An Update of Evidence for Pathogen Transmission by Ticks of the Genus Hyalomma
Abstract
:- Crimean–Congo Hemorrhagic Fever Virus (CCHFv) by H. dromedarii, H. impeltatum, H. marginatum, H. rufipes, and H. truncatum.
- African Horse Sickness virus by H. dromedarii.
- Venezuelan equine encephalitis virus by H. truncatum.
- Theileria annulata by H. anatolicum, H. dromedarii, H. excavatum, H. lusitanicum, and H. scupense.
- Theileria equi by H. anatolicum and H. excavatum.
- Theileria lestoquardi by H. anatolicum.
- Theileria ovis by H. anatolicum.
- Babesia occultans by H. rufipes.
- Coxiella burnetii by H. aegyptium.
- Anaplasma marginale by H. excavatum.
- Rickettsia aeschlimannii by H. marginatum and H. rufipes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de la Fuente, J.; Estrada-Pena, A.; Venzal, J.M.; Kocan, K.M.; Sonenshine, D.E. Overview: Ticks as Vectors of Pathogens That Cause Disease in Humans and Animals. Front. Biosci. J. Virtual Libr. 2008, 13, 6938–6946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de la Fuente, J.; Antunes, S.; Bonnet, S.; Cabezas-Cruz, A.; Domingos, A.G.; Estrada-Peña, A.; Johnson, N.; Kocan, K.M.; Mansfield, K.L.; Nijhof, A.M.; et al. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. Front. Cell. Infect. Microbiol. 2017, 7, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De, S.; Kitsou, C.; Sonenshine, D.E.; Pedra, J.H.F.; Fikrig, E.; Kassis, J.A.; Pal, U. Epigenetic Regulation of Tick Biology and Vectorial Capacity. Trends Genet. 2021, 37, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Šimo, L.; Kazimirova, M.; Richardson, J.; Bonnet, S.I. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front. Cell. Infect. Microbiol. 2017, 7, 281. [Google Scholar] [CrossRef] [PubMed]
- Philip, C.B.; Parker, R.R. Rocky Mountain spotted fever. Investigation of sexual transmission in the wood tick Dermacentor andersoni. Public Health Rep. 1933, 48, 266–272. [Google Scholar] [CrossRef]
- Léger, E.; Liu, X.; Masseglia, S.; Noël, V.; Vourc’h, G.; Bonnet, S.; McCoy, K.D. Reliability of Molecular Host-Identification Methods for Ticks: An Experimental in Vitro Study with Ixodes ricinus. Parasit. Vectors 2015, 8, 433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwużnik, D.; Mierzejewska, E.J.; Drabik, P.; Kloch, A.; Alsarraf, M.; Behnke, J.M.; Bajer, A. The role of juvenile Dermacentor reticulatus ticks as vectors of microorganisms and the problem of ‘meal contamination’. Exp. Appl. Acarol. 2019, 78, 181–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnet, S.I.; Liu, X.Y. Laboratory Artificial Infection of Hard Ticks: A Tool for the Analysis of Tick-Borne Pathogen Transmission. Acarologia 2012, 52, 453–464. [Google Scholar] [CrossRef] [Green Version]
- Bonnet, S.I.; Nadal, C. Experimental Infection of Ticks: An Essential Tool for the Analysis of Babesia Species Biology and Transmission. Pathogens 2021, 10, 1403. [Google Scholar] [CrossRef]
- Fernández-Ruiz, N.; Estrada-Peña, A. Towards New Horizons: Climate Trends in Europe Increase the Environmental Suitability for Permanent Populations of Hyalomma marginatum (Ixodidae). Pathogens 2021, 10, 95. [Google Scholar] [CrossRef]
- Bah, M.T.; Grosbois, V.; Stachurski, F.; Muñoz, F.; Duhayon, M.; Rakotoarivony, I.; Appelgren, A.; Calloix, C.; Noguera, L.; Mouillaud, T.; et al. The Crimean-Congo Haemorrhagic Fever Tick Vector Hyalomma marginatum in the South of France: Modelling Its Distribution and Determination of Factors Influencing Its Establishment in a Newly Invaded Area. Transbound. Emerg. Dis. 2022, 69, e2351–e2365. [Google Scholar] [CrossRef] [PubMed]
- Bakheit, M.A.; Latif, A.A.; Vatansever, Z.; Seitzer, U.; Ahmed, J. The Huge Risks Due to Hyalomma Ticks. In Arthropods as Vectors of Emerging Diseases; Mehlhorn, H., Ed.; Parasitology Research Monographs; Springer: Berlin/Heidelberg, Germany, 2012; pp. 167–194. ISBN 978-3-642-28842-5. [Google Scholar]
- Bonnet, S.I.; Vourc’h, G.; Raffetin, A.; Falchi, A.; Figoni, J.; Fite, J.; Hoch, T.; Moutailler, S.; Quillery, E. The Control of Hyalomma Ticks, Vectors of the Crimean-Congo Hemorrhagic Fever Virus: Where Are We Now and Where Are We Going? PLoS Negl. Trop. Dis. 2022, 16, e0010846. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Manjunathachar, H.V.; Ghosh, S. A Review on Hyalomma Species Infestations on Human and Animals and Progress on Management Strategies. Heliyon 2020, 6, e05675. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; De La Fuente, J.; Latapia, T.; Ortega, C. The Impact of Climate Trends on a Tick Affecting Public Health: A Retrospective Modeling Approach for Hyalomma marginatum (Ixodidae). PLoS ONE 2015, 10, e0125760. [Google Scholar] [CrossRef]
- Guglielmone, A.A.; Robbins, R.G.; Apanaskevich, D.A.; Petney, T.N.; Estrada-Peña, A.; Horak, I.G.; Shao, R.; Barker, S.C. The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the World: A List of Valid Species Names. Zootaxa 2010, 2528, 1. [Google Scholar] [CrossRef] [Green Version]
- Kar, S.; Rodriguez, S.E.; Akyildiz, G.; Cajimat, M.N.B.; Bircan, R.; Mears, M.C.; Bente, D.A.; Keles, A.G. Crimean-Congo Hemorrhagic Fever Virus in Tortoises and Hyalomma Aegyptium Ticks in East Thrace, Turkey: Potential of a Cryptic Transmission Cycle. Parasit. Vectors 2020, 13, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paștiu, A.I.; Matei, I.A.; Mihalca, A.D.; D’Amico, G.; Dumitrache, M.O.; Kalmár, Z.; Sándor, A.D.; Lefkaditis, M.; Gherman, C.M.; Cozma, V. Zoonotic Pathogens Associated with Hyalomma Aegyptium in Endangered Tortoises: Evidence for Host-Switching Behaviour in Ticks? Parasit. Vectors 2012, 5, 301. [Google Scholar] [CrossRef] [Green Version]
- Siroký, P.; Kubelová, M.; Modrý, D.; Erhart, J.; Literák, I.; Spitalská, E.; Kocianová, E. Tortoise Tick Hyalomma Aegyptium as Long Term Carrier of Q Fever Agent Coxiella Burnetii—Evidence from Experimental Infection. Parasitol. Res. 2010, 107, 1515–1520. [Google Scholar] [CrossRef]
- Brinkmann, A.; Hekimoğlu, O.; Dinçer, E.; Hagedorn, P.; Nitsche, A.; Ergünay, K. A Cross-Sectional Screening by next-Generation Sequencing Reveals Rickettsia, Coxiella, Francisella, Borrelia, Babesia, Theileria and Hemolivia Species in Ticks from Anatolia. Parasit. Vectors 2019, 12, 26. [Google Scholar] [CrossRef] [Green Version]
- Kalmár, Z.; Cozma, V.; Sprong, H.; Jahfari, S.; D’Amico, G.; Mărcuțan, D.I.; Ionică, A.M.; Magdaş, C.; Modrý, D.; Mihalca, A.D. Transstadial Transmission of Borrelia Turcica in Hyalomma Aegyptium Ticks. PLoS ONE 2015, 10, e0115520. [Google Scholar] [CrossRef]
- Takano, A.; Goka, K.; Une, Y.; Shimada, Y.; Fujita, H.; Shiino, T.; Watanabe, H.; Kawabata, H. Isolation and Characterization of a Novel Borrelia Group of Tick-Borne Borreliae from Imported Reptiles and Their Associated Ticks. Environ. Microbiol. 2010, 12, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Hepner, S.; Fingerle, V.; Duscher, G.G.; Felsberger, G.; Marosevic, D.; Rollins, R.E.; Okeyo, M.; Sing, A.; Margos, G. Population Structure of Borrelia Turcica from Greece and Turkey. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2020, 77, 104050. [Google Scholar] [CrossRef] [PubMed]
- Keskin, A.; Bursali, A.; Snow, D.E.; Dowd, S.E.; Tekin, S. Assessment of Bacterial Diversity in Hyalomma Aegyptium, H. Marginatum and H. Excavatum Ticks through Tag-Encoded Pyrosequencing. Exp. Appl. Acarol. 2017, 73, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Norte, A.C.; Harris, D.J.; Silveira, D.; Nunes, C.S.; Núncio, M.S.; Martínez, E.G.; Giménez, A.; de Sousa, R.; Lopes de Carvalho, I.; Perera, A. Diversity of Microorganisms in Hyalomma Aegyptium Collected from Spur-Thighed Tortoise (Testudo Graeca) in North Africa and Anatolia. Transbound. Emerg. Dis. 2022, 69, 1951–1962. [Google Scholar] [CrossRef]
- Akveran, G.A.; Karasartova, D.; Keskin, A.; Comba, A.; Celebi, B.; Mumcuoglu, K.Y.; Taylan-Ozkan, A. Bacterial and Protozoan Agents Found in Hyalomma Aegyptium (L., 1758) (Ixodida: Ixodidae) Collected from Testudo Graeca L., 1758 (Reptilia: Testudines) in Corum Province of Turkey. Ticks Tick-Borne Dis. 2020, 11, 101458. [Google Scholar] [CrossRef] [PubMed]
- Barradas, P.F.; Lima, C.; Cardoso, L.; Amorim, I.; Gärtner, F.; Mesquita, J.R. Molecular Evidence of Hemolivia Mauritanica, Ehrlichia spp. and the Endosymbiont Candidatus Midichloria Mitochondrii in Hyalomma Aegyptium Infesting Testudo Graeca Tortoises from Doha, Qatar. Animals 2020, 11, 30. [Google Scholar] [CrossRef]
- Gargili, A.; Palomar, A.M.; Midilli, K.; Portillo, A.; Kar, S.; Oteo, J.A. Rickettsia Species in Ticks Removed from Humans in Istanbul, Turkey. Vector Borne Zoonotic Dis. 2012, 12, 938–941. [Google Scholar] [CrossRef] [Green Version]
- Bitam, I.; Kernif, T.; Harrat, Z.; Parola, P.; Raoult, D. First Detection of Rickettsia Aeschlimannii in Hyalomma Aegyptium from Algeria. Clin. Microbiol. Infect. 2009, 15, 253–254. [Google Scholar] [CrossRef] [Green Version]
- Orkun, Ö. Molecular Investigation of the Natural Transovarial Transmission of Tick-Borne Pathogens in Turkey. Vet. Parasitol. 2019, 273, 97–104. [Google Scholar] [CrossRef]
- Orkun, Ö.; Emir, H. Identification of Tick-Borne Pathogens in Ticks Collected from Wild Animals in Turkey. Parasitol. Res. 2020, 119, 3083–3091. [Google Scholar] [CrossRef]
- Ergünay, K.; Dinçer, E.; Kar, S.; Emanet, N.; Yalçınkaya, D.; Polat Dinçer, P.F.; Brinkmann, A.; Hacıoğlu, S.; Nitsche, A.; Özkul, A.; et al. Multiple Orthonairoviruses Including Crimean-Congo Hemorrhagic Fever Virus, Tamdy Virus and the Novel Meram Virus in Anatolia. Ticks Tick-Borne Dis. 2020, 11, 101448. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Galon, E.M.; Guo, Q.; Rizk, M.A.; Moumouni, P.F.A.; Liu, M.; Li, J.; Ji, S.; Chahan, B.; Xuan, X. Molecular Detection and Identification of Babesia spp., Theileria spp., and Anaplasma spp. in Sheep From Border Regions, Northwestern China. Front. Vet. Sci. 2020, 7, 630. [Google Scholar] [CrossRef] [PubMed]
- Moltmann, U.G.; Mehlhorn, H.; Schein, E.; Voigt, W.P.; Friedhoff, K.T. Ultrastructural Study on the Development of Babesia equi (Coccidia: Piroplasmia) in the Salivary Glands of Its Vector Ticks. J. Protozool. 1983, 30, 218–225. [Google Scholar] [CrossRef]
- Springer, A.; Shuaib, Y.A.; Isaa, M.H.; Ezz-Eldin, M.I.-E.; Osman, A.Y.; Yagoub, I.A.; Abdalla, M.A.; Bakiet, A.O.; Mohmed-Noor, S.E.-T.; Schaper, S.; et al. Tick Fauna and Associated Rickettsia, Theileria, and Babesia spp. in Domestic Animals in Sudan (North Kordofan and Kassala States). Microorganisms 2020, 8, E1969. [Google Scholar] [CrossRef]
- Kumar, S.; Malhotra, D.V.; Sangwan, A.K.; Goel, P.; Kumar, A.; Kumar, S. Infectivity Rate and Transmission Potential of Hyalomma anatolicum anatolicum Ticks for Babesia equi Infection. Vet. Parasitol. 2007, 144, 338–343. [Google Scholar] [CrossRef]
- Bhagwan, J.; Kumar, A.; Kumar, R.; Goyal, L.; Goel, P.; Kumar, S. Molecular Evidence of Theileria equi Infection in Hyalomma anatolicum Ticks Infested on Sero-Positive Indian Horses. Acta Parasitol. 2015, 60, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Ghafar, A.; Cabezas-Cruz, A.; Galon, C.; Obregon, D.; Gasser, R.B.; Moutailler, S.; Jabbar, A. Bovine Ticks Harbour a Diverse Array of Microorganisms in Pakistan. Parasit. Vectors 2020, 13, 1. [Google Scholar] [CrossRef] [Green Version]
- Zeb, J.; Szekeres, S.; Takács, N.; Kontschán, J.; Shams, S.; Ayaz, S.; Hornok, S. Genetic Diversity, Piroplasms and Trypanosomes in Rhipicephalus microplus and Hyalomma anatolicum Collected from Cattle in Northern Pakistan. Exp. Appl. Acarol. 2019, 79, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Bekloo, A.J.; Bakhshi, H.; Soufizadeh, A.; Sedaghat, M.M.; Bekloo, R.J.; Ramzgouyan, M.R.; Chegeni, A.H.; Faghihi, F.; Telmadarraiy, Z. Ticks Circulate Anaplasma, Ehrlichia, Babesia and Theileria Parasites in North of Iran. Vet. Parasitol. 2017, 248, 21–24. [Google Scholar] [CrossRef]
- Mossaad, E.; Gaithuma, A.; Mohamed, Y.O.; Suganuma, K.; Umemiya-Shirafuji, R.; Ohari, Y.; Salim, B.; Liu, M.; Xuan, X. Molecular Characterization of Ticks and Tick-Borne Pathogens in Cattle from Khartoum State and East Darfur State, Sudan. Pathogens 2021, 10, 580. [Google Scholar] [CrossRef]
- Afshari, A.; Habibi, G.; Abdigoudarzi, M.; Yazdani, F. Establishment and Validation of Theileria Annulata Sporozoite Ak-93 Infection in Laboratory-Reared Hyalomma anatolicum Tick Using In Vivo and In Vitro Assays. J. Arthropod-Borne Dis. 2020, 14, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Aktas, M.; Dumanli, N.; Angin, M. Cattle Infestation by Hyalomma Ticks and Prevalence of Theileria in Hyalomma Species in the East of Turkey. Vet. Parasitol. 2004, 119, 1–8. [Google Scholar] [CrossRef]
- Al-Fahdi, A.; Alqamashoui, B.; Al-Hamidhi, S.; Kose, O.; Tageldin, M.H.; Bobade, P.; Johnson, E.H.; Hussain, A.-R.; Karagenc, T.; Tait, A.; et al. Molecular Surveillance of Theileria Parasites of Livestock in Oman. Ticks Tick-Borne Dis. 2017, 8, 741–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amiri, M.; Yaghfoori, S.; Razmi, G. Molecular Detection of Theileria annulata among Dairy Cattle and Vector Ticks in the Herat Area, Afghanistan. Arch. Razi Inst. 2021, 76, 79–85. [Google Scholar] [CrossRef]
- Dehuri, M.; Panda, M.; Sahoo, N.; Mohanty, B.; Behera, B. Nested PCR Assay for Detection of Theileria annulata in Hyalomma anatolicum Infesting Cattle from Coastal Odisha, India. Anim. Biotechnol. 2022, 33, 1229–1234. [Google Scholar] [CrossRef]
- Kartashov, M.Y.; Kononova, Y.V.; Petrova, I.D.; Tupota, N.L.; Mikryukova, T.P.; Ternovoi, V.A.; Tishkova, F.H.; Loktev, V.B. Detection of Ehrlichia spp. and Theileria spp. in Hyalomma anatolicum Ticks Collected in Tajikistan. Vavilovskii Zhurnal Genet. Sel. 2020, 24, 55–59. [Google Scholar] [CrossRef]
- Omer, S.A.; Alsuwaid, D.F.; Mohammed, O.B. Molecular Characterization of Ticks and Tick-Borne Piroplasms from Cattle and Camel in Hofuf, Eastern Saudi Arabia. Saudi J. Biol. Sci. 2021, 28, 2023–2028. [Google Scholar] [CrossRef]
- Rahmani-Varmale, M.; Tavassoli, M.; Esmaeilnejad, B. Molecular Detection and Differentiation of Theileria lestoquardi, T. ovis and T. annulata in Blood of Goats and Ticks in Kermanshah Province, Iran. J. Arthropod-Borne Dis. 2019, 13, 297–309. [Google Scholar] [CrossRef]
- Robinson, P.M. Theileriosis annulata and Its Transmission—A Review. Trop. Anim. Health Prod. 1982, 14, 3–12. [Google Scholar] [CrossRef]
- Sayin, F.; Dinçer, S.; Karaer, Z.; Cakmak, A.; Inci, A.; Yukari, B.A.; Eren, H.; Vatansever, Z.; Nalbantoglu, S. Studies on the Epidemiology of Tropical Theileriosis (Theileria annulata Infection) in Cattle in Central Anatolia, Turkey. Trop. Anim. Health Prod. 2003, 35, 521–539. [Google Scholar] [CrossRef]
- Yaghfoori, S.; Mohri, M.; Razmi, G. Experimental Theileria lestoquardi Infection in Sheep: Biochemical and Hematological Changes. Acta Trop. 2017, 173, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Tajeri, S.; Razmi, G.; Haghparast, A. Establishment of an Artificial Tick Feeding System to Study Theileria lestoquardi Infection. PLoS ONE 2016, 11, e0169053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taha, K.M.; Elhussein, A.M. Experimental Transmission of Theileria lestoquardi by Developmental Stages of Hyalomma anatolicum Ticks. Parasitol. Res. 2010, 107, 1009–1012. [Google Scholar] [CrossRef]
- Abdigoudarzi, M. Detection of Naturally Infected Vector Ticks (Acari: Ixodidae) by Different Species of Babesia and Theileria Agents from Three Different Enzootic Parts of Iran. J. Arthropod-Borne Dis. 2013, 7, 164–172. [Google Scholar]
- Taha, K.M.; Salih, D.A.; Ahmed, B.M.; Enan, K.A.; Ali, A.M.; ElHussein, A.M. First Confirmed Report of Outbreak of Malignant Ovine Theileriosis among Goats in Sudan. Parasitol. Res. 2011, 109, 1525–1527. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guan, G.; Liu, A.; Peng, Y.; Luo, J.; Yin, H. Experimental Transmission of Theileria ovis by Hyalomma anatolicum anatolicum. Parasitol. Res. 2010, 106, 991–994. [Google Scholar] [CrossRef]
- Li, Y.; Guan, G.; Ma, M.; Liu, J.; Ren, Q.; Luo, J.; Yin, H. Theileria ovis Discovered in China. Exp. Parasitol. 2011, 127, 304–307. [Google Scholar] [CrossRef]
- Williams, R.J.; Al-Busaidy, S.; Mehta, F.R.; Maupin, G.O.; Wagoner, K.D.; Al-Awaidy, S.; Suleiman, A.J.; Khan, A.S.; Peters, C.J.; Ksiazek, T.G. Crimean-Congo Haemorrhagic Fever: A Seroepidemiological and Tick Survey in the Sultanate of Oman. Trop. Med. Int. Health 2000, 5, 99–106. [Google Scholar] [CrossRef]
- Bell-Sakyi, L.; Kohl, A.; Bente, D.A.; Fazakerley, J.K. Tick Cell Lines for Study of Crimean-Congo Hemorrhagic Fever Virus and Other Arboviruses. Vector Borne Zoonotic Dis. 2012, 12, 769–781. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.S.; Maupin, G.O.; Rollin, P.E.; Noor, A.M.; Shurie, H.H.; Shalabi, A.G.; Wasef, S.; Haddad, Y.M.; Sadek, R.; Ijaz, K.; et al. An Outbreak of Crimean-Congo Hemorrhagic Fever in the United Arab Emirates, 1994–1995. Am. J. Trop. Med. Hyg. 1997, 57, 519–525. [Google Scholar] [CrossRef]
- Petrova, I.D.; Kononova, I.V.; Chausov, E.V.; Shestopalov, A.M.; Tishkova, F.K. Genetic variants of the Crimean-Congo hemorrhagic fever virus circulating in endemic areas of the southern Tajikistan in 2009. Mol. Genet. Mikrobiol. Virusol. 2013, 28, 29–36. [Google Scholar] [CrossRef]
- Mourya, D.T.; Yadav, P.D.; Shete, A.M.; Gurav, Y.K.; Raut, C.G.; Jadi, R.S.; Pawar, S.D.; Nichol, S.T.; Mishra, A.C. Detection, Isolation and Confirmation of Crimean-Congo Hemorrhagic Fever Virus in Human, Ticks and Animals in Ahmadabad, India, 2010–2011. PLoS Negl. Trop. Dis. 2012, 6, e1653. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.F.; Yaqub, T.; Ali, M.; Ul-Rahman, A.; Bente, D.A. Prevalence and Phylogenetic Analysis of Crimean-Congo Hemorrhagic Fever Virus in Ticks Collected from Punjab Province of Pakistan. Acta Trop. 2021, 218, 105892. [Google Scholar] [CrossRef] [PubMed]
- Kayedi, M.H.; Chinikar, S.; Mostafavi, E.; Khakifirouz, S.; Jalali, T.; Hosseini-Chegeni, A.; Naghizadeh, A.; Niedrig, M.; Fooks, A.R.; Shahhosseini, N. Crimean-Congo Hemorrhagic Fever Virus Clade IV (Asia 1) in Ticks of Western Iran. J. Med. Entomol. 2015, 52, 1144–1149. [Google Scholar] [CrossRef]
- Al-Khalifa, M.S.; Diab, F.M.; Khalil, G.M. Man-Threatening Viruses Isolated from Ticks in Saudi Arabia. Saudi Med. J. 2007, 28, 1864–1867. [Google Scholar]
- Dilcher, M.; Faye, O.; Faye, O.; Weber, F.; Koch, A.; Sadegh, C.; Weidmann, M.; Sall, A.A. Zahedan Rhabdovirus, a Novel Virus Detected in Ticks from Iran. Virol. J. 2015, 12, 183. [Google Scholar] [CrossRef] [Green Version]
- Chunikhin, S.P.; Stefuktina, L.F.; Korolev, M.B.; Reshetnikov, I.A.; Khozinskaia, G.A. Sexual transmission of the tick-borne encephalitis virus in ixodid ticks (Ixodidae). Parazitologiia 1983, 17, 214–217. [Google Scholar]
- Aristova, V.A.; Gushchina, E.A.; Gromashevskiĭ, V.L.; Gushchin, B.V. Experimental infection of ixodid ticks with Karshi virus. Parazitologiia 1986, 20, 347–350. [Google Scholar]
- Yadav, P.D.; Whitmer, S.L.M.; Sarkale, P.; Fei Fan Ng, T.; Goldsmith, C.S.; Nyayanit, D.A.; Esona, M.D.; Shrivastava-Ranjan, P.; Lakra, R.; Pardeshi, P.; et al. Characterization of Novel Reoviruses Wad Medani Virus (Orbivirus) and Kundal Virus (Coltivirus) Collected from Hyalomma anatolicum Ticks in India during Surveillance for Crimean Congo Hemorrhagic Fever. J. Virol. 2019, 93, e00106-19. [Google Scholar] [CrossRef] [Green Version]
- Kostiukov, M.A.; Daniiarov, O.; Skvortsova, T.M.; Kondrashina, N.G.; Berezina, L.K. Isolation of the Sindbis virus from Hyalomma anatolicum CL Kock 1844 ticks in Tadzhikistan. Med. Parazitol. 1981, 50, 34–35. [Google Scholar]
- Fard, N.S.R.; Khalili, M. PCR-Detection of Coxiella burnetii in Ticks Collected from Sheep and Goats in Southeast Iran. Iran. J. Arthropod-Borne Dis. 2011, 5, 1–6. [Google Scholar]
- Fard, N.S.R.; Omid Ghashghaei, O.; Khalili, M.; Sharifi, H. Tick Diversity and Detection of Coxiella burnetii in Tick of Small Ruminants Using Nested Trans PCR in Southeast Iran. Trop. Biomed. 2016, 33, 506–511. [Google Scholar]
- Ni, J.; Lin, H.; Xu, X.; Ren, Q.; Aizezi, M.; Luo, J.; Luo, Y.; Ma, Z.; Chen, Z.; Tan, Y.; et al. Coxiella burnetii Is Widespread in Ticks (Ixodidae) in the Xinjiang Areas of China. BMC Vet. Res. 2020, 16, 317. [Google Scholar] [CrossRef] [PubMed]
- Choubdar, N.; Karimian, F.; Koosha, M.; Nejati, J.; Oshaghi, M.A. Hyalomma spp. Ticks and Associated Anaplasma spp. and Ehrlichia spp. on the Iran-Pakistan Border. Parasit. Vectors 2021, 14, 469. [Google Scholar] [CrossRef] [PubMed]
- Yamchi, J.A.; Tavassoli, M. Survey on Infection Rate, Vectors and Molecular Identification of Theileria annulata in Cattle from North West, Iran. J. Parasit. Dis. 2016, 40, 1071–1076. [Google Scholar] [CrossRef] [Green Version]
- Meng, K.; Li, Z.; Wang, Y.; Jing, Z.; Zhao, X.; Liu, J.; Cai, D.; Zhang, L.; Yang, D.; Wang, S. PCR-Based Detection of Theileria annulata in Hyalomma asiaticum Ticks in Northwestern China. Ticks Tick-Borne Dis. 2014, 5, 105–106. [Google Scholar] [CrossRef]
- Razmi, G.R.; Hosseini, M.; Aslani, M.R. Identification of Tick Vectors of Ovine Theileriosis in an Endemic Region of Iran. Vet. Parasitol. 2003, 116, 1–6. [Google Scholar] [CrossRef]
- Sun, M.; Wang, J.; Liu, Z.; Guan, G.; Li, Y.; Liu, J.; Xu, J.; Yin, H.; Luo, J. First Molecular Evidence of Babesia occultans and Theileria separata Infection in Ticks and Sheep in China. Exp. Appl. Acarol. 2019, 78, 223–229. [Google Scholar] [CrossRef]
- Narankhajid, M.; Yeruult, C.; Gurbadam, A.; Battsetseg, J.; Aberle, S.W.; Bayartogtokh, B.; Joachim, A.; Duscher, G.G. Some Aspects on Tick Species in Mongolia and Their Potential Role in the Transmission of Equine Piroplasms, Anaplasma phagocytophilum and Borrelia burgdorferi L. Parasitol. Res. 2018, 117, 3557–3566. [Google Scholar] [CrossRef] [Green Version]
- Song, R.; Wang, Q.; Guo, F.; Liu, X.; Song, S.; Chen, C.; Tu, C.; Wureli, H.; Wang, Y. Detection of Babesia spp., Theileria spp. and Anaplasma ovis in Border Regions, Northwestern China. Transbound. Emerg. Dis. 2018, 65, 1537–1544. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Shen, S.; Zhang, Y.; Shi, J.; Su, Z.; Liu, D.; Liu, J.; Yang, J.; Wang, Q.; Hu, Z.; et al. A New Strain of Crimean-Congo Hemorrhagic Fever Virus Isolated from Xinjiang, China. Virol. Sin. 2017, 32, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Moming, A.; Yue, X.; Shen, S.; Chang, C.; Wang, C.; Luo, T.; Zhang, Y.; Guo, R.; Hu, Z.; Zhang, Y.; et al. Prevalence and Phylogenetic Analysis of Crimean-Congo Hemorrhagic Fever Virus in Ticks from Different Ecosystems in Xinjiang, China. Virol. Sin. 2018, 33, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Dai, X.; Aishan, M.; Wang, X.; Meng, W.; Feng, C.; Zhang, F.; Hang, C.; Hu, Z.; Zhang, Y. Epidemiology and Phylogenetic Analysis of Crimean-Congo Hemorrhagic Fever Viruses in Xinjiang, China. J. Clin. Microbiol. 2009, 47, 2536–2543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Shen, S.; Fang, Y.; Liu, J.; Su, Z.; Liang, J.; Zhang, Z.; Wu, Q.; Wang, C.; Abudurexiti, A.; et al. Isolation, Characterization, and Phylogenetic Analysis of Two New Crimean-Congo Hemorrhagic Fever Virus Strains from the Northern Region of Xinjiang Province, China. Virol. Sin. 2018, 33, 74–86. [Google Scholar] [CrossRef]
- L’vov, D.K.; Al’khovskiĭ, S.V.; Shchelkanov, M.I.; Shchetinin, A.M.; Deriabin, P.G.; Gitel’man, A.K.; Aristova, V.A.; Botikov, A.G. Taxonomic status of the Burana virus (BURV) (Bunyaviridae, Nairovirus, Tamdy group) isolated from the ticks Haemaphysalis punctata Canestrini et Fanzago, 1877 and Haem. concinna Koch, 1844 (Ixodidae, Haemaphysalinae) in Kyrgyzstan. Vopr. Virusol. 2014, 59, 10–15. [Google Scholar] [PubMed]
- Karimov, S.K.; L’vov, D.K.; Rogovaia, S.G.; Kiriushchenko, T.V.; Ukbaeva, T.D. Isolation of the Karshi virus from Hyalomma asiaticum ticks in Alma-Ata Province, Kazakh SSR. Med. Parazitol. 1978, 47, 50–51. [Google Scholar]
- Khutoretskaya, N.V.; Aristova, V.A.; Rogovaya, S.G.; Lvov, D.K.; Karimov, S.K.; Skvortsova, T.M.; Kondrashina, N.G. Experimental Study of the Reproduction of Karshi Virus (Togaviridae, Flavivirus) in Some Species of Mosquitoes and Ticks. Acta Virol. 1985, 29, 231–236. [Google Scholar]
- L’vov, D.K.; Sidorova, G.A.; Gromashevsky, V.L.; Kurbanov, M.; Skvoztsova, L.M.; Gofman, Y.P.; Berezina, L.K.; Klimenko, S.M.; Zakharyan, V.A.; Aristova, V.A.; et al. Virus “Tamdy”—A New Arbovirus, Isolated in the Uzbee S.S.R. and Turkmen S.S.R. from Ticks Hyalomma asiaticum asiaticum Schulee et Schlottke, 1929, and Hyalomma plumbeum plumbeum Panzer, 1796. Arch. Virol. 1976, 51, 15–21. [Google Scholar] [CrossRef]
- L’vov, D.K.; Sidorova, G.A.; Gromashevskiĭ, V.L.; Skvortsova, T.M.; Aristova, V.A. Isolation of Tamdy virus (Bunyaviridae) pathogenic for man from natural sources in Central Asia, Kazakhstan and Transcaucasia. Vopr. Virusol. 1984, 29, 487–490. [Google Scholar]
- Zhou, H.; Ma, Z.; Hu, T.; Bi, Y.; Mamuti, A.; Yu, R.; Carr, M.J.; Shi, M.; Li, J.; Sharshov, K.; et al. Tamdy Virus in Ixodid Ticks Infesting Bactrian Camels, Xinjiang, China, 2018. Emerg. Infect. Dis. 2019, 25, 2136–2138. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, X.; Wang, Z.; Dong, Z.; Xie, S.; Jiang, M.; Song, R.; Ma, J.; Chen, S.; Chen, K.; et al. A Tentative Tamdy Orthonairovirus Related to Febrile Illness in Northwestern China. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020, 70, 2155–2160. [Google Scholar] [CrossRef] [PubMed]
- Daiter, A.B. Transovarial and transpermal transmission of Coxiella burneti by the tick Hyalomma asiaticum and its role in the ecology of Q rickettsiosis. Parazitologiia 1977, 11, 403–411. [Google Scholar] [PubMed]
- Daiter, A.B. An experimental infection of Hyalomma asiaticum and Ornithodoros papillipes ticks with a single and combined infection with Coxiella burnetii and Dermacentroxenus sibericus. Parazitologiia 1979, 13, 8–18. [Google Scholar] [PubMed]
- Batu, N.; Wang, Y.; Liu, Z.; Huang, T.; Bao, W.; He, H.; Geri, L. Molecular Epidemiology of Rickettsia sp. and Coxiella burnetii Collected from Hyalomma asiaticum in Bactrian Camels (Camelus Bactrianus) in Inner Mongolia of China. Ticks Tick-Borne Dis. 2020, 11, 101548. [Google Scholar] [CrossRef] [PubMed]
- Parola, P.; Inokuma, H.; Camicas, J.L.; Brouqui, P.; Raoult, D. Detection and Identification of Spotted Fever Group Rickettsiae and Ehrlichiae in African Ticks. Emerg. Infect. Dis. 2001, 7, 1014–1017. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Liu, X.; Wang, X.; Dong, H.; Ma, C.; Wang, J.; Liu, B.; Mao, Y.; Wang, Y.; Li, T.; et al. Structural and Functional Diversity of Nairovirus-Encoded Nucleoproteins. J. Virol. 2015, 89, 11740–11749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, K.F.; Pauls, K.P. Segregation of Random Amplified Polymorphic DNA Markers and Strategies for Molecular Mapping in Tetraploid Alfalfa. Genome 1993, 36, 844–851. [Google Scholar] [CrossRef]
- Zapf, E.; Schein, E. New Findings in the Development Of Babesia (Theileria) equi (Laveran, 1901) in the Salivary Glands of the Vector Ticks, Hyalomma Species. Parasitol. Res. 1994, 80, 543–548. [Google Scholar] [CrossRef]
- Zapf, F.; Schein, E. The Development of Babesia (Theileria) equi (Laveran, 1901) in the Gut and the Haemolymph of the Vector Ticks, Hyalomma Species. Parasitol. Res. 1994, 80, 297–302. [Google Scholar] [CrossRef]
- Onyiche, T.E.; Răileanu, C.; Tauchmann, O.; Fischer, S.; Vasić, A.; Schäfer, M.; Biu, A.A.; Ogo, N.I.; Thekisoe, O.; Silaghi, C. Prevalence and Molecular Characterization of Ticks and Tick-Borne Pathogens of One-Humped Camels (Camelus dromedarius) in Nigeria. Parasit. Vectors 2020, 13, 428. [Google Scholar] [CrossRef]
- Scoles, G.A.; Ueti, M.W. Vector Ecology of Equine Piroplasmosis. Annu. Rev. Entomol. 2015, 60, 561–580. [Google Scholar] [CrossRef] [PubMed]
- Hamed, M.I.; Zaitoun, A.M.A.; El-Allawy, T.A.A.; Mourad, M.I. Investigation of Theileria camelensis in Camels Infested by Hyalomma Dromedarii Ticks in Upper Egypt. J. Adv. Vet. Res. 2011, 1, 4–7. [Google Scholar]
- Kumar, S.; Sudan, V.; Shanker, D.; Devi, A. Babesia (Theileria) equi Genotype A among Indian Equine Population. Vet. Parasitol. Reg. Stud. Rep. 2020, 19, 100367. [Google Scholar] [CrossRef] [PubMed]
- Hoogstraal, H.; Wassef, H.Y.; Buttiker, W. Ticks (Acarina) of Saudi Arabia Fam Argasidae Ixodidae. Fauna Saudi Arab. 1981, 3, 25–110. [Google Scholar]
- Mazlum, Z. Transmission of Theileria annulata by the Crushed Infected Unfed Hyalomma dromedarii. Parasitology 1969, 59, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Gharbi, M.; Darghouth, M.A.; Elati, K.; AL-Hosary, A.A.T.; Ayadi, O.; Salih, D.A.; El Hussein, A.M.; Mhadhbi, M.; Khamassi Khbou, M.; Hassan, S.M.; et al. Current Status of Tropical Theileriosis in Northern Africa: A Review of Recent Epidemiological Investigations and Implications for Control. Transbound. Emerg. Dis. 2020, 67, 8–25. [Google Scholar] [CrossRef] [PubMed]
- Mamman, A.H.; Lorusso, V.; Adam, B.M.; Dogo, G.A.; Bown, K.J.; Birtles, R.J. Correction to: First Report of Theileria annulata in Nigeria: Findings from Cattle Ticks in Zamfara and Sokoto States. Parasit. Vectors 2021, 14, 353. [Google Scholar] [CrossRef]
- d’Oliveira, C.; van der Weide, M.; Jacquiet, P.; Jongejan, F. Detection of Theileria annulata by the PCR in Ticks (Acari: Ixodidae) Collected from Cattle in Mauritania. Exp. Appl. Acarol. 1997, 21, 279–291. [Google Scholar] [CrossRef]
- Youssef, S.Y.; Yasien, S.; Mousa, W.M.A.; Nasr, S.M.; El-Kelesh, E.A.M.; Mahran, K.M.; Abd-El-Rahman, A.H. Vector Identification and Clinical, Hematological, Biochemical, and Parasitological Characteristics of Camel (Camelus dromedarius) Theileriosis in Egypt. Trop. Anim. Health Prod. 2015, 47, 649–656. [Google Scholar] [CrossRef]
- de Kok, J.B.; d’Oliveira, C.; Jongejan, F. Detection of the Protozoan Parasite Theileria annulata in Hyalomma Ticks by the Polymerase Chain Reaction. Exp. Appl. Acarol. 1993, 17, 839–846. [Google Scholar] [CrossRef]
- Mustafa, U.E.H.; Jongejan, F.; Morzaria, S.P. Note on the Transmission of Theileria annulata by Hyalomma Ticks in the Sudan. Vet. Q. 1983, 5, 112–113. [Google Scholar] [CrossRef] [PubMed]
- Logan, T.M.; Linthicum, K.J.; Bailey, C.L.; Watts, D.M.; Dohm, D.J.; Moulton, J.R. Replication of Crimean-Congo Hemorrhagic Fever Virus in Four Species of Ixodid Ticks (Acari) Infected Experimentally. J. Med. Entomol. 1990, 27, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, S.E.; Mamaev, V.I.; Nepesova, N.M.; Filipenko, P.I.; Kalieva, V.I. Study of the circulation of Crimean hemorrhagic fever virus in Turkmenistan. J. Microbiol. Epidemiol. Immunobiol. 1978, 1, 92–97. [Google Scholar]
- Begum, F.; Wisseman, C.L.; Casals, J. Tick-Borne Viruses of West Pakistan. II. Hazara Virus, a New Agent Isolated from Ixodes redikorzevi Ticks from the Kaghan Valley, W. Pakistan. Am. J. Epidemiol. 1970, 92, 192–194. [Google Scholar] [CrossRef]
- Anderson, C.R.; Casals, J. Dhori Virus, a New Agent Isolated from Hyalomma dromedarii in India. Indian J. Med. Res. 1973, 61, 1416–1420. [Google Scholar]
- Wood, O.L.; Moussa, M.I.; Hoogstraal, H.; Büttiker, W. Kadam Virus (Togaviridae, Flavivirus) Infecting Camel-Parasitizing Hyalomma dromedarii Ticks (Acari: Ixodidae) in Saudi Arabia12. J. Med. Entomol. 1982, 19, 207–208. [Google Scholar] [CrossRef]
- Awad, F.I.; Amin, M.M.; Salama, S.A.; Khide, S. The Role Played by Hyalomma dromedarii in the Transmission of African Horse Sickness Virus in Egypt. Bull. Anim. Health Prod. Afr. Bull. Sante Prod. Anim. En Afr. 1981, 29, 337–340. [Google Scholar]
- Converse, J.D.; Moussa, M.I. Quaranfil Virus from Hyalomma dromedarii (Acari: Ixodoidea) Collected in Kuwait, Iraq and Yemen1. J. Med. Entomol. 1982, 19, 209–210. [Google Scholar] [CrossRef]
- Rehácek, J.; Brezina, R. Detection of Coxiella Burneti in Saliva of Experimentally Infected Ticks, Hyalomma dromedarii Koch. Bull. World Health Organ. 1968, 39, 974–977. [Google Scholar]
- Loftis, A.D.; Reeves, W.K.; Szumlas, D.E.; Abbassy, M.M.; Helmy, I.M.; Moriarity, J.R.; Dasch, G.A. Rickettsial Agents in Egyptian Ticks Collected from Domestic Animals. Exp. Appl. Acarol. 2006, 40, 67. [Google Scholar] [CrossRef]
- Abdullah, H.H.A.M.; El-Shanawany, E.E.; Abdel-Shafy, S.; Abou-Zeina, H.A.A.; Abdel-Rahman, E.H. Molecular and Immunological Characterization of Hyalomma dromedarii and Hyalomma excavatum (Acari: Ixodidae) Vectors of Q Fever in Camels. Vet. World 2018, 11, 1109–1119. [Google Scholar] [CrossRef] [Green Version]
- Selmi, R.; Ben Said, M.; Mamlouk, A.; Ben Yahia, H.; Messadi, L. Molecular Detection and Genetic Characterization of the Potentially Pathogenic Coxiella burnetii and the Endosymbiotic Candidatus midichloria mitochondrii in Ticks Infesting Camels (Camelus dromedarius) from Tunisia. Microb. Pathog. 2019, 136, 103655. [Google Scholar] [CrossRef] [PubMed]
- Bellabidi, M.; Benaissa, M.H.; Bissati-Bouafia, S.; Harrat, Z.; Brahmi, K.; Kernif, T. Coxiella burnetii in Camels (Camelus dromedarius) from Algeria: Seroprevalence, Molecular Characterization, and Ticks (Acari: Ixodidae) Vectors. Acta Trop. 2020, 206, 105443. [Google Scholar] [CrossRef] [PubMed]
- Ravi, A.; Ereqat, S.; Al-Jawabreh, A.; Abdeen, Z.; Abu Shamma, O.; Hall, H.; Pallen, M.J.; Nasereddin, A. Metagenomic Profiling of Ticks: Identification of Novel Rickettsial Genomes and Detection of Tick-Borne Canine Parvovirus. PLoS Negl. Trop. Dis. 2019, 13, e0006805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morita, C.; El Hussein, A.R.M.; Matsuda, E.; Gabbar, K.M.A.A.; Muramatsu, Y.; Rahman, M.B.A.; Eleragi, A.M.H.; Hassan, S.M.; Chitambo, A.M.; Ueno, H. Spotted Fever Group Rickettsiae from Ticks Captured in Sudan. Jpn. J. Infect. Dis. 2004, 57, 107–109. [Google Scholar] [PubMed]
- Demoncheaux, J.-P.; Socolovschi, C.; Davoust, B.; Haddad, S.; Raoult, D.; Parola, P. First Detection of Rickettsia aeschlimannii in Hyalomma dromedarii Ticks from Tunisia. Ticks Tick-Borne Dis. 2012, 3, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Kernif, T.; Djerbouh, A.; Mediannikov, O.; Ayach, B.; Rolain, J.-M.; Raoult, D.; Parola, P.; Bitam, I. Rickettsia africae in Hyalomma dromedarii Ticks from Sub-Saharan Algeria. Ticks Tick-Borne Dis. 2012, 3, 377–379. [Google Scholar] [CrossRef]
- Ereqat, S.; Nasereddin, A.; Vayssier-Taussat, M.; Abdelkader, A.; Al-Jawabreh, A.; Zaid, T.; Azmi, K.; Abdeen, Z. Molecular Evidence of Bartonella Species in Ixodid Ticks and Domestic Animals in Palestine. Front. Microbiol. 2016, 7, 1217. [Google Scholar] [CrossRef] [Green Version]
- Ros-García, A.; M’ghirbi, Y.; Hurtado, A.; Bouattour, A. Prevalence and Genetic Diversity of Piroplasm Species in Horses and Ticks from Tunisia. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2013, 17, 33–37. [Google Scholar] [CrossRef]
- Tirosh-Levy, S.; Gottlieb, Y.; Fry, L.M.; Knowles, D.P.; Steinman, A. Twenty Years of Equine Piroplasmosis Research: Global Distribution, Molecular Diagnosis, and Phylogeny. Pathogens 2020, 9, 926. [Google Scholar] [CrossRef]
- Al-Hosary, A.; Răileanu, C.; Tauchmann, O.; Fischer, S.; Nijhof, A.M.; Silaghi, C. Tick Species Identification and Molecular Detection of Tick-Borne Pathogens in Blood and Ticks Collected from Cattle in Egypt. Ticks Tick-Borne Dis. 2021, 12, 101676. [Google Scholar] [CrossRef]
- Hadani, A.; Tsur, I.; Pipano, E.; Zenft, Z. Studies on the Transmission of Theileria annulata by Ticks (Ixodidea, Ixodidae) I. Hyalomma excavatum. J. Protozool. 1963, 10, 35. [Google Scholar]
- Aktas, M.; Özübek, S.; Altay, K.; Ipek, N.D.S.; Balkaya, İ.; Utuk, A.E.; Kırbas, A.; Şimsek, S.; Dumanlı, N. Molecular Detection of Tick-Borne Rickettsial and Protozoan Pathogens in Domestic Dogs from Turkey. Parasit. Vectors 2015, 8, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemi-Fesharki, R. Tick-Borne Diseases of Sheep and Goats and Their Related Vectors in Iran. Parassitologia 1997, 39, 115–117. [Google Scholar]
- Orkun, Ö.; Karaer, Z.; Çakmak, A.; Nalbantoğlu, S. Identification of Tick-Borne Pathogens in Ticks Feeding on Humans in Turkey. PLoS Negl. Trop. Dis. 2014, 8, e3067. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, I.; Sandalakis, V.; Kassinis, N.; Chochlakis, D.; Papadopoulos, B.; Loukaides, F.; Tselentis, Y.; Psaroulaki, A. Tick-Borne Bacteria in Mouflons and Their Ectoparasites in Cyprus. J. Wildl. Dis. 2011, 47, 300–306. [Google Scholar] [CrossRef]
- Abdelkadir, K.; Palomar, A.M.; Portillo, A.; Oteo, J.A.; Ait-Oudhia, K.; Khelef, D. Presence of Rickettsia aeschlimannii, “Candidatus rickettsia barbariae” and Coxiella burnetii in Ticks from Livestock in Northwestern Algeria. Ticks Tick-Borne Dis. 2019, 10, 924–928. [Google Scholar] [CrossRef]
- Kilicoglu, Y.; Cagirgan, A.A.; Serdar, G.; Kaya, S.; Durmaz, Y.; Gur, Y. Molecular Investigation, Isolation and Phylogenetic Analsysis of Coxiella burnetii from Aborted Fetus and Ticks. Comp. Immunol. Microbiol. Infect. Dis. 2020, 73, 101571. [Google Scholar] [CrossRef]
- Kleinerman, G.; Baneth, G.; Mumcuoglu, K.; van Straten, M.; Berlin, D.; Apanaskevich, D.; Abdeen, Z.; Nasereddin, A.; Harrus, S. Molecular Detection of Rickettsia africae, Rickettsia aeschlimannii, and Rickettsia sibirica mongolitimonae in Camels and Hyalomma spp. Ticks from Israel. Vector Borne Zoonotic Dis. Larchmt. N 2013, 13, 851–856. [Google Scholar] [CrossRef]
- Shkap, V.; Kocan, K.; Molad, T.; Mazuz, M.; Leibovich, B.; Krigel, Y.; Michoytchenko, A.; Blouin, E.; de la Fuente, J.; Samish, M.; et al. Experimental Transmission of Field Anaplasma marginale and the A. centrale Vaccine Strain by Hyalomma Eecavatum, Rhipicephalus sanguineus and Rhipicephalus (Boophilus) annulatus Ticks. Vet. Microbiol. 2009, 134, 254–260. [Google Scholar] [CrossRef]
- Psaroulaki, A.; Ragiadakou, D.; Kouris, G.; Papadopoulos, B.; Chaniotis, B.; Tselentis, Y. Ticks, Tick-Borne Rickettsiae, and Coxiella burnetii in the Greek Island of Cephalonia. Ann. N. Y. Acad. Sci. 2006, 1078, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Gunes, T.; Poyraz, O.; Vatansever, Z. Crimean-Congo Hemorrhagic Fever Virus in Ticks Collected from Humans, Livestock, and Picnic Sites in the Hyperendemic Region of Turkey. Vector-Borne Zoonotic Dis. 2011, 11, 1411–1416. [Google Scholar] [CrossRef] [PubMed]
- Padbidri, V.S.; Rodrigues, J.J.; Shetty, P.S.; Joshi, M.V.; Rao, B.L.; Shukla, R.N. Tick-Borne Rickettsioses in Pune District, Maharashtra, India. Int. J. Zoonoses 1984, 11, 45–52. [Google Scholar] [PubMed]
- Mamman, A.H.; Lorusso, V.; Adam,, B.M.; Dogo, G.A.; Bown, K.J.; Birtles, R.J. First report of Theileria annulata in Nigeria: Findings from cattle ticks in Zamfara and Sokoto States. Parasites Vectors 2021, 14, 242. [Google Scholar] [CrossRef] [PubMed]
- El-Azazy, O.M.; El-Metenawy, T.M.; Wassef, H.Y. Hyalomma impeltatum (Acari: Ixodidae) as a Potential Vector of Malignant Theileriosis in Sheep in Saudi Arabia. Vet. Parasitol. 2001, 99, 305–309. [Google Scholar] [CrossRef]
- Dohm, D.J.; Logan, T.M.; Linthicum, K.J.; Rossi, C.A.; Turell, M.J. Transmission of Crimean-Congo Hemorrhagic Fever Virus by Hyalomma impeltatum (Acari:Ixodidae) after Experimental Infection. J. Med. Entomol. 1996, 33, 848–851. [Google Scholar] [CrossRef]
- Gordon, S.W.; Linthicum, K.J.; Moulton, J.R. Transmission of Crimean-Congo Hemorrhagic Fever Virus in Two Species of Hyalomma Ticks from Infected Adults to Cofeeding Immature Forms. Am. J. Trop. Med. Hyg. 1993, 48, 576–580. [Google Scholar] [CrossRef]
- Wilson, M.L.; Gonzalez, J.P.; Cornet, J.P.; Camicas, J.L. Transmission of Crimean-Congo Haemorrhagic Fever Virus from Experimentally Infected Sheep to Hyalomma truncatum Ticks. Res. Virol. 1991, 142, 395–404. [Google Scholar] [CrossRef]
- Sadeddine, R.; Diarra, A.Z.; Laroche, M.; Mediannikov, O.; Righi, S.; Benakhla, A.; Dahmana, H.; Raoult, D.; Parola, P. Molecular Identification of Protozoal and Bacterial Organisms in Domestic Animals and Their Infesting Ticks from North-Eastern Algeria. Ticks Tick-Borne Dis. 2020, 11, 101330. [Google Scholar] [CrossRef]
- Parola, P.; Paddock, C.D.; Socolovschi, C.; Labruna, M.B.; Mediannikov, O.; Kernif, T.; Abdad, M.Y.; Stenos, J.; Bitam, I.; Fournier, P.-E.; et al. Update on Tick-Borne Rickettsioses around the World: A Geographic Approach. Clin. Microbiol. Rev. 2013, 26, 657–702. [Google Scholar] [CrossRef] [Green Version]
- Ehounoud, C.B.; Yao, K.P.; Dahmani, M.; Achi, Y.L.; Amanzougaghene, N.; N’Douba, A.K.; N’Guessan, J.D.; Raoult, D.; Fenollar, F.; Mediannikov, O. Multiple Pathogens Including Potential New Species in Tick Vectors in Côte d’Ivoire. PLoS Negl. Trop. Dis. 2016, 10, e0004367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, K.R.; Bhatt, P.N. Transmission of Kyasanur Forest Disease Virus by Hyalomma marginatum isaaci. Indian J. Med. Res. 1968, 56, 610–613. [Google Scholar] [PubMed]
- Jouglin, M.; Fernández-De-Mera, I.G.; de La Cotte, N.; Ruiz-Fons, F.; Gortázar, C.; Moreau, E.; Bastian, S.; de La Fuente, J.; Malandrin, L. Isolation and Characterization of Babesia pecorum sp. Nov. from Farmed Red Deer (Cervus elaphus). Vet. Res. 2014, 45, 78. [Google Scholar] [CrossRef] [Green Version]
- Viseras, J.; Hueli, L.E.; Adroher, F.J.; García-Fernández, P. Studies on the Transmission of Theileria annulata to Cattle by the Tick Hyalomma lusitanicum. J. Vet. Med. Ser. B 1999, 46, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Habela, M.; Rol, J.A.; Antón, J.M.; Peña, J.; Corchero, E.; van Ham, I.; Jongejan, E. Epidemiology of Mediterranean Theileriosis in Extremadura Region, Spain. Parassitologia 1999, 41 (Suppl. S1), 47–51. [Google Scholar]
- Moraga-Fernández, A.; Ruiz-Fons, F.; Habela, M.A.; Royo-Hernández, L.; Calero-Bernal, R.; Gortazar, C.; de la Fuente, J.; de Mera, I.G.F. Detection of New Crimean–Congo Haemorrhagic Fever Virus Genotypes in Ticks Feeding on Deer and Wild Boar, Spain. Transbound. Emerg. Dis. 2021, 68, 993–1000. [Google Scholar] [CrossRef]
- Negredo, A.; Habela, M.Á.; Ramírez de Arellano, E.; Diez, F.; Lasala, F.; López, P.; Sarriá, A.; Labiod, N.; Calero-Bernal, R.; Arenas, M.; et al. Survey of Crimean-Congo Hemorrhagic Fever Enzootic Focus, Spain, 2011–2015. Emerg. Infect. Dis. 2019, 25, 1177–1184. [Google Scholar] [CrossRef]
- Chisu, V.; Loi, F.; Foxi, C.; Chessa, G.; Masu, G.; Rolesu, S.; Masala, G. Coexistence of Tick-Borne Pathogens in Ticks Collected from Their Hosts in Sardinia: An Update. Acta Parasitol. 2020, 65, 999–1004. [Google Scholar] [CrossRef]
- Toledo, A.; Olmeda, A.S.; Escudero, R.; Jado, I.; Valcárcel, F.; Casado-Nistal, M.A.; Rodríguez-Vargas, M.; Gil, H.; Anda, P. Tick-Borne Zoonotic Bacteria in Ticks Collected from Central Spain. Am. J. Trop. Med. Hyg. 2009, 81, 67–74. [Google Scholar] [CrossRef]
- Milhano, N.; de Carvalho, I.L.; Alves, A.S.; Arroube, S.; Soares, J.; Rodriguez, P.; Carolino, M.; Núncio, M.S.; Piesman, J.; de Sousa, R. Coinfections of Rickettsia slovaca and Rickettsia helvetica with Borrelia lusitaniae in Ticks Collected in a Safari Park, Portugal. Ticks Tick-Borne Dis. 2010, 1, 172–177. [Google Scholar] [CrossRef]
- Santos-Silva, M.M.; Vatansever, Z. Hyalomma marginatum Koch, 1844 (Figs. 139–141). In Ticks of Europe and North Africa: A Guide to Species Identification; Estrada-Peña, A., Mihalca, A.D., Petney, T.N., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 349–354. ISBN 978-3-319-63760-0. [Google Scholar]
- Bolaños-Rivero, M.; Carranza-Rodríguez, C.; Rodríguez, N.F.; Gutiérrez, C.; Pérez-Arellano, J.-L. Detection of Coxiella burnetii DNA in Peridomestic and Wild Animals and Ticks in an Endemic Region (Canary Islands, Spain). Vector Borne Zoonotic Dis. Larchmt. 2017, 17, 630–634. [Google Scholar] [CrossRef] [PubMed]
- González, J.; González, M.G.; Valcárcel, F.; Sánchez, M.; Martín-Hernández, R.; Tercero, J.M.; Olmeda, A.S. Transstadial Transmission from Nymph to Adult of Coxiella burnetii by Naturally Infected Hyalomma lusitanicum. Pathogens 2020, 9, E884. [Google Scholar] [CrossRef] [PubMed]
- González, J.; González, M.G.; Valcárcel, F.; Sánchez, M.; Martín-Hernández, R.; Tercero, J.M.; Olmeda, A.S. Prevalence of Coxiella burnetii (Legionellales: Coxiellaceae) Infection Among Wildlife Species and the Tick Hyalomma lusitanicum (Acari: Ixodidae) in a Meso-Mediterranean Ecosystem. J. Med. Entomol. 2020, 57, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Ionita, M.; Mitrea, I.L.; Pfister, K.; Hamel, D.; Silaghi, C. Molecular Evidence for Bacterial and Protozoan Pathogens in Hard Ticks from Romania. Vet. Parasitol. 2013, 196, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Iori, A.; Gabrielli, S.; Calderini, P.; Moretti, A.; Pietrobelli, M.; Tampieri, M.P.; Galuppi, R.; Cancrini, G. Tick Reservoirs for Piroplasms in Central and Northern Italy. Vet. Parasitol. 2010, 170, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Boularias, G.; Azzag, N.; Galon, C.; Šimo, L.; Boulouis, H.-J.; Moutailler, S. High-Throughput Microfluidic Real-Time PCR for the Detection of Multiple Microorganisms in Ixodid Cattle Ticks in Northeast Algeria. Pathogens 2021, 10, 362. [Google Scholar] [CrossRef] [PubMed]
- Köseoğlu, A.E.; Can, H.; Güvendi, M.; Erkunt Alak, S.; Kandemir, Ç.; Taşkın, T.; Demir, S.; Akgül, G.; Değirmenci Döşkaya, A.; Karakavuk, M.; et al. Molecular Investigation of Bacterial and Protozoal Pathogens in Ticks Collected from Different Hosts in Turkey. Parasit. Vectors 2021, 14, 270. [Google Scholar] [CrossRef]
- Mohammadi, S.M.; Esmaeilnejad, B.; Jalilzadeh-Amin, G. Molecular Detection, Infection Rate and Vectors of Theileria lestoquardi in Goats from West Azerbaijan Province, Iran. Vet. Res. Forum 2017, 8, 139–144. [Google Scholar]
- Razmi, G.R.; Naghibi, A.; Aslani, M.R.; Fathivand, M.; Dastjerdi, K. An epidemiological study on ovine babesiosis in the Mashhad suburb area, province of Khorasan, Iran. Vet. Parasitol. 2002, 108, 109–115. [Google Scholar] [CrossRef]
- Toma, L.; Di Luca, M.; Mancini, F.; Severini, F.; Mariano, C.; Nicolai, G.; Laghezza Masci, V.; Ciervo, A.; Fausto, A.M.; Cacciò, S.M. Molecular Characterization of Babesia and Theileria Species in Ticks Collected in the Outskirt of Monte Romano, Lazio Region, Central Italy. Ann. Ist. Super. Sanita 2017, 53, 30–34. [Google Scholar] [CrossRef]
- Aktas, M. A Survey of Ixodid Tick Species and Molecular Identification of Tick-Borne Pathogens. Vet. Parasitol. 2014, 200, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Karasartova, D.; Gureser, A.S.; Gokce, T.; Celebi, B.; Yapar, D.; Keskin, A.; Celik, S.; Ece, Y.; Erenler, A.K.; Usluca, S.; et al. Bacterial and Protozoal Pathogens Found in Ticks Collected from Humans in Corum Province of Turkey. PLoS Negl. Trop. Dis. 2018, 12, e0006395. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.S.; De Vos, A.J. Studies on a Bovine Babesia Transmitted by Hyalomma marginatum rufipes Koch, 1844. Onderstepoort J. Vet. Res. 1981, 48, 215–223. [Google Scholar]
- Dipeolu, O.O.; Amoo, A. The Presence of Kinetes of a Babesia Species in the Haemolymph Smears of Engorged Hyalomma Ticks in Nigeria. Vet. Parasitol. 1984, 17, 41–46. [Google Scholar] [CrossRef]
- Akyildiz, G.; Bente, D.; Keles, A.G.; Vatansever, Z.; Kar, S. High Prevalence and Different Genotypes of Crimean-Congo Hemorrhagic Fever Virus Genome in Questing Unfed Adult Hyalomma marginatum in Thrace, Turkey. Ticks Tick-Borne Dis. 2021, 12, 101622. [Google Scholar] [CrossRef]
- Gergova, I.; Kunchev, M.; Kamarinchev, B. Crimean-Congo Hemorrhagic Fever Virus-Tick Survey in Endemic Areas in Bulgaria. J. Med. Virol. 2012, 84, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Gevorgyan, H.; Grigoryan, G.G.; Atoyan, H.A.; Rukhkyan, M.; Hakobyan, A.; Zakaryan, H.; Aghayan, S.A. Evidence of Crimean-Congo Haemorrhagic Fever Virus Occurrence in Ixodidae Ticks of Armenia. J. Arthropod-Borne Dis. 2019, 13, 9–16. [Google Scholar]
- Hoogstraal, H. Review Article1: The Epidemiology of Tick-Borne Crimean-Congo Hemorrhagic Fever in Asia, Europe, and Africa23. J. Med. Entomol. 1979, 15, 307–417. [Google Scholar] [CrossRef]
- Kondratenko, V.F. Importance of ixodid ticks in the transmission and preservation of the causative agent of Crimean hemorrhagic fever in foci of the infection. Parazitologiia 1976, 10, 297–302. [Google Scholar]
- Kondratenko, V.; Blagoveschchenskaya, N.; Butenko, A.; Vyshnivetskaya, L.; Zarubina, L.; Milyutin, V.; Kuchin, V.; Novikova, E.; Rabinovich, V.; Shevchenko, S.; et al. Results of virological investigation of ixodid ticks in Crimean hemorrhagic fever focus in Rostov Oblast. Mater 1970, 9, 29–35. [Google Scholar]
- Levi, V.; Vasilenko, S. Study of the Crimean Hemorrhagic Fever (CHF) Virus Transmission Mechanism in Hyalomma p. plumbeum Ticks; National Agricultural Library: Beltsville, MD, USA, 1972; pp. 182–185. [Google Scholar]
- Meissner, J.D.; Seregin, S.S.; Seregin, S.V.; Yakimenko, N.V.; Vyshemirskii, O.I.; Netesov, S.V.; Petrov, V.S. Complete L Segment Coding-Region Sequences of Crimean Congo Hemorrhagic Fever Virus Strains from the Russian Federation and Tajikistan. Arch. Virol. 2006, 151, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, S.E.; Karavanov, A.S.; Zimina, I.; Sedova, A.G. The virus carriage of ticks, vectors of the causative agent of Crimean hemorrhagic fever. Med. Parazitol. 1991, 1, 32–34. [Google Scholar]
- Yashina, L.; Petrova, I.; Seregin, S.; Vyshemirskii, O.; Lvov, D.; Aristova, V.; Kuhn, J.; Morzunov, S.; Gutorov, V.; Kuzina, I.; et al. Genetic Variability of Crimean-Congo Haemorrhagic Fever Virus in Russia and Central Asia. J. Gen. Virol. 2003, 84, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Yesilbag, K.; Aydin, L.; Dincer, E.; Alpay, G.; Girisgin, A.O.; Tuncer, P.; Ozkul, A. Tick Survey and Detection of Crimean-Congo Hemorrhagic Fever Virus in Tick Species from a Non-Endemic Area, South Marmara Region, Turkey. Exp. Appl. Acarol. 2013, 60, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Zgurskaya, G.N.; Berezin, V.; Smirnova, S.; Chumakov, M. Investigation of the question of Crimean hemorrhagic fever virus transmission and interepidemic survival in the tick Hyalomma plumbeum plumbeum Panzer. Tr. Inst. Polio. Virus. Entsefalitov. Akad. Med. Nauk. 1971, 19, 217–220. [Google Scholar]
- Pascucci, I.; Di Domenico, M.; Capobianco Dondona, G.; Di Gennaro, A.; Polci, A.; Capobianco Dondona, A.; Mancuso, E.; Cammà, C.; Savini, G.; Cecere, J.G.; et al. Assessing the Role of Migratory Birds in the Introduction of Ticks and Tick-Borne Pathogens from African Countries: An Italian Experience. Ticks Tick-Borne Dis. 2019, 10, 101272. [Google Scholar] [CrossRef]
- Pereira, A.; Figueira, L.; Nunes, M.; Esteves, A.; Cotão, A.J.; Vieira, M.L.; Maia, C.; Campino, L.; Parreira, R. Multiple Phlebovirus (Bunyaviridae) Genetic Groups Detected in Rhipicephalus, Hyalomma and Dermacentor Ticks from Southern Portugal. Ticks Tick-Borne Dis. 2017, 8, 45–52. [Google Scholar] [CrossRef]
- Converse, J.D.; Hoogstraal, H.; Moussa, M.I.; Stek, M.; Kaiser, M.N. Bahig Virus (Tete Group) in Naturally- and Transovarially-Infected Hyalomma marginatum Ticks from Egypt and Italy. Arch. Für Gesamte Virusforsch. 1974, 46, 29–35. [Google Scholar] [CrossRef]
- Al’khovskiĭ, S.V.; L’vov, D.K.; Shchelkanov, M.I.; Shchetinin, A.M.; Deriabin, P.G.; L’vov, D.N.; L’vov, S.S.; Samokhvalov, E.I.; Gitel’man, A.K.; Botikov, A.G. Genetic characterization of the Batken virus (BKNV) (Orthomyxoviridae, Thogotovirus) isolated from the Ixodidae ticks Hyalomma marginatum Koch, 1844 and the mosquitoes Aedes caspius Pallas, 1771, as well as the Culex hortensis Ficalbi, 1889 in the Central Asia. Vopr. Virusol. 2014, 59, 33–37. [Google Scholar]
- Hubálek, Z. Biogeography of Tick-Borne Bhanja Virus (Bunyaviridae) in Europe. Interdiscip. Perspect. Infect. Dis. 2009, 2009, 372691. [Google Scholar] [CrossRef] [Green Version]
- Filipe, A.R.; Casals, J. Isolation of Dhori Virus from Hyalomma marginatum Ticks in Portugal. Intervirology 1979, 11, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Vakalova, E.V.; Butenko, A.M.; Vishnevskaya, T.V.; Dorofeeva, T.E.; Gitelman, A.K.; Kulikova, L.N.; Lvov, D.K.; Alkhovsky, S.V. Results of investigation of ticks in Volga river delta (Astrakhan region, 2017) for Crimean-Congo hemorrhagic fever virus (Nairoviridae, Orthonairovirus, CCHFV) and other tick-borne arboviruses. Vopr. Virusol. 2019, 64, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Yurchenko, O.O.; Dubina, D.O.; Vynograd, N.O.; Gonzalez, J.-P. Partial Characterization of Tick-Borne Encephalitis Virus Isolates from Ticks of Southern Ukraine. Vector Borne Zoonotic Dis. 2017, 17, 550–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinçer, E.; Hacıoğlu, S.; Kar, S.; Emanet, N.; Brinkmann, A.; Nitsche, A.; Özkul, A.; Linton, Y.-M.; Ergünay, K. Survey and Characterization of Jingmen Tick Virus Variants. Viruses 2019, 11, 1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moussa, M.I.; Imam, I.Z.; Converse, J.D.; El-Karamany, R.M. Isolation of Matruh Virus from Hyalomma marginatum Ticks in Egypt. J. Egypt. Public Health Assoc. 1974, 49, 341–348. [Google Scholar]
- Dandawate, C.N.; Shah, K.V.; D’Lima, L.V. Wanowrie Virus: A New Arbovirus Isolated from Hyalomma marginatum Isaaci. Indian J. Med. Res. 1970, 58, 985–989. [Google Scholar]
- L’vov, D.N.; Dzharkenov, A.F.; Aristova, V.A.; Kovtunov, A.I.; Gromashevskiĭ, V.L.; Vyshemirskiĭ, O.I.; Galkina, I.V.; Larichev, V.F.; Butenko, A.M.; L’vov, D.K. The isolation of Dhori viruses (Orthomyxoviridae, Thogotovirus) and Crimean-Congo hemorrhagic fever virus (Bunyaviridae, Nairovirus) from the hare (Lepus europaeus) and its ticks Hyalomma marginatum in the middle zone of the Volga delta, Astrakhan region, 2001. Vopr. Virusol. 2002, 47, 32–36. [Google Scholar]
- Formosinho, P.; Santos-Silva, M.M. Experimental Infection of Hyalomma marginatum Ticks with West Nile Virus. Acta Virol. 2006, 50, 175–180. [Google Scholar]
- Kolodziejek, J.; Marinov, M.; Kiss, B.J.; Alexe, V.; Nowotny, N. The Complete Sequence of a West Nile Virus Lineage 2 Strain Detected in a Hyalomma marginatum marginatum Tick Collected from a Song Thrush (Turdus philomelos) in Eastern Romania in 2013 Revealed Closest Genetic Relationship to Strain Volgograd 2007. PLoS ONE 2014, 9, e109905. [Google Scholar] [CrossRef] [Green Version]
- Beati, L.; Meskini, M.; Thiers, B.; Raoult, D. Rickettsia Aeschlimannii Sp. Nov., a New Spotted Fever Group Rickettsia Associated with Hyalomma marginatum Ticks. Int. J. Syst. Bacteriol. 1997, 47, 548–554. [Google Scholar] [CrossRef] [Green Version]
- Cicculli, V.; Capai, L.; Quilichini, Y.; Masse, S.; Fernández-Alvarez, A.; Minodier, L.; Bompard, P.; Charrel, R.; Falchi, A. Molecular Investigation of Tick-Borne Pathogens in Ixodid Ticks Infesting Domestic Animals (Cattle and Sheep) and Small Rodents (Black Rats) of Corsica, France. Ticks Tick-Borne Dis. 2019, 10, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Grech-Angelini, S.; Stachurski, F.; Vayssier-Taussat, M.; Devillers, E.; Casabianca, F.; Lancelot, R.; Uilenberg, G.; Moutailler, S. Tick-Borne Pathogens in Ticks (Acari: Ixodidae) Collected from Various Domestic and Wild Hosts in Corsica (France), a Mediterranean Island Environment. Transbound. Emerg. Dis. 2020, 67, 745–757. [Google Scholar] [CrossRef]
- Cicculli, V.; de Lamballerie, X.; Charrel, R.; Falchi, A. First Molecular Detection of Rickettsia Africae in a Tropical Bont Tick, Amblyomma variegatum, Collected in Corsica, France. Exp. Appl. Acarol. 2019, 77, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sentausa, E.; El Karkouri, K.; Michelle, C.; Caputo, A.; Raoult, D.; Fournier, P.-E. Genome Sequence of Rickettsia tamurae, a Recently Detected Human Pathogen in Japan. Genome Announc. 2014, 2, e00838-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, K.; Parola, P.; Brouqui, P.; Raoult, D. Rickettsia aeschlimannii in Hyalomma Ticks from Corsica. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2004, 23, 732–734. [Google Scholar] [CrossRef]
- Teshale, S.; Kumsa, B.; Menandro, M.L.; Cassini, R.; Martini, M. Anaplasma, Ehrlichia and Rickettsial Pathogens in Ixodid Ticks Infesting Cattle and Sheep in Western Oromia, Ethiopia. Exp. Appl. Acarol. 2016, 70, 231–237. [Google Scholar] [CrossRef]
- Wallménius, K.; Barboutis, C.; Fransson, T.; Jaenson, T.G.T.; Lindgren, P.-E.; Nyström, F.; Olsen, B.; Salaneck, E.; Nilsson, K. Spotted Fever Rickettsia Species in Hyalomma and Ixodes Ticks Infesting Migratory Birds in the European Mediterranean Area. Parasit. Vectors 2014, 7, 318. [Google Scholar] [CrossRef] [Green Version]
- Chisu, V.; Foxi, C.; Mannu, R.; Satta, G.; Masala, G. A Five-Year Survey of Tick Species and Identification of Tick-Borne Bacteria in Sardinia, Italy. Ticks Tick-Borne Dis. 2018, 9, 678–681. [Google Scholar] [CrossRef]
- Toma, L.; Mancini, F.; Di Luca, M.; Cecere, J.G.; Bianchi, R.; Khoury, C.; Quarchioni, E.; Manzia, F.; Rezza, G.; Ciervo, A. Detection of Microbial Agents in Ticks Collected from Migratory Birds in Central Italy. Vector Borne Zoonotic Dis. Larchmt. 2014, 14, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Mancini, F.; Vescio, F.; Toma, L.; Di Luca, M.; Severini, F.; Cacciò, S.; Mariano, C.; Nicolai, G.; Laghezza Masci, V.; Fausto, A.; et al. Detection of Tick-Borne Pathogens in Ticks Collected in the Suburban Area of Monte Romano, Lazio Region, Central Italy. Ann. Ist. Super. Sanita 2019, 55, 143–150. [Google Scholar] [CrossRef]
- Pilipenko, V.G.; Derevianchenko, K.I. Detection of Hyalomma plumbeum Panz infected with Pasteurella tularensis on Lepus europaeus. J. Microbiol. Epidemiol. Immunobiol. 1955, 4, 63–67. [Google Scholar]
- Jongejan, F.; Morzaria, S.P.; Mustafa, O.E.H.; Latif, A.A. Infection Rates of Theileria annulata in the Salivary Glands of the Tick Hyalomma marginatum rufipes. Vet. Parasitol. 1983, 13, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Zeller, H.G.; Cornet, J.P.; Camicas, J.L. Crimean-Congo Haemorrhagic Fever Virus Infection in Birds: Field Investigations in Senegal. Res. Virol. 1994, 145, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Faye, O.; Cornet, J.P.; Camicas, J.L.; Fontenille, D.; Gonzalez, J.P. Transmission expérimentale du virus de la fièvre hémorragique de Crimée-Congo: Place de trois espèces vectrices dans les cycles de maintenance et de transmission au Sénégal. Parasite 1999, 6, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Swanepoel, R.; Struthers, J.K.; Shepherd, A.J.; McGillivray, G.M.; Nel, M.J.; Jupp, P.G. Crimean-Congo Hemorrhagic Fever in South Africa. Am. J. Trop. Med. Hyg. 1983, 32, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Zeller, H.G.; Cornet, J.P.; Diop, A.; Camicas, J.L. Crimean-Congo Hemorrhagic Fever in Ticks (Acari: Ixodidae) and Ruminants: Field Observations of an Epizootic in Bandia, Senegal (1989–1992). J. Med. Entomol. 1997, 34, 511–516. [Google Scholar] [CrossRef]
- Shepherd, A.J.; Leman, P.A.; Swanepoel, R. Viremia and Antibody Response of Small African and Laboratory Animals to Crimean-Congo Hemorrhagic Fever Virus Infection. Am. J. Trop. Med. Hyg. 1989, 40, 541–547. [Google Scholar] [CrossRef]
- Zeller, H.G.; Cornet, J.P.; Camicas, J.L. Experimental Transmission of Crimean-Congo Hemorrhagic Fever Virus by West African Wild Ground-Feeding Birds to Hyalomma marginatum rufipes Ticks. Am. J. Trop. Med. Hyg. 1994, 50, 676–681. [Google Scholar] [CrossRef]
- Shepherd, A.J.; Swanepoel, R.; Shepherd, S.P.; Leman, P.A.; Mathee, O. Viraemic Transmission of Crimean-Congo Haemorrhagic Fever Virus to Ticks. Epidemiol. Infect. 1991, 106, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, E.; Toma, L.; Polci, A.; d’Alessio, S.G.; Luca, M.D.; Orsini, M.; Domenico, M.D.; Marcacci, M.; Mancini, G.; Spina, F.; et al. Crimean-Congo Hemorrhagic Fever Virus Genome in Tick from Migratory Bird, Italy. Emerg. Infect. Dis. 2019, 25, 1418–1420. [Google Scholar] [CrossRef] [Green Version]
- Okorie, T.G. Comparative Studies on the Vector Capacity of the Different Stages of Amblyomma variegatum fabricius and Hyalomma rufipes Koch for Congo Virus, after Intracoelomic Inoculation. Vet. Parasitol. 1991, 38, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Msimang, V.; Weyer, J.; Roux, C.L.; Kemp, A.; Burt, F.J.; Tempia, S.; Grobbelaar, A.; Moolla, N.; Rostal, M.K.; Bagge, W.; et al. Risk Factors Associated with Exposure to Crimean-Congo Haemorrhagic Fever Virus in Animal Workers and Cattle, and Molecular Detection in Ticks, South Africa. PLoS Negl. Trop. Dis. 2021, 15, e0009384. [Google Scholar] [CrossRef]
- Okorie, T.G.; Fabiyi, A. The Multiplication of Dugbe Virus in the Ixodid Tick, Hyalomma rufipes Koch, after Experimental Infection. Tropenmed. Parasitol. 1979, 30, 439–442. [Google Scholar] [PubMed]
- Hoffman, T.; Lindeborg, M.; Barboutis, C.; Erciyas-Yavuz, K.; Evander, M.; Fransson, T.; Figuerola, J.; Jaenson, T.G.T.; Kiat, Y.; Lindgren, P.-E.; et al. Alkhurma Hemorrhagic Fever Virus RNA in Hyalomma rufipes Ticks Infesting Migratory Birds, Europe and Asia Minor. Emerg. Infect. Dis. 2018, 24, 879–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Liu, M.-X.; Ren, Q.-Y.; Chen, Z.; Tian, Z.-C.; Hao, J.-W.; Wu, F.; Liu, X.-C.; Luo, J.-X.; Yin, H.; et al. Micropathogen Community Analysis in Hyalomma rufipes via High-Throughput Sequencing of Small RNAs. Front. Cell. Infect. Microbiol. 2017, 7, 374. [Google Scholar] [CrossRef]
- Mathison, B.A.; Gerth, W.J.; Pritt, B.S.; Baugh, S. Introduction of the Exotic Tick Hyalomma truncatum on a Human with Travel to Ethiopia: A Case Report. Ticks Tick-Borne Dis. 2015, 6, 152–154. [Google Scholar] [CrossRef] [Green Version]
- Dahmani, M.; Davoust, B.; Sambou, M.; Bassene, H.; Scandola, P.; Ameur, T.; Raoult, D.; Fenollar, F.; Mediannikov, O. Molecular Investigation and Phylogeny of Species of the Anaplasmataceae Infecting Animals and Ticks in Senegal. Parasit. Vectors 2019, 12, 495. [Google Scholar] [CrossRef] [Green Version]
- Kumsa, B.; Socolovschi, C.; Almeras, L.; Raoult, D.; Parola, P. Occurrence and Genotyping of Coxiella burnetii in Ixodid Ticks in Oromia, Ethiopia. Am. J. Trop. Med. Hyg. 2015, 93, 1074–1081. [Google Scholar] [CrossRef] [Green Version]
- Diarra, A.Z.; Almeras, L.; Laroche, M.; Berenger, J.-M.; Koné, A.K.; Bocoum, Z.; Dabo, A.; Doumbo, O.; Raoult, D.; Parola, P. Molecular and MALDI-TOF Identification of Ticks and Tick-Associated Bacteria in Mali. PLoS Negl. Trop. Dis. 2017, 11, e0005762. [Google Scholar] [CrossRef]
- Rollins, R.E.; Schaper, S.; Kahlhofer, C.; Frangoulidis, D.; Strauß, A.F.; Cardinale, M.; Springer, A.; Strube, C.; Bakkes, D.K.; Becker, N.S.; et al. Ticks (Acari: Ixodidae) on birds migrating to the island of Ponza, Italy, and the tick-borne pathogens they carry. Ticks Tick-borne Dis. 2020, 12, 101590. [Google Scholar] [CrossRef]
- Knuth, P.; Behn, P.; Schulze, P. Experiments on Equine Piroplasmosis (Biliary Fever) in 1917; CABI: Wallingford, UK, 1918; pp. 241–264. [Google Scholar]
- Petunin, F. Hyalomma Scupense P Sch-a Vector of Nuttalliasis of Horses. Veterinariia 1948, 25, 14. [Google Scholar]
- Samish, M.; Pipano, E. Development of Infectivity in Hyalomma detritum (Schulze, 1919) Ticks Infected with Theileria annulata (Dchunkowsky and Luhs, 1904). Parasitology 1978, 77, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Gharbi, M.; Darghouth, M.A. A Review of Hyalomma scupense (Acari, Ixodidae) in the Maghreb Region: From Biology to Control. Parasite 2014, 21, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharbi, M.; Hayouni, M.E.; Sassi, L.; Dridi, W.; Darghouth, M.A. Hyalomma scupense (Acari, Ixodidae) in Northeast Tunisia: Seasonal Population Dynamics of Nymphs and Adults on Field Cattle. Parasite 2013, 20, 12. [Google Scholar] [CrossRef] [Green Version]
- Pandurov, S.; Zaprianov, M. Studies on the retention of R. burneti in Rh. bursa and H. detritum ticks. Vet.-Meditsinski Nauki 1975, 12, 43–48. [Google Scholar]
- Blouin, E.F.; De Waal, D.T. The Fine Structure of Developmental Stages of Babesia caballi in the Salivary Glands of Hyalomma truncatum. Onderstepoort J. Vet. Res. 1989, 56, 189–193. [Google Scholar]
- De Waal, D.T. The Transovarial Transmission of Babesia caballi by Hyalomma truncatum. Onderstepoort J. Vet. Res. 1990, 57, 99–100. [Google Scholar]
- Logan, T.M.; Linthicum, K.J.; Kondig, J.P.; Bailey, C.L. Biology of Hyalomma impeltatum (Acari: Ixodidae) Under Laboratory Conditions. J. Med. Entomol. 1989, 26, 479–483. [Google Scholar] [CrossRef]
- Wilson, M.L.; Gonzalez, J.-P.; LeGuenno, B.; Cornet, J.-P.; Guillaud, M.; Calvo, M.-A.; Digoutte, J.-P.; Camicas, J.-L. Epidemiology of Crimean-Congo Hemorrhagic Fever in Senegal: Temporal and Spatial Patterns. Arch. Virol. Suppl. 1990, 1, 323–340. [Google Scholar] [CrossRef]
- Gonzalez, J.P.; Camicas, J.L.; Cornet, J.P.; Faye, O.; Wilson, M.L. Sexual and Transovarian Transmission of Crimean-Congo Haemorrhagic Fever Virus in Hyalomma truncatum Ticks. Res. Virol. 1992, 143, 23–28. [Google Scholar] [CrossRef]
- Gonzalez, J.P.; Cornet, J.P.; Wilson, M.L.; Camicas, J.L. Crimean-Congo Haemorrhagic Fever Virus Replication in Adult Hyalomma truncatum and Amblyomma variegatum Ticks. Res. Virol. 1991, 142, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Dickson, D.L.; Turell, M.J. Replication and Tissue Tropisms of Crimean-Congo Hemorrhagic Fever Virus in Experimentally Infected Adult Hyalomma truncatum (Acari: Ixodidae). J. Med. Entomol. 1992, 29, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Lwande, O.W.; Lutomiah, J.; Obanda, V.; Gakuya, F.; Mutisya, J.; Mulwa, F.; Michuki, G.; Chepkorir, E.; Fischer, A.; Venter, M.; et al. Isolation of Tick and Mosquito-Borne Arboviruses from Ticks Sampled from Livestock and Wild Animal Hosts in Ijara District, Kenya. Vector-Borne Zoonotic Dis. 2013, 13, 637–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutomiah, J.; Musila, L.; Makio, A.; Ochieng, C.; Koka, H.; Chepkorir, E.; Mutisya, J.; Mulwa, F.; Khamadi, S.; Miller, B.R.; et al. Ticks and Tick-Borne Viruses from Livestock Hosts in Arid and Semiarid Regions of the Eastern and Northeastern Parts of Kenya. J. Med. Entomol. 2014, 51, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Linthicum, K.J.; Logan, T.M. Laboratory Transmission of Venezuelan Equine Encephalomyelitis Virus by the Tick Hyalomma truncatum. Trans. R. Soc. Trop. Med. Hyg. 1994, 88, 126. [Google Scholar] [CrossRef] [Green Version]
- Capponi, M.; Chambon, L.; Camicas, J.L.; Dumas, N. 1st isolation of a strain of Rickettsia (Cocksiella) burneti from ticks (Hyalomma truncatum) in Senegal. Bull. Soc. Pathol. Exot. Filiales 1970, 63, 530–534. [Google Scholar]
Tick Species | Number of References in PubMed/Scopus | Pathogen Transmitted/Suspected to Be Transmitted | Detection of DNA/RNA/Antigen/Pathogen in Ticks | Epidemiological Arguments of Possible Transmission * | Experimental Validation of Transmission ** | References |
---|---|---|---|---|---|---|
H. aegyptium | 96/110 | CCHFv | RNA | yes | 0 | [17] |
Coxiella burnetii | DNA | no | 2, 4 | [18,19] | ||
Borrelia turcica Borrelia spp. | DNA and RNA | no | 2 | [20,21,22,23,24,25] | ||
Bartonella bovis | DNA | no | 0 | [26] | ||
Ehrlichia canis Ehrlichia spp. | DNA | yes | 0 | [18,25,26,27] | ||
Anaplasma phagocytophilum | DNA | yes | 0 | [18] | ||
Rickettsia africae | DNA | no | 0 | [28] | ||
Rickettsia aeschlimannii | DNA | yes | 0 | [26,29,30] | ||
Rickettsia sibirica mongolitimonae | DNA | no | 0 | [30,31] | ||
Rickettsia slovaca | DNA | no | 0 | [30] | ||
Meram virus | RNA | no | 0 | [32] | ||
Tamdy virus | RNA | no | 0 | [32] | ||
H. anatolicum | 381/546 | Babesia caballi | DNA | no | 0 | [33] |
Theileria equi | DNA, pathogen | yes | 2, 4 | [33,34,35,36,37] | ||
Babesia occultans | DNA | no | 0 | [38,39,40] | ||
Babesia bovis | DNA | no | 0 | [38,39,40,41] | ||
Theileria annulata | DNA, pathogen | yes | 2, 4 | [35,39,41,42,43,44,45,46,47,48,49,50,51] | ||
Theileria lestoquardi | DNA | yes | 2, 4 | [35,44,49,52,53,54,55,56] | ||
Theileria ovis | DNA | yes | 2, 4 | [33,35,38,40,57,58] | ||
Babesia ovis | DNA | no | 0 | [55] | ||
CCHFv | RNA, antigen, viral particle | uncertain | 1 | [59,60,61,62,63,64,65] | ||
Alphavirus | RNA | no | 0 | [66] | ||
Zahedan Rhabdovirus | RNA | no | 0 | [67] | ||
Tick Borne Encephalitis virus | no | no | 5 | [68] | ||
Kadam virus | RNA | no | 0 | [66] | ||
Karshi virus | no | no | 0, 1 | [69] | ||
Karyana virus | RNA, virus isolation | yes | 0 | [70] | ||
Kundal virus | RNA, virus isolation | yes | 0 | [70] | ||
Sindbis virus | RNA | no | 0 | [71] | ||
Coxiella burnetii | DNA | no | 0 | [72,73,74] | ||
Bartonella spp. | DNA | no | 0 | [38] | ||
Borrelia spp. | DNA | no | 0 | [38] | ||
Anaplasma marginale, Anaplasma phagocytophilum, Anaplasma ovis, Anaplasma centrale, Ehrlichia spp., Rickettsia massiliae, Rickettsia spp., | DNA | no | 0 | [38,41,75] | ||
H. asiaticum | 145/192 | Theileria annulata | DNA | no | 0 | [76,77,78] |
Babesia occultans | DNA | no | 0 | [79] | ||
Babesia caballi | DNA | no | 0 | [80,81] | ||
Theileria equi | DNA | no | 0 | [80] | ||
CCHFv | RNA, viral particles | yes | 1 | [65,82,83,84,85] | ||
Chim virus | RNA | no | 0 | [86] | ||
Syr-Darya valley fever virus | RNA | no | 0 | [86] | ||
Karshi virus | RNA | no | 0, 1 | [69,87,88] | ||
Tamdy virus | Virus isolation | yes | 0 | [89,90,91,92] | ||
Coxiella burnetii | DNA | no | 2 | [74,93,94,95] | ||
Rickettsia siberica | DNA | no | 0 | [96] | ||
Borrelia burgdorferi s.l. | RNA | no | 0 | [97] | ||
Rickettsia sibirica mongolitimonae | isolation | yes | 0 | [98] | ||
H. dromedarii | 232/344 | Theileria equi | DNA, pathogen in ticks | no | 1, 2, 4 | [99,100,101,102] |
Theileria camelensis | Pathogen in ticks | yes | 1, 2, 4 | [103,104,105] | ||
Theileria annulata | DNA | yes | 2, 4 | [48,106,107,108,109,110,111,112] | ||
Theileria ovis | DNA | no | 0 | [40] | ||
Babesia caballi | DNA | no | 0 | [101] | ||
Babesia occultans | DNA | no | 0 | [101] | ||
CCHFv | RNA, antigen, viral particles | yes | 1, 2, 4 | [64,113,114] | ||
Alphavirus | RNA | no | 0 | [66] | ||
Chick Ross virus | RNA | no | 0 | [66] | ||
Dera Ghazi Khan virus | RNA | no | 0 | [115] | ||
Dhori virus | RNA | no | 0 | [116] | ||
Kadam virus | RNA | no | 0 | [66,117] | ||
African horse sickness virus | no | no | 2, 4 | [118] | ||
Quaranfil virus | RNA | no | 0 | [119] | ||
Sindbis virus | RNA | no | 0 | [66] | ||
Coxiella burnetii | DNA | no | 0 | [101,120,121,122,123,124] | ||
Francisella persica | DNA | no | 0 | [125] | ||
Rickettsia aeschlimannii | DNA | no | 0 | [121,126,127] | ||
Rickettsia africae | DNA | no | 0 | [128] | ||
Anaplasma spp./Ehrlichia spp. | DNA | no | 0 | [101] | ||
Bartonella bovis et Bartonella rochalimae | DNA | no | 0 | [129] | ||
H. excavatum | 149/211 | Theileria equi | DNA, pathogen | no | 2, 4 | [34,130,131] |
Babesia bigemina | DNA | no | 0 | [41] | ||
Babesia bovis | DNA | no | 0 | [132] | ||
Babesia occultans | DNA | no | 3 | [30,132] | ||
Theileria annulata | DNA | uncertain | 2, 4 | [31,41,51,76,78,132,133,134] | ||
Theileria capreoli | DNA | no | 0 | [31] | ||
Theileria ovis | DNA | no | 0 | [40,135] | ||
Borrelia spp. | DNA | no | 0 | [136] | ||
Coxiella burnetii | DNA | no | 0 | [121,124,137,138,139] | ||
Rickettsia africae | DNA | no | 0 | [140] | ||
Rickettsia aeschlimannii | DNA | no | 0 | [140] | ||
Anaplasma marginale | DNA | yes | 4 | [141] | ||
Anaplasma centrale | DNA | yes | 0 | [141] | ||
Ehrlichia ruminantium | DNA | no | 0 | [41] | ||
Rickettsia sibirica mongolotimonae | DNA | no | 0 | [142] | ||
CCHFv | RNA, antigen | uncertain | 0 | [59,61,143] | ||
H. hussaini | 4/7 | Coxiella burnetii | DNA | no | 0 | [144] |
Rickettsia massiliae, Rickettsia spp. | DNA | no | 0 | [38] | ||
H. impeltatum | 62/88 | Theileria annulata | DNA | no | 2, 4 | [41,108,112,145] |
Theileria lestoquardi (Theileria hirci) | no | uncertain | 0 | [146] | ||
Theileria ovis | DNA | no | 0 | [35] | ||
Babesia occultans | DNA | no | 0 | [101] | ||
Babesia bigemina | DNA | no | 0 | [41] | ||
Babesia bovis | DNA | no | 0 | [41] | ||
Babesia pecorum | DNA | no | 0 | [35] | ||
CCHFv | RNA, antigen virus isolation | yes | 1, 2, 4 cofeeding | [61,113,147,148,149] | ||
Coxiella burnetii | DNA | no | 0 | [123,124] | ||
Alphavirus | RNA | no | 0 | [66] | ||
Dhori virus | RNA | no | 0 | [66] | ||
Sindbis virus | RNA | no | 0 | [66] | ||
Rickettsia africae | DNA | no | 0 | [140] | ||
Rickettsia aeschlimannii | DNA | no | 0 | [121,150,151] | ||
H. impressum | 10/17 | CCHFv | antigen | uncertain | 0 | [64] |
Theileria annulata | DNA | no | 0 | [108] | ||
Anaplasma/Ehrlichia spp. | DNA | no | 0 | [101] | ||
Rickettsia africae | DNA | no | 0 | [152] | ||
H. isaaci | 5/5 | Kyasanur forest virus | RNA | - | 2, 4 | [153] |
H. lusitanicum | 68/83 | Theileria equi | pathogen | no | 1, 2, 4 | [99,100] |
Babesia pecorum | No | yes | 0 | [154] | ||
Theileria annulata | No | yes | 4 | [107,155,156] | ||
CCHFv | RNA, antigen | yes | 0 | [157,158] | ||
Anaplasma phagocytophilum | DNA | no | 0 | [159] | ||
Borrelia burgdorferi | DNA | no | 0 | [160] | ||
Borrelia lusitaniae | DNA | no | 0 | [161] | ||
Coxiella burnetii | DNA | no | 0 | [162,163,164,165] | ||
H. marginatum | 451/620 | Theileria equi | DNA | yes | 0 | [130,131,166,167] |
Theileria annulata | DNA | yes | 2 | [41,51,111] | ||
Theileria sergenti/orientalis/buffeli | DNA | no | 0 | [159,166,168] | ||
Theileria ovis | DNA | no | 0 | [40,49,169] | ||
Theileria lestoquardi | DNA | no | 0 | [170] | ||
Babesia ovis | DNA, pathogen in ticks | no | 1 | [55,171] | ||
Babesia caballi | DNA | yes | 0 | [130,131,169,172] | ||
Babesia bigemina | DNA | no | 0 | [41,167] | ||
Babesia bovis | DNA | no | 0 | [41,167] | ||
Babesia occultans | DNA | yes | 2, 3 | [30,31,130,134,136,166,173,174,175,176] | ||
Babesia microti | DNA | no | 0 | [174] | ||
Babesia sp. Tavsan1 | DNA | no | 0 | [31] | ||
CCHFv | RNA, antigen | yes | 1, 2, 3, 4 | [64,65,143,158,177,178,179,180,181,182,183,184,185,186,187,188] | ||
Flavivirus | RNA | no | 0 | [189] | ||
Phlebovirus | RNA | no | 0 | [190] | ||
Bahig virus | RNA | no | 0 | [191] | ||
Batken virus (close to Dhori virus) | RNA | no | 0 | [192] | ||
Bhanja virus | RNA | no | 0 | [193] | ||
Dhori virus | RNA | no | 0 | [194,195] | ||
Tick Borne Encephalitis virus | RNA | no | 0 | [196] | ||
Jingmen virus | RNA, virus isolation | yes | 0 | |||
[197] | ||||||
Matruh virus | RNA | no | 0 | [198] | ||
Tamdy virus | RNA | no | 0 | [89] | ||
Wanowrie virus | RNA | yes | 0 | [153,199] | ||
West Nile virus | RNA | no | 2, 3 | [189,200,201,202] | ||
Rickettsia aeschlimannii | DNA | yes | 3 | [31,136,151,203,204,205,206,207,208] | ||
Rickettsia sibirica mongolitimonae | DNA | no | 0 | [31] | ||
Anaplasma marginale | DNA | no | 0 | [31,209] | ||
Rickettsia africae | DNA | no | 0 | [210] | ||
Anaplasma phagocytophilum | DNA | no | 0 | [204,211] | ||
Anaplasma platys | DNA | no | 0 | [211] | ||
Coxiella burnetii | DNA | no | 0 | [139,142,211,212,213] | ||
Francisella tularensis | DNA | no | 0 | [214] | ||
Ehrlichia monacensis (minasensis) | DNA | no | 0 | [204] | ||
Ehrlichia ruminantium | DNA | no | 0 | [41] | ||
Bartonella spp. | DNA | no | 0 | [205,213] | ||
Borrelia burgdoferi s.l. | DNA | no | 0 | [212,213] | ||
Borrelia spp. | DNA | no | 0 | [136,152] | ||
H. rufipes | 189/238 | Babesia occultans | DNA, pathogen | no | 2, 3, 4 | [175,176] |
Theileria ovis | DNA | no | 0 | [40] | ||
Theileria annulata | DNA | no | 2, 4 | [108,109,215] | ||
CCHFv | RNA, antigen, viral particles | yes | 1, 2, 3, 4 | [64,216,217,218,219,220,221,222,223,224,225] | ||
Flavivirus | RNA | no | 0 | [189] | ||
Dugbe virus | RNA | no | 2 | [226] | ||
Alkhurma hemorrhagic fever virus | RNA | no | 0 | [227] | ||
St Croix River like virus | RNA | no | 0 | [228] | ||
Rickettsia aeschlimannii | DNA | no | 0 | [35] | ||
Rickettsia conorii | DNA | no | 0 | [229] | ||
Anaplasma marginale, centrale, platys | DNA | no | 0 | [230] | ||
Coxiella burnetii | DNA | no | 0 | [74,212,231,232] | ||
Borrelia burgdorferi | RNA and DNA | no | 0 | [212,233] | ||
H. schulzei | 17/27 | Dhori virus | RNA | no | 0 | [66] |
H. scupense | 34/47 H. detritum: 61/90 | Theileria equi | No | no | 4 | [234,235] |
Theileria annulata | No | yes | 2, 4 | [107,236,237,238] | ||
Babesia ovis | DNA | no | 0 | [40] | ||
Theileria ovis | DNA | no | 0 | [40] | ||
Rickettsia aeschlimannii | DNA | no | 0 | [14,205] | ||
Rickettsia slovaca | DNA | no | 0 | [205] | ||
Anaplasma phagocytophilum | DNA | no | 0 | [205] | ||
Coxiella burnetii | DNA | no | 2, 3 | [139,239] | ||
CCHFv | RNA | uncertain | 0 | [83] | ||
H. somalicum | 2/2 | R. conorii | DNA | no | 0 | [14] |
H. truncatum | 142/193 | Theileria equi | DNA | no | 0 | [101] |
Babesia caballi | No | no | 3, 4 | [240,241] | ||
Theileria annulata | DNA | no | 0 | [108] | ||
CCHFv | RNA, viral particles | yes | 1, 2, 3, 4, 5 Cofeeding | [113,148,149,217,218,220,222,242,243,244,245,246] | ||
Bunyamwera virus | RNA | no | 0 | [247] | ||
Dugbe virus | RNA | no | 0 | [248] | ||
Venezuelan Equine Encephalitis Virus | no | 2, 4 | [249] | |||
Kupe virus | RNA | no | 0 | [248] | ||
Semliki forest virus | RNA | no | 0 | [247] | ||
Coxiella burnetii | DNA | no | 0 | [152,232,250] | ||
Borrelia spp. | DNA | no | 0 | [152,232] | ||
H. turanicum | 24/36 | CCHFv | RNA | no | 0 | [187] |
Rickettsia sibirica mongolitimonae | DNA | no | 0 | [140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonnet, S.I.; Bertagnoli, S.; Falchi, A.; Figoni, J.; Fite, J.; Hoch, T.; Quillery, E.; Moutailler, S.; Raffetin, A.; René-Martellet, M.; et al. An Update of Evidence for Pathogen Transmission by Ticks of the Genus Hyalomma. Pathogens 2023, 12, 513. https://doi.org/10.3390/pathogens12040513
Bonnet SI, Bertagnoli S, Falchi A, Figoni J, Fite J, Hoch T, Quillery E, Moutailler S, Raffetin A, René-Martellet M, et al. An Update of Evidence for Pathogen Transmission by Ticks of the Genus Hyalomma. Pathogens. 2023; 12(4):513. https://doi.org/10.3390/pathogens12040513
Chicago/Turabian StyleBonnet, Sarah I., Stéphane Bertagnoli, Alessandra Falchi, Julie Figoni, Johanna Fite, Thierry Hoch, Elsa Quillery, Sara Moutailler, Alice Raffetin, Magalie René-Martellet, and et al. 2023. "An Update of Evidence for Pathogen Transmission by Ticks of the Genus Hyalomma" Pathogens 12, no. 4: 513. https://doi.org/10.3390/pathogens12040513
APA StyleBonnet, S. I., Bertagnoli, S., Falchi, A., Figoni, J., Fite, J., Hoch, T., Quillery, E., Moutailler, S., Raffetin, A., René-Martellet, M., Vourc’h, G., & Vial, L. (2023). An Update of Evidence for Pathogen Transmission by Ticks of the Genus Hyalomma. Pathogens, 12(4), 513. https://doi.org/10.3390/pathogens12040513