Evaluating the Effectiveness of External Molecular Proficiency Testing in the Global Polio Laboratory Network, 2021–2022
<p>Scheme of annual poliovirus proficiency testing workflow for the molecular external quality assurance (mEQA) using real-time RT-PCR (ITD testing). Separate PT panels exist for virus isolation and sequencing components of poliovirus testing.</p> "> Figure 2
<p>Number of GPLN laboratories participating in the annual mEQA PT panel between 2009 and 2022 using real-time RT-PCR (ITD testing).</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Participating Laboratories and Preparation of the mEQA Panel
2.2. Data Collection and Analysis
3. Results
3.1. The GPLN Landscape and Overall Proficiency
3.2. Variability in Laboratories
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Lickness, J.S.; Gardner, T.; Diop, O.M.; Chavan, S.; Jorba, J.; Ahmed, J.; Gumede, N.; Johnson, T.; Butt, O.; Asghar, H.; et al. Surveillance to Track Progress Toward Polio Eradication—Worldwide, 2018–2019. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, S.S.Z.; Asghar, H.; Sharif, S.; Alam, M.M. Poliovirus Laboratory Based Surveillance: An Overview. In Poliovirus: Methods and Protocols; Martín, J., Ed.; Springer: New York, NY, USA, 2016; pp. 11–18. [Google Scholar] [CrossRef]
- Hull, B.P.; Dowdle, W.R. Poliovirus Surveillance: Building the Global Polio Laboratory Network. J. Infect. Dis. 1997, 175, S113–S116. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, D.R.; Nottay, B.; Yang, C.F.; Yang, S.J.; Da Silva, E.; Penaranda, S.; Pallansch, M.; Kew, O. Serotype-specific identification of polioviruses by PCR using primers containing mixed-base or deoxyinosine residues at positions of codon degeneracy. J. Clin. Microbiol. 1998, 36, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, D.R.; Nottay, B.; Yang, C.F.; Yang, S.J.; Mulders, M.N.; Holloway, B.P.; Pallansch, M.A.; Kew, O.M. Group-specific identification of polioviruses by PCR using primers containing mixed-base or deoxyinosine residue at positions of codon degeneracy. J. Clin. Microbiol. 1996, 34, 2990–2996. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, D.R.; Yang, C.F.; Ching, K.; Vincent, A.; Iber, J.; Campagnoli, R.; Mandelbaum, M.; De, L.; Yang, S.J.; Nix, A.; et al. Rapid group-, serotype-, and vaccine strain-specific identification of poliovirus isolates by real-time reverse transcription-PCR using degenerate primers and probes containing deoxyinosine residues. J. Clin. Microbiol. 2009, 47, 1939–1941. [Google Scholar] [CrossRef] [PubMed]
- GPEI. Updates on ITD Molecular Testing. 2016. Available online: https://polioeradication.org/wp-content/uploads/2024/05/GP2-Updates-on-ITD-molecular-testing.pdf (accessed on 4 October 2024).
- Gerloff, N.; Sun, H.; Mandelbaum, M.; Maher, C.; Nix, W.A.; Zaidi, S.; Shaukat, S.; Seakamela, L.; Nalavade, U.P.; Sharma, D.K.; et al. Diagnostic Assay Development for Poliovirus Eradication. J. Clin. Microbiol. 2018, 56, e01624-17. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Harrington, C.; Gerloff, N.; Mandelbaum, M.; Jeffries-Miles, S.; Apostol, L.N.G.; Valencia, M.A.D.; Shaukat, S.; Angez, M.; Sharma, D.K.; et al. Validation of a redesigned pan-poliovirus assay and real-time PCR platforms for the global poliovirus laboratory network. PLoS ONE 2021, 16, e0255795. [Google Scholar] [CrossRef] [PubMed]
- Burns, C.C.; Kilpatrick, D.R.; Iber, J.C.; Chen, Q.; Kew, O.M. Molecular Properties of Poliovirus Isolates: Nucleotide Sequence Analysis, Typing by PCR and Real-Time RT-PCR. In Poliovirus: Methods and Protocols; Martín, J., Ed.; Springer: New York, NY, USA, 2016; pp. 177–212. [Google Scholar] [CrossRef]
- Thorley, B.R.; Roberts, J.A. Isolation and Characterization of Poliovirus in Cell Culture Systems. In Poliovirus: Methods and Protocols; Martín, J., Ed.; Springer: New York, NY, USA, 2016; pp. 29–53. [Google Scholar] [CrossRef]
- Kilpatrick, D.R.; Iber, J.C.; Chen, Q.; Ching, K.; Yang, S.J.; De, L.; Mandelbaum, M.D.; Emery, B.; Campagnoli, R.; Burns, C.C.; et al. Poliovirus serotype-specific VP1 sequencing primers. J. Virol. Methods 2011, 174, 128–130. [Google Scholar] [CrossRef] [PubMed]
- Miles, S.J.; Harrington, C.; Sun, H.; Deas, A.; Oberste, M.S.; Nix, W.A.; Vega, E.; Gerloff, N. Validation of improved automated nucleic acid extraction methods for direct detection of polioviruses for global polio eradication. J. Virol. Methods 2024, 326, 114914. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Composition (RNA Transcripts) | Serotype/Genotype PCR Target | Expected Result in ITD/VDPV Algorithm |
---|---|---|---|
1 | WPV1, Sabin 1 or WPV1, Sabin 3 | WPV1, Sabin 1 or WPV1, Sabin 3 | NSL1 + SL1 or NSL1 + SL3 |
2 | VDPV1 or VDPV3 | VDPV1, or VDPV3 | SL3 or SL1 discordant |
3 | Sabin 3 | Sabin 3 | SL3 |
4 | Sabin 1 (low concentration), Sabin 3 (high) | Sabin 1, Sabin 3 | SL1 + SL3 |
5 | WPV1 or Sabin 1 | EV 5′UTR, WPV1, or EV 5′UTR, Sabin 1 | Invalid NSL1, SL1 |
6 | WPV1, Sabin 1, Sabin 3 | WPV1, Sabin 1, Sabin 3 | NSL1 + SL1 + SL3 |
7 | WPV3 | WPV3 | NSL3 |
8 | Sabin 1, VPDV3 | Sabin 1, VDPV3 | SL1 + SL3 discordant |
9 | Sabin 2 or nOPV2 | Sabin 2 or nOPV2 | PV2 |
10 | nOPV2, WPV1 | nOPV2, WPV1 | PV2 + NSL1 |
11 | EV | EV 5′UTR | NPEV, non-polio-enterovirus |
12 | EV, PV | EV 5′UTR, PanPV | Indeterminate |
13 | Water, Qβ only | Qβ | Non-enterovirus (Qβ positive) |
Scoring Scheme | Deduction | Comments |
---|---|---|
Major deductions for incorrect results | −15 | Failure to detect/identify WPV, VDPV, PV2, or indeterminate |
−10 | Failure to detect a single Sabin virus or invalid | |
−5 | Failure to detect a Sabin virus in a mixture | |
Deductions for technical issues | −10 | Not recognizing failed control(s) |
−5 | Failure to follow algorithm or correctly reporting results | |
−5 | Incorrectly interpreting curves (e.g., entering “positive” on a negative result) | |
−5 | Failure to correctly set up and report Qβ target in WPV1/Qβ duplex | |
Late reporting | −5 | Per week for any results received > 7 days after panel receipt |
Readiness | −15 | Not ready to process panel with available reagents or personnel |
Year 2021 | Year 2022 | |||||||
---|---|---|---|---|---|---|---|---|
WHO Region | Labs Invited | Passed | Failed | Not Participated | Labs Invited | Passed | Failed | Not Participated |
AFR | 16 | 16 | 0 | 0 | 16 | 13 | 3 | 0 |
AMR | 11 | 8 | 0 | 3 | 11 | 8 | 2 | 1 |
EMR | 11 | 9 | 2 | 0 | 11 | 10 | 1 | 0 |
EUR | 27 | 17 | 9 | 1 | 33 | 30 | 3 | 0 |
SEAR | 16 | 15 | 0 | 1 | 16 | 15 | 0 | 1 |
WPR | 42 | 40 | 2 | 0 | 42 | 42 | 0 | 0 |
TOTAL (%) | 123 (100%) | 105 (86%) | 13 (11%) | 5 (4%) | 129 (100%) | 118 (91.5%) | 9 (7%) | 2 (1.6%) |
After remediation (%) | 123 | 113 (91.9%) | 5 (4%) | 5 (4%) | 129 | 125 (96.9%) | 2 (1.6%) | 2 (1.6%) |
PT Panel Year | 2021 | 2022 | |||
---|---|---|---|---|---|
Number of labs participating (total) | 118 | 127 | |||
Category of errors (any observation if score <100) | Number of observations | Percentage (of total labs) | Number of observations | Percentage (of total labs) | |
Reporting | 11 | 9.1% | 17 | 13.8% | |
Timeliness (>7 days) | 2 | 1.7% | 3 | 2.4% | |
Following algorithm | 7 | 5.8% | 8 | 6.5% | |
Technical (overall) | 17 | 14.0% | 15 | 12.2% | |
Curve interpretation | 17 | 14.0% | 5 | 4.1% | |
Assay set up | 26 | 21.5% | 13 | 10.2% | |
Run method set up | 9 | 7.4% | 5 | 4.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerloff, N.; Burns, C.C. Evaluating the Effectiveness of External Molecular Proficiency Testing in the Global Polio Laboratory Network, 2021–2022. Pathogens 2024, 13, 1014. https://doi.org/10.3390/pathogens13111014
Gerloff N, Burns CC. Evaluating the Effectiveness of External Molecular Proficiency Testing in the Global Polio Laboratory Network, 2021–2022. Pathogens. 2024; 13(11):1014. https://doi.org/10.3390/pathogens13111014
Chicago/Turabian StyleGerloff, Nancy, and Cara C. Burns. 2024. "Evaluating the Effectiveness of External Molecular Proficiency Testing in the Global Polio Laboratory Network, 2021–2022" Pathogens 13, no. 11: 1014. https://doi.org/10.3390/pathogens13111014
APA StyleGerloff, N., & Burns, C. C. (2024). Evaluating the Effectiveness of External Molecular Proficiency Testing in the Global Polio Laboratory Network, 2021–2022. Pathogens, 13(11), 1014. https://doi.org/10.3390/pathogens13111014