas, S.M.I.; Babar, K.; Ali, S.M.S.; Raheem, A. Unraveling Alzheimer’s: The promise of aducanumab, lecanemab, and donanemab. Egypt. J. Neurol. Psychiatry Neurosurg. 2024, 60, 72. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Liu, K.Y.; Costafreda, S.G.; Selbæk, G.; Alladi, S.; Ames, D.; Banerjee, S.; Burns, A.; Brayne, C.; et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 2024, 404, 572–628. [Google Scholar] [CrossRef]
- Jaisa-Aad, M.; Muñoz-Castro, C.; Serrano-Pozo, A. Update on modifiable risk factors for Alzheimer’s disease and related dementias. Curr. Opin. Neurol. 2024, 37, 166–181. [Google Scholar] [CrossRef]
- Itzhaki, R.F. Overwhelming Evidence for a Major Role for Herpes Simplex Virus Type 1 (HSV1) in Alzheimer’s Disease (AD); Underwhelming Evidence against. Vaccines 2021, 9, 679. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization [HIV]. Available online: https://www.who.int/data/gho/data/themes/hiv-aids (accessed on 22 October 2024).
- Heaton, R.K.; Franklin, D.R.; Ellis, R.J.; McCutchan, J.A.; Letendre, S.L.; Leblanc, S.; Corkran, S.H.; Duarte, N.A.; Clifford, D.B.; Woods, S.P.; et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: Differences in rates, nature, and predictors. J. Neurovirol. 2011, 17, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Bobrow, K.; Xia, F.; Hoang, T.; Valcour, V.; Yaffe, K. HIV and risk of dementia in older veterans. AIDS 2020, 34, 1673–1679. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.O.; Hou, C.E.; Hojilla, J.C.; Anderson, A.N.; Gilsanz, P.; Alexeeff, S.E.; Levine-Hall, T.; Hood, N.; Lee, C.; Satre, D.D.; et al. Comparison of dementia risk after age 50 between individuals with and without HIV infection. AIDS 2021, 35, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Joska, J.A.; Dreyer, A.J.; Nightingale, S.; Combrinck, M.I.; De Jager, C.A. Prevalence of HIV-1 Infection in an elderly rural population and associations with neurocognitive impairment. AIDS 2019, 33, 1765–1771. [Google Scholar] [CrossRef]
- Chiu, W.C.; Tsan, Y.T.; Tsai, S.L.; Chang, C.J.; Wang, J.D.; Chen, P.C.; Health Data Analysis in Taiwan (hDATa) Research Group. Hepatitis C viral infection and the risk of dementia. Eur. J. Neurol. 2014, 21, 1068-e59. [Google Scholar] [CrossRef]
- Murphy, M.J.; Fani, L.; Ikram, M.K.; Ghanbari, M.; Ikram, M.A. Herpes simplex virus 1 and the risk of dementia: A population-based study. Sci. Rep. 2021, 11, 8691. [Google Scholar] [CrossRef]
- Beydoun, M.A.; Beydoun, H.A.; Hedges, D.W.; Erickson, L.D.; Gale, S.D.; Weiss, J.; El-Hajj, Z.W.; Evans, M.K.; Zonderman, A.B. Infection burden, periodontal pathogens, and their interactive association with incident all-cause and Alzheimer’s disease dementia in a large national survey. Alzheimer’s Dement. 2024, 20, 6468–6485. [Google Scholar] [CrossRef]
- Barnes, L.L.; Capuano, A.W.; Aiello, A.E.; Turner, A.D.; Yolken, R.H.; Torrey, E.F.; Bennett, D.A. Cytomegalovirus infection and risk of Alzheimer disease in older black and white individuals. J. Infect. Dis. 2015, 211, 230–237. [Google Scholar] [CrossRef]
- Lee, K.H.; Kwon, D.E.; Do Han, K.; La, Y.; Han, S.H. Association between cytomegalovirus end-organ diseases and moderate-to-severe dementia: A population-based cohort study. BMC Neurol. 2020, 20, 216. [Google Scholar] [CrossRef]
- Lin, C.-H.; Chien, W.-C.; Chung, C.-H.; Chiang, C.-P.; Wang, W.-M.; Chang, H.-A.; Kao, Y.-C.; Tzeng, N.-S. Increased risk of dementia in patients with genital warts: A nationwide cohort study in Taiwan. J. Dermatol. 2020, 47, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Yun, S.-C.; Kim, M.-C.; Yoon, W.; Lim, J.S.; Lee, S.-O.; Choi, S.-H.; Kim, Y.S.; Woo, J.H.; Kim, S.Y.; et al. Association of herpes zoster with dementia and effect of antiviral therapy on dementia: A population-based cohort study. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 987–997. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.G.; Soh, J.S.; Lim, J.S.; Sim, S.Y.; Lee, S.W. Association between dementia and hepatitis B and C virus infection. Medicine 2021, 100, e26476. [Google Scholar] [CrossRef] [PubMed]
- Herpes Simplex Virus. Available online: https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus#:~:text=Key%20facts,main%20cause%20of%20genital%20herpes (accessed on 25 October 2024).
- Benyumiza, D.; Kumakech, E.; Gutu, J.; Banihani, J.; Mandap, J.; Talib, Z.M.; Wakida, E.K.; Maling, S.; Obua, C. Prevalence of dementia and its association with central nervous system infections among older persons in northern Uganda: Cross-sectional community-based study. BMC Geriatr. 2023, 23, 551. [Google Scholar] [CrossRef]
- Vestin, E.; Boström, G.; Olsson, J.; Elgh, F.; Lind, L.; Kilander, L.; Lövheim, H.; Weidung, B. Herpes simplex viral infection doubles the risk of dementia in a contemporary cohort of older adults: A prospective study. J. Alzheimer’s Dis. 2024, 97, 1841–1850. [Google Scholar] [CrossRef]
- Gale, S.D.; Farrer, T.J.; Erbstoesser, R.; MacLean, S.; Hedges, D.W. Human cytomegalovirus infection and neurocognitive and neuropsychiatric health. Pathogens 2024, 13, 417. [Google Scholar] [CrossRef]
- Zuhair, M.; Smit, G.S.A.; Wallis, G.; Jabbar, F.; Smith, C.; Devleesschauwer, B.; Griffiths, P. Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis. Rev. Med. Virol. 2019, 29, e2034. [Google Scholar] [CrossRef]
- Bruni, L.; Albero, G.; Rowley, J.; Alemany, L.; Arbyn, M.; Giuliano, A.R.; Markowitz, L.E.; Broutet, N.; Taylor, M. Global and regional estimates of genital human papillomavirus prevalence among men: A systematic review and meta-analysis. Lancet Glob. Health 2023, 11, e1345–e1362. [Google Scholar] [CrossRef]
- Human Papillomavirus and Cancer WHO Fact Sheets. Available online: https://www.who.int/news-room/fact-sheets/detail/human-papilloma-virus-and-cancer (accessed on 25 October 2024).
- Huang, J.; Wu, Y.; Wang, M.; Jiang, J.; Zhu, Y.; Kumar, R.; Lin, S. The global disease burden of varicella-zoster virus infection from 1990 to 2019. J. Med. Virol. 2022, 94, 2736–2746. [Google Scholar] [CrossRef]
- Warren-Gash, C.; Forbes, H.J.; Williamson, E.; Breuer, J.; Hayward, A.C.; Mavrodaris, A.; Ridha, B.H.; Rossor, M.N.; Thomas, S.L.; Smeeth, L. Human herpesvirus infections and dementia or mild cognitive impairment: A systematic review and meta-analysis. Sci. Rep. 2019, 9, 4743. [Google Scholar] [CrossRef]
- Shin, E.; Chi, S.A.; Chung, T.-Y.; Kim, H.J.; Kim, K.; Lim, D.H. The associations of herpes simplex virus and varicella zoster virus infection with dementia: A nationwide retrospective cohort study. Alzheimer’s Res. Ther. 2024, 16, 57. [Google Scholar] [CrossRef] [PubMed]
- Lövheim, H.; Olsson, J.; Weidung, B.; Johansson, A.; Eriksson, S.; Hallmans, G.; Elgh, F. Interaction between Cytomegalovirus and Herpes Simplex Virus Type 1 Associated with the Risk of Alzheimer’s Disease Development. J. Alzheimer’s Dis. 2018, 61, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Bayani, M.; Riahi, S.M.; Bazrafshan, N.; Ray Gamble, H.; Rostami, A. Toxoplasma gondii infection and risk of Parkinson and Alzheimer diseases: A systematic review and meta-analysis on observational studies. Acta Trop. 2019, 196, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Nayeri Chegeni, T.; Sarvi, S.; Moosazadeh, M.; Sharif, M.; Aghayan, S.A.; Amouei, A.; Hosseininejad, Z.; Daryani, A. Is Toxoplasma gondii a potential risk factor for Alzheimer’s disease? A systematic review and meta-analysis. Microb. Pathog. 2019, 137, 103751. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-Y.; Chien, W.-C.; Chung, C.-H.; Su, R.-Y.; Lai, C.-Y.; Yang, C.-C.; Tzeng, N.-S. Risk of dementia in patients with toxoplasmosis: A nationwide, population-based cohort study in Taiwan. Parasit. Vectors 2021, 14, 435. [Google Scholar] [CrossRef]
- Mehrabian, S.; Raycheva, M.; Traykova, M.; Stankova, T.; Penev, L.; Grigorova, O.; Traykov, L. Neurosyphilis with dementia and bilateral hippocampal atrophy on brain magnetic resonance imaging. BMC Neurol. 2012, 12, 96. [Google Scholar] [CrossRef]
- Sanchini, C.; Papia, C.; Cutaia, C.; Poloni, T.E.; Cesari, M. A case of reversible dementia? dementia vs delirium in lyme disease. Ann. Geriatr. Med. Res. 2023, 27, 80–82. [Google Scholar] [CrossRef]
- Kristoferitsch, W.; Aboulenein-Djamshidian, F.; Jecel, J.; Rauschka, H.; Rainer, M.; Stanek, G.; Fischer, P. Secondary dementia due to Lyme neuroborreliosis. Wien. Klin. Wochenschr. 2018, 130, 468–478. [Google Scholar] [CrossRef]
- Beydoun, M.A.; Beydoun, H.A.; Elbejjani, M.; Dore, G.A.; Zonderman, A.B. Helicobacter pylori seropositivity and its association with incident all-cause and Alzheimer’s disease dementia in large national surveys. Alzheimer’s Dement. 2018, 14, 1148–1158. [Google Scholar] [CrossRef]
- Huang, W.-S.; Yang, T.-Y.; Shen, W.-C.; Lin, C.-L.; Lin, M.-C.; Kao, C.-H. Association between Helicobacter pylori infection and dementia. J. Clin. Neurosci. 2014, 21, 1355–1358. [Google Scholar] [CrossRef]
- Roubaud Baudron, C.; Letenneur, L.; Langlais, A.; Buissonnière, A.; Mégraud, F.; Dartigues, J.-F.; Salles, N. Personnes Agées QUID Study Does Helicobacter pylori infection increase incidence of dementia? The Personnes Agées QUID Study. J. Am. Geriatr. Soc. 2013, 61, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Shindler-Itskovitch, T.; Ravona-Springer, R.; Leibovitz, A.; Muhsen, K. A Systematic Review and Meta-Analysis of the Association between Helicobacter pylori Infection and Dementia. J. Alzheimer’s Dis. 2016, 52, 1431–1442. [Google Scholar] [CrossRef] [PubMed]
- Hooi, J.K.Y.; Lai, W.Y.; Ng, W.K.; Suen, M.M.Y.; Underwood, F.E.; Tanyingoh, D.; Malfertheiner, P.; Graham, D.Y.; Wong, V.W.S.; Wu, J.C.Y.; et al. Global Prevalence of Helicobacter pylori Infection: Systematic Review and Meta-Analysis. Gastroenterology 2017, 153, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-P.; Chiu, G.-F.; Kuo, F.-C.; Lai, C.-L.; Yang, Y.-H.; Hu, H.-M.; Chang, P.-Y.; Chen, C.-Y.; Wu, D.-C.; Yu, F.-J. Eradication of Helicobacter pylori Is Associated with the Progression of Dementia: A Population-Based Study. Gastroenterol. Res. Pract. 2013, 2013, 175729. [Google Scholar] [CrossRef]
- Kountouras, J.; Boziki, M.; Gavalas, E.; Zavos, C.; Grigoriadis, N.; Deretzi, G.; Tzilves, D.; Katsinelos, P.; Tsolaki, M.; Chatzopoulos, D.; et al. Eradication of Helicobacter pylori may be beneficial in the management of Alzheimer’s disease. J. Neurol. 2009, 256, 758–767. [Google Scholar] [CrossRef]
- Bouziane, A.; Lattaf, S.; Abdallaoui Maan, L. Effect of periodontal disease on alzheimer’s disease: A systematic review. Cureus 2023, 15, e46311. [Google Scholar] [CrossRef]
- Asher, S.; Stephen, R.; Mäntylä, P.; Suominen, A.L.; Solomon, A. Periodontal health, cognitive decline, and dementia: A systematic review and meta-analysis of longitudinal studies. J. Am. Geriatr. Soc. 2022, 70, 2695–2709. [Google Scholar] [CrossRef]
- Leblhuber, F.; Huemer, J.; Steiner, K.; Gostner, J.M.; Fuchs, D. Knock-on effect of periodontitis to the pathogenesis of Alzheimer’s disease? Wien. Klin. Wochenschr. 2020, 132, 493–498. [Google Scholar] [CrossRef]
- Hosoki, S.; Saito, S.; Tonomura, S.; Ishiyama, H.; Yoshimoto, T.; Ikeda, S.; Ikenouchi, H.; Yamamoto, Y.; Hattori, Y.; Miwa, K.; et al. Oral Carriage of Streptococcus mutans Harboring the cnm Gene Relates to an Increased Incidence of Cerebral Microbleeds. Stroke 2020, 51, 3632–3639. [Google Scholar] [CrossRef]
- Wan, J.; Fan, H. Oral microbiome and alzheimer’s disease. Microorganisms 2023, 11, 2550. [Google Scholar] [CrossRef]
- Díaz-Zúñiga, J.; Muñoz, Y.; Melgar-Rodríguez, S.; More, J.; Bruna, B.; Lobos, P.; Monasterio, G.; Vernal, R.; Paula-Lima, A. Serotype b of Aggregatibacter actinomycetemcomitans triggers pro-inflammatory responses and amyloid beta secretion in hippocampal cells: A novel link between periodontitis and Alzheimer´s disease? J. Oral Microbiol. 2019, 11, 1586423. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Qiu, W.; Zhu, X.; Li, X.; Xie, Z.; Carreras, I.; Dedeoglu, A.; Van Dyke, T.; Han, Y.W.; Karimbux, N.; et al. The Periodontal Pathogen Fusobacterium nucleatum Exacerbates Alzheimer’s Pathogenesis via Specific Pathways. Front. Aging Neurosci. 2022, 14, 912709. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.-S.; Liang, C.-S.; Tsai, S.-J.; Bai, Y.-M.; Su, T.-P.; Chen, T.-J.; Chen, M.-H. Bacterial pneumonia and subsequent dementia risk: A nationwide cohort study. Brain Behav. Immun. 2022, 103, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.; Li, X.; Zhao, H.; Feng, Z.; Chun, L.; Xie, Y.; Li, J. Risk of Dementia or Cognitive Impairment in Sepsis Survivals: A Systematic Review and Meta-Analysis. Front. Aging Neurosci. 2022, 14, 839472. [Google Scholar] [CrossRef] [PubMed]
- Bastarache, J.A.; Lee, H.N.R.; Harrison, F.E. Mechanisms of sepsis-induced inflammation in the aging brain. Alzheimer’s Dement. 2023, 19, e078852. [Google Scholar] [CrossRef]
- Moné, Y.; Earl, J.P.; Król, J.E.; Ahmed, A.; Sen, B.; Ehrlich, G.D.; Lapides, J.R. Evidence supportive of a bacterial component in the etiology for Alzheimer’s disease and for a temporal-spatial development of a pathogenic microbiome in the brain. Front. Cell. Infect. Microbiol. 2023, 13, 1123228. [Google Scholar] [CrossRef]
- Eke, P.I.; Dye, B.A.; Wei, L.; Thornton-Evans, G.O.; Genco, R.J. CDC Periodontal Disease Surveillance workgroup: Prevalence of periodontitis in adults in the United States: 2009 and 2010. J. Dent. Res. 2012, 91, 914–920. [Google Scholar] [CrossRef]
- Kamer, A.R.; Pirraglia, E.; Tsui, W.; Rusinek, H.; Vallabhajosula, S.; Mosconi, L.; Yi, L.; McHugh, P.; Craig, R.G.; Svetcov, S.; et al. Periodontal disease associates with higher brain amyloid load in normal elderly. Neurobiol. Aging 2015, 36, 627–633. [Google Scholar] [CrossRef]
- Laugisch, O.; Johnen, A.; Maldonado, A.; Ehmke, B.; Bürgin, W.; Olsen, I.; Potempa, J.; Sculean, A.; Duning, T.; Eick, S. Periodontal pathogens and associated intrathecal antibodies in early stages of alzheimer’s disease. J. Alzheimer’s Dis. 2018, 66, 105–114. [Google Scholar] [CrossRef]
- Beydoun, M.A.; Beydoun, H.A.; Hossain, S.; El-Hajj, Z.W.; Weiss, J.; Zonderman, A.B. Clinical and Bacterial Markers of Periodontitis and Their Association with Incident All-Cause and Alzheimer’s Disease Dementia in a Large National Survey. J. Alzheimer’s Dis. 2020, 75, 157–172. [Google Scholar] [CrossRef]
- Nadim, R.; Tang, J.; Dilmohamed, A.; Yuan, S.; Wu, C.; Bakre, A.T.; Partridge, M.; Ni, J.; Copeland, J.R.; Anstey, K.J.; et al. Influence of periodontal disease on risk of dementia: A systematic literature review and a meta-analysis. Eur. J. Epidemiol. 2020, 35, 821–833. [Google Scholar] [CrossRef] [PubMed]
- Dibello, V.; Custodero, C.; Cavalcanti, R.; Lafornara, D.; Dibello, A.; Lozupone, M.; Daniele, A.; Pilotto, A.; Panza, F.; Solfrizzi, V. Impact of periodontal disease on cognitive disorders, dementia, and depression: A systematic review and meta-analysis. Geroscience 2024, 46, 5133–5169. [Google Scholar] [CrossRef] [PubMed]
- Noble, J.M.; Borrell, L.N.; Papapanou, P.N.; Elkind, M.S.V.; Scarmeas, N.; Wright, C.B. Periodontitis is associated with cognitive impairment among older adults: Analysis of NHANES-III. J. Neurol. Neurosurg. Psychiatr. 2009, 80, 1206–1211. [Google Scholar] [CrossRef] [PubMed]
- Saji, N.; Murotani, K.; Hisada, T.; Kunihiro, T.; Tsuduki, T.; Sugimoto, T.; Kimura, A.; Niida, S.; Toba, K.; Sakurai, T. Relationship between dementia and gut microbiome-associated metabolites: A cross-sectional study in Japan. Sci. Rep. 2020, 10, 8088. [Google Scholar] [CrossRef] [PubMed]
- Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017, 7, 13537. [Google Scholar] [CrossRef]
- Levine, K.S.; Leonard, H.L.; Blauwendraat, C.; Iwaki, H.; Johnson, N.; Bandres-Ciga, S.; Ferrucci, L.; Faghri, F.; Singleton, A.B.; Nalls, M.A. Virus exposure and neurodegenerative disease risk across national biobanks. Neuron 2023, 111, 1086–1093.e2. [Google Scholar] [CrossRef]
- Farmen, K.; Tofiño-Vian, M.; Iovino, F. Neuronal damage and neuroinflammation, a bridge between bacterial meningitis and neurodegenerative diseases. Front. Cell. Neurosci. 2021, 15, 680858. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Cillóniz, C.; Rodríguez-Hurtado, D.; Torres, A. Characteristics and Management of Community-Acquired Pneumonia in the Era of Global Aging. Med. Sci. 2018, 6, 35. [Google Scholar] [CrossRef]
- Douros, A.; Santella, C.; Dell’Aniello, S.; Azoulay, L.; Renoux, C.; Suissa, S.; Brassard, P. Infectious Disease Burden and the Risk of Alzheimer’s Disease: A Population-Based Study. J. Alzheimer’s Dis. 2021, 81, 329–338. [Google Scholar] [CrossRef]
- Muzambi, R.; Bhaskaran, K.; Brayne, C.; Davidson, J.A.; Smeeth, L.; Warren-Gash, C. Common bacterial infections and risk of dementia or cognitive decline: A systematic review. J. Alzheimer’s Dis. 2020, 76, 1609–1626. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Dahal, K.; Thapa, S.; Subedi, P.; Paudel, B.S.; Chand, S.; Salem, A.; Lammle, M.; Sah, R.; Krsak, M. Herpes zoster vaccination and the risk of dementia: A systematic review and meta-analysis. Brain Behav. 2024, 14, e3415. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yang, H.; He, S.; Xia, T.; Chen, D.; Zhou, Y.; Liu, J.; Liu, M.; Sun, Z. Adult Vaccination as a Protective Factor for Dementia: A Meta-Analysis and Systematic Review of Population-Based Observational Studies. Front. Immunol. 2022, 13, 872542. [Google Scholar] [CrossRef] [PubMed]
- Lophatananon, A.; Carr, M.; Mcmillan, B.; Dobson, C.; Itzhaki, R.; Parisi, R.; Ashcroft, D.M.; Muir, K.R. The association of herpes zoster and influenza vaccinations with the risk of developing dementia: A population-based cohort study within the UK Clinical Practice Research Datalink. BMC Public Health 2023, 23, 1903. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Demurtas, J.; Smith, L.; Michel, J.P.; Barbagallo, M.; Bolzetta, F.; Noale, M.; Maggi, S. Influenza vaccination reduces dementia risk: A systematic review and meta-analysis. Ageing Res. Rev. 2022, 73, 101534. [Google Scholar] [CrossRef]
- Sun, H.; Liu, M.; Liu, J. Association of Influenza Vaccination and Dementia Risk: A Meta-Analysis of Cohort Studies. J. Alzheimer’s Dis. 2023, 92, 667–678. [Google Scholar] [CrossRef]
- Kim, J.I.; Zhu, D.; Barry, E.; Kovac, E.; Aboumohamed, A.; Agalliu, I.; Sankin, A. Intravesical Bacillus Calmette-Guérin Treatment Is Inversely Associated With the Risk of Developing Alzheimer Disease or Other Dementia Among Patients With Non-muscle-invasive Bladder Cancer. Clin. Genitourin. Cancer 2021, 19, e409–e416. [Google Scholar] [CrossRef]
- Makrakis, D.; Holt, S.K.; Bernick, C.; Grivas, P.; Gore, J.L.; Wright, J.L. Intravesical BCG and incidence of alzheimer disease in patients with bladder cancer: Results from an administrative dataset. Alzheimer Dis. Assoc. Disord. 2022, 36, 307–311. [Google Scholar] [CrossRef]
- Klinger, D.; Hill, B.L.; Barda, N.; Halperin, E.; Gofrit, O.N.; Greenblatt, C.L.; Rappoport, N.; Linial, M.; Bercovier, H. Bladder Cancer Immunotherapy by BCG Is Associated with a Significantly Reduced Risk of Alzheimer’s Disease and Parkinson’s Disease. Vaccines 2021, 9, 491. [Google Scholar] [CrossRef]
- Weinberg, M.S.; Zafar, A.; Magdamo, C.; Chung, S.Y.; Chou, W.H.; Nayan, M.; Deodhar, M.; Frendl, D.M.; Feldman, A.S.; Faustman, D.L.; et al. Association of BCG Vaccine Treatment with Death and Dementia in Patients with Non-Muscle-Invasive Bladder Cancer. JAMA Netw. Open 2023, 6, e2314336. [Google Scholar] [CrossRef]
- Gofrit, O.N.; Klein, B.Y.; Cohen, I.R.; Ben-Hur, T.; Greenblatt, C.L.; Bercovier, H. Bacillus Calmette-Guérin (BCG) therapy lowers the incidence of Alzheimer’s disease in bladder cancer patients. PLoS ONE 2019, 14, e0224433. [Google Scholar] [CrossRef] [PubMed]
- Schnier, C.; Janbek, J.; Lathe, R.; Haas, J. Reduced dementia incidence after varicella zoster vaccination in Wales 2013–2020. Alzheimer’s Dement. 2022, 8, e12293. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Feng, L.; Wu, B.; Xia, W.; Xie, P.; Ma, S.; Liu, H.; Meng, M.; Sun, Y. The association between varicella zoster virus and dementia: A systematic review and meta-analysis of observational studies. Neurol. Sci. 2024, 45, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Lopatko Lindman, K.; Hemmingsson, E.-S.; Weidung, B.; Brännström, J.; Josefsson, M.; Olsson, J.; Elgh, F.; Nordström, P.; Lövheim, H. Herpesvirus infections, antiviral treatment, and the risk of dementia-a registry-based cohort study in Sweden. Alzheimer’s Dement. 2021, 7, e12119. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.C.-H.; Wu, S.-I.; Huang, K.-Y.; Yang, Y.-H.; Kuo, T.-Y.; Liang, H.-Y.; Huang, K.-L.; Gossop, M. Herpes Zoster and Dementia: A Nationwide Population-Based Cohort Study. J. Clin. Psychiatry 2018, 79, 8164. [Google Scholar] [CrossRef]
- Thapa, S.; Shah, S.; Bhattarai, A.; Yazdan Panah, M.; Chand, S.; Mirmosayyeb, O. Risk of dementia following herpes zoster infection among patients undertreatment versus those not: A systematic review and meta-analysis. Health Sci. Rep. 2024, 7, e1941. [Google Scholar] [CrossRef]
- Young-Xu, Y.; Powell, E.I.; Zwain, G.M.; Yazdi, M.T.; Gui, J.; Shiner, B. Symptomatic herpes simplex virus infection and risk of dementia in US veterans: A cohort study. Neurotherapeutics 2021, 18, 2458–2467. [Google Scholar] [CrossRef]
- Tzeng, N.-S.; Chung, C.-H.; Lin, F.-H.; Chiang, C.-P.; Yeh, C.-B.; Huang, S.-Y.; Lu, R.-B.; Chang, H.-A.; Kao, Y.-C.; Yeh, H.-W.; et al. Anti-herpetic Medications and Reduced Risk of Dementia in Patients with Herpes Simplex Virus Infections-a Nationwide, Population-Based Cohort Study in Taiwan. Neurotherapeutics 2018, 15, 417–429. [Google Scholar] [CrossRef]
- Han, C.; Wang, J.; Chen, Y.-L.; Guan, C.-P.; Zhang, Y.-A.; Wang, M.-S. The role of Bacillus Calmette-Guérin administration on the risk of dementia in bladder cancer patients: A systematic review and meta-analysis. Front. Aging Neurosci. 2023, 15, 1243588. [Google Scholar] [CrossRef]
- Gofrit, O.N.; Bercovier, H.; Klein, B.Y.; Cohen, I.R.; Ben-Hur, T.; Greenblatt, C.L. Can immunization with Bacillus Calmette-Guérin (BCG) protect against Alzheimer’s disease? Med. Hypotheses 2019, 123, 95–97. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Wang, W.; Wang, S.; Zhang, J.; Jiang, S.; Wang, Y.; Li, L.; Li, J.; Zhang, Y.; et al. Low-dose IL-2 expands CD4+ regulatory T cells with a suppressive function in vitro via the STAT5-dependent pathway in patients with chronic kidney diseases. Ren. Fail. 2018, 40, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Liston, A.; Pasciuto, E.; Fitzgerald, D.C.; Yshii, L. Brain regulatory T cells. Nat. Rev. Immunol. 2024, 24, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Taquet, M.; Dercon, Q.; Todd, J.A.; Harrison, P.J. The recombinant shingles vaccine is associated with lower risk of dementia. Nat. Med. 2024, 30, 2777–2781. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, J.F.; Salas, J.; Wiemken, T.L.; Jacobs, C.; Morley, J.E.; Hoft, D.F. Lower risk for dementia following adult tetanus, diphtheria and pertussis (tdap) vaccination. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 1436–1443. [Google Scholar] [CrossRef]
- Ciarambino, T.; Crispino, P.; Buono, P.; Giordano, V.; Trama, U.; Iodice, V.; Leoncini, L.; Giordano, M. Efficacy and safety of vaccinations in geriatric patients: A literature review. Vaccines 2023, 11, 1412. [Google Scholar] [CrossRef]
- Srivastav, A.; Lu, P.-J.; Amaya, A.; Dever, J.A.; Stanley, M.; Franks, J.L.; Scanlon, P.J.; Fisher, A.M.; Greby, S.M.; Nguyen, K.H.; et al. Prevalence of influenza-specific vaccination hesitancy among adults in the United States, 2018. Vaccine 2023, 41, 2572–2581. [Google Scholar] [CrossRef]
- Lu, P.-J.; Hung, M.-C.; Srivastav, A.; Grohskopf, L.A.; Kobayashi, M.; Harris, A.M.; Dooling, K.L.; Markowitz, L.E.; Rodriguez-Lainz, A.; Williams, W.W. Surveillance of Vaccination Coverage Among Adult Populations -United States, 2018. MMWR Surveill. Summ. 2021, 70, 1–26. [Google Scholar] [CrossRef]
- Rizzo, C.; Rezza, G.; Ricciardi, W. Strategies in recommending influenza vaccination in Europe and US. Hum. Vaccin. Immunother. 2018, 14, 693–698. [Google Scholar] [CrossRef]
- Black, C.L.; Kriss, J.L.; Razzaghi, H.; Patel, S.A.; Santibanez, T.A.; Meghani, M.; Tippins, A.; Stokley, S.; Chatham-Stephens, K.; Dowling, N.F.; et al. Influenza, Updated COVID-19, and Respiratory Syncytial Virus Vaccination Coverage Among Adults—United States, Fall 2023. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 1377–1382. [Google Scholar] [CrossRef]
- MacDonald, N. Report of the Sageworking Group Onvaccine Hesitancy; SAGE Working Group on Vaccine Hesitancy; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Galagali, P.M.; Kinikar, A.A.; Kumar, V.S. Vaccine hesitancy: Obstacles and challenges. Curr. Pediatr. Rep. 2022, 10, 241–248. [Google Scholar] [CrossRef]
- Lehrer, S.; Rheinstein, P.H. Shingles vaccination reduces the risk of Parkinson’s disease. Chronic Dis. Transl. Med. 2023, 9, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Bonanni, P.; Steffen, R.; Schelling, J.; Balaisyte-Jazone, L.; Posiuniene, I.; Zatoński, M.; Van Damme, P. Vaccine co-administration in adults: An effective way to improve vaccination coverage. Hum. Vaccines Immunother. 2023, 19, 2195786. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.J.; Nowalk, M.P.; Pavlik, V.N.; Brown, A.E.; Zhang, S.; Raviotta, J.M.; Moehling, K.K.; Hawk, M.; Ricci, E.M.; Middleton, D.B.; et al. Using the 4 pillarsTM practice transformation program to increase adult influenza vaccination and reduce missed opportunities in a randomized cluster trial. BMC Infect. Dis. 2016, 16, 623. [Google Scholar] [CrossRef] [PubMed]
- Eiden, A.L.; Hartley, L.; Garbinsky, D.; Saande, C.; Russo, J.; Hufstader Gabriel, M.; Price, M.; Bhatti, A. Adult vaccination coverage in the United States: A database analysis and literature review of improvement strategies. Hum. Vaccines Immunother. 2024, 20, 2381283. [Google Scholar] [CrossRef]
- Noble, J.M.; Scarmeas, N.; Papapanou, P.N. Poor oral health as a chronic, potentially modifiable dementia risk factor: Review of the literature. Curr. Neurol. Neurosci. Rep. 2013, 13, 384. [Google Scholar] [CrossRef]
- Renvert, S.; Persson, G.R. Treatment of periodontal disease in older adults. Periodontology 2000 2016, 72, 108–119. [Google Scholar] [CrossRef]
- Weinmann, S.; Rawlings, A.; Koppolu, P.; Rosales, A.G.; Prado, Y.K.; Schmidt, M.A. Herpes zoster diagnosis and treatment in relation to incident dementia: A population-based retrospective matched cohort study. PLoS ONE 2024, 19, e0296957. [Google Scholar] [CrossRef]
- Kim, M.; Park, S.J.; Choi, S.; Chang, J.; Kim, S.M.; Jeong, S.; Park, Y.J.; Lee, G.; Son, J.S.; Ahn, J.C.; et al. Association between antibiotics and dementia risk: A retrospective cohort study. Front. Pharmacol. 2022, 13, 888333. [Google Scholar] [CrossRef]
- Angelucci, F.; Cechova, K.; Amlerova, J.; Hort, J. Antibiotics, gut microbiota, and Alzheimer’s disease. J. Neuroinflamm. 2019, 16, 108. [Google Scholar] [CrossRef]
- Ternák, G.; Németh, M.; Rozanovic, M.; Bogár, L. Alzheimer’s Disease-Related Dysbiosis Might Be Triggered by Certain Classes of Antibiotics with Time-Lapse: New Insights into the Pathogenesis? J. Alzheimer’s Dis. 2022, 87, 443–451. [Google Scholar] [CrossRef]
- Rakuša, E.; Fink, A.; Tamgüney, G.; Heneka, M.T.; Doblhammer, G. Sporadic Use of Antibiotics in Older Adults and the Risk of Dementia: A Nested Case-Control Study Based on German Health Claims Data. J. Alzheimer’s Dis. 2023, 93, 1329–1339. [Google Scholar] [CrossRef] [PubMed]
- Chao, P.-C.; Chien, W.-C.; Chung, C.-H.; Huang, C.-K.; Li, H.-M.; Tzeng, N.-S. Association between antibiotic treatment of leptospirosis infections and reduced risk of dementia: A nationwide, cohort study in Taiwan. Front. Aging Neurosci. 2022, 14, 771486. [Google Scholar] [CrossRef] [PubMed]
- Weidung, B.; Hemmingsson, E.-S.; Olsson, J.; Sundström, T.; Blennow, K.; Zetterberg, H.; Ingelsson, M.; Elgh, F.; Lövheim, H. VALZ-Pilot: High-dose valacyclovir treatment in patients with early-stage Alzheimer’s disease. Alzheimer’s Dement. 2022, 8, e12264. [Google Scholar] [CrossRef] [PubMed]
- De Vlieger, L.; Vandenbroucke, R.E.; Van Hoecke, L. Recent insights into viral infections as a trigger and accelerator in alzheimer’s disease. Drug Discov. Today 2022, 27, 103340. [Google Scholar] [CrossRef] [PubMed]
- Mikolajczak, S.; Quante, G.; Weissenborn, S.; Wafaisade, A.; Wieland, U.; Lüers, J.C.; Klussmann, J.P.; Beutner, D. The impact of cidofovir treatment on viral loads in adult recurrent respiratory papillomatosis. Eur. Arch. Otorhinolaryngol. 2012, 269, 2543–2548. [Google Scholar] [CrossRef]
- Jang, J.; Jeong, H.; Kim, B.-H.; An, S.; Yang, H.-R.; Kim, S. Vaccine effectiveness in symptom and viral load mitigation in COVID-19 breakthrough infections in South Korea. PLoS ONE 2023, 18, e0290154. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Liu, J.; Liu, J.; Han, J.; Yang, L. Vaccination reduces viral load and accelerates viral clearance in SARS-CoV-2 Delta variant-infected patients. Ann. Med. 2023, 55, 419–427. [Google Scholar] [CrossRef]
- Kolson, D.L. Developments in Neuroprotection for HIV-Associated Neurocognitive Disorders (HAND). Curr. HIV/AIDS Rep. 2022, 19, 344–357. [Google Scholar] [CrossRef]
- Lin, W.R.; Jennings, R.; Smith, T.L.; Wozniak, M.A.; Itzhaki, R.F. Vaccination prevents latent HSV1 infection of mouse brain. Neurobiol. Aging 2001, 22, 699–703. [Google Scholar] [CrossRef]
- Welsh, R.M.; Che, J.W.; Brehm, M.A.; Selin, L.K. Heterologous immunity between viruses. Immunol. Rev. 2010, 235, 244–266. [Google Scholar] [CrossRef]
- Blok, B.A.; Arts, R.J.W.; van Crevel, R.; Benn, C.S.; Netea, M.G. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines. J. Leukoc. Biol. 2015, 98, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Moorlag, S.J.C.F.M.; Arts, R.J.W.; van Crevel, R.; Netea, M.G. Non-specific effects of BCG vaccine on viral infections. Clin. Microbiol. Infect. 2019, 25, 1473–1478. [Google Scholar] [CrossRef] [PubMed]
- Balz, K.; Trassl, L.; Härtel, V.; Nelson, P.P.; Skevaki, C. Virus-Induced T Cell-Mediated Heterologous Immunity and Vaccine Development. Front. Immunol. 2020, 11, 513. [Google Scholar] [CrossRef] [PubMed]
- Markel, H.; Lipman, H.B.; Navarro, J.A.; Sloan, A.; Michalsen, J.R.; Stern, A.M.; Cetron, M.S. Nonpharmaceutical interventions implemented by US cities during the 1918-1919 influenza pandemic. JAMA 2007, 298, 644–654. [Google Scholar] [CrossRef] [PubMed]
- Hatchett, R.J.; Mecher, C.E.; Lipsitch, M. Public health interventions and epidemic intensity during the 1918 influenza pandemic. Proc. Natl. Acad. Sci. USA 2007, 104, 7582–7587. [Google Scholar] [CrossRef]
- Pan, A.; Liu, L.; Wang, C.; Guo, H.; Hao, X.; Wang, Q.; Huang, J.; He, N.; Yu, H.; Lin, X.; et al. Association of Public Health Interventions with the Epidemiology of the COVID-19 Outbreak in Wuhan, China. JAMA 2020, 323, 1915–1923. [Google Scholar] [CrossRef]
- Murphy, C.; Wong, J.Y.; Cowling, B.J. Nonpharmaceutical interventions for managing SARS-CoV-2. Curr. Opin. Pulm. Med. 2023, 29, 184–190. [Google Scholar] [CrossRef]
- Zhao, H.; Jatana, S.; Bartoszko, J.; Loeb, M. Nonpharmaceutical interventions to prevent viral respiratory infection in community settings: An umbrella review. ERJ Open Res. 2022, 8, 00650-2021. [Google Scholar] [CrossRef]
- León, T.M.; Vargo, J.; Pan, E.S.; Jain, S.; Shete, P.B. Nonpharmaceutical Interventions Remain Essential to Reducing Coronavirus Disease 2019 Burden Even in a Well-Vaccinated Society: A Modeling Study. Open Forum Infect. Dis. 2021, 8, ofab415. [Google Scholar] [CrossRef]
- Peak, C.M.; Childs, L.M.; Grad, Y.H.; Buckee, C.O. Comparing nonpharmaceutical interventions for containing emerging epidemics. Proc. Natl. Acad. Sci. USA 2017, 114, 4023–4028. [Google Scholar] [CrossRef]
- Arnold, L.; Bimczok, S.; Schütt, H.; Lisak-Wahl, S.; Buchberger, B.; Stratil, J.M. How to protect long-term care facilities from pandemic-like events?—A systematic review on the effectiveness of non-pharmacological measures to prevent viral respiratory infections. BMC Infect. Dis. 2024, 24, 589. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.-M.; Park, J.; Han, K.; Yoo, J.; Yoo, J.E.; Lee, C.M.; Jung, W.; Lee, J.; Kim, S.Y.; Shin, D.W. Association of changes in smoking intensity with risk of dementia in Korea. JAMA Netw. Open 2023, 6, e2251506. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Pandigama, D.H.; Wrigglesworth, J.; Owen, A.; Woods, R.L.; Chong, T.T.-J.; Orchard, S.G.; Shah, R.C.; Sheets, K.M.; McNeil, J.J.; et al. Lifestyle enrichment in later life and its association with dementia risk. JAMA Netw. Open 2023, 6, e2323690. [Google Scholar] [CrossRef] [PubMed]
- Jeon, K.H.; Han, K.; Jeong, S.-M.; Park, J.; Yoo, J.E.; Yoo, J.; Lee, J.; Kim, S.; Shin, D.W. Changes in alcohol consumption and risk of dementia in a nationwide cohort in south Korea. JAMA Netw. Open 2023, 6, e2254771. [Google Scholar] [CrossRef]
- Beydoun, M.A.; Beydoun, H.A.; Fanelli-Kuczmarski, M.T.; Hu, Y.-H.; Shaked, D.; Weiss, J.; Waldstein, S.R.; Launer, L.J.; Evans, M.K.; Zonderman, A.B. Uncovering mediational pathways behind racial and socioeconomic disparities in brain volumes: Insights from the UK Biobank study. Geroscience 2024. Online ahead of print. [Google Scholar] [CrossRef]
Viral Pathogen | Findings |
---|---|
HIV |
|
Hepatitis C |
|
HSV-1, HSV-2 |
|
Cytomegalovirus (CMV) | |
Human papillomavirus |
|
Varicella-zoster virus (VZV) |
|
Pathogen | Findings |
---|---|
Periodontal Diseases |
|
Porphyromonas gingivalis |
|
Tannerella forsythia |
|
Streptococcus mutans |
|
Actinobacillus actinomycetemcomitans | |
Fusobacterium nucleatum |
|
Treponema denticola |
|
Neurosyphilis |
|
Lyme Disease |
|
Pneumonia |
|
Sepsis |
Vaccine/Antiviral | Findings |
---|---|
Herpes zoster vaccination |
|
Influenza vaccination |
|
Tetanus, diphtheria, and pertussis (Tdap) vaccination |
|
Rabies vaccination |
|
Hepatitis A vaccination |
|
Hepatitis B vaccination |
|
Typhoid vaccination |
|
Tuberculosis (Bacille Calmettte-Guérin) vaccination | |
Varicella-Zoster Virus (VZV) vaccination | |
Herpes antiviral treatment |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farrer, T.J.; Moore, J.D.; Chase, M.; Gale, S.D.; Hedges, D.W. Infectious Disease as a Modifiable Risk Factor for Dementia: A Narrative Review. Pathogens 2024, 13, 974. https://doi.org/10.3390/pathogens13110974
Farrer TJ, Moore JD, Chase M, Gale SD, Hedges DW. Infectious Disease as a Modifiable Risk Factor for Dementia: A Narrative Review. Pathogens. 2024; 13(11):974. https://doi.org/10.3390/pathogens13110974
Chicago/Turabian StyleFarrer, Thomas J., Jonathan D. Moore, Morgan Chase, Shawn D. Gale, and Dawson W. Hedges. 2024. "Infectious Disease as a Modifiable Risk Factor for Dementia: A Narrative Review" Pathogens 13, no. 11: 974. https://doi.org/10.3390/pathogens13110974
APA StyleFarrer, T. J., Moore, J. D., Chase, M., Gale, S. D., & Hedges, D. W. (2024). Infectious Disease as a Modifiable Risk Factor for Dementia: A Narrative Review. Pathogens, 13(11), 974. https://doi.org/10.3390/pathogens13110974