Overview of North American Isolates of Chronic Wasting Disease Used for Strain Research
<p>Representation of a social network of chronic wasting disease (CWD) strain researchers showing the connections between senior authors and their collaborators. Each circle represents a researcher. The size of the circle indicates the significance (based on publication numbers and collaboratives) of that researcher in this CWD strain community. The link between the two circles indicates collaboration between the two researchers.</p> "> Figure 2
<p>The bipartite network indicates the relationship between infected isolates and their associated publications. The infected isolates column (<b>left</b>), width of the colored bar represents the number of publications for that specific infected isolate. The publications column (<b>right</b>) represents the number of infected isolates used in the publication.</p> "> Figure 3
<p>Geographic distribution of predicted and known chronic wasting disease (CWD) strains and their respective endemic zone in free-ranging cervids in North America. Chronic wasting disease endemic zones translated from within the remaining range of positive cervids currently unknown as to strain type [<a href="#B20-pathogens-14-00250" class="html-bibr">20</a>].</p> ">
Abstract
:1. Introduction
1.1. Factors and Challenges in CWD Strain Research
1.2. Strain Typing Data Reproducibility and Comparability
1.3. Strain Mixtures in Nature
2. Materials and Methods
2.1. CWD Senior Research Network
2.2. CWD Isolate Review
3. Results
3.1. North America CWD Strains
3.1.1. CWD1 and CWD2
3.1.2. Wisc-1/H95+
- Q95G96/Q95G96 (wt/wt): Deer expressing Prnp genes encoding Q95G96-PrPC, also known as wt-PrPC, which is canonically the most abundant PrPC molecule in white-tailed deer and mule deer. Deer homozygous for wt-PrPC developed CWD first. Animal IDs: 1293, 1291, 1289, 1277, 1295, and 1287 (preclinical; died of intercurrent gut infection 416 days post-exposure).
- Q95S96/Q95G96 (S96/wt): Second deer genotype that developed CWD consisted of heterozygous animals expressing wt-PrPC and S96-PrPC. Animal IDs: 1281, 1275, and 1285.
- H95G96/Q95G96 (H95/wt): Third genotype to developed CWD comprised a single heterozygous individual expressing wt-PrPC and H95-PrPC. Animal ID: 1279.
- H95G96/Q95S96 (H95/S96): Last genotype that developed CWD had no wt-PrPC and expressed H95-PrPC and S96-PrPC. Animal ID: 1297.
3.1.3. 116AG
3.1.4. 132LL Elk CWD
3.1.5. Other Isolates of CWD in North America
3.2. Spatial Representation of North American CWD Strains
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CWD | Chronic wasting disease |
PMCA | Protein misfolding cyclic amplification |
PrPC | Normal prion protein |
Prnp | Prion protein gene |
CJD | Creutzfeldt–Jakob disease |
References
- Béringue, V.; Vilotte, J.L.; Laude, H. Prion Agent Diversity and Species Barrier. Vet. Res. 2008, 39, 47. [Google Scholar] [CrossRef] [PubMed]
- Daus, M.L.; Breyer, J.; Wagenfuehr, K.; Wemheuer, W.M.; Thomzig, A.; Schulz-Schaeffer, W.J.; Beekes, M. Presence and Seeding Activity of Pathological Prion Protein (PrP(TSE)) in Skeletal Muscles of White-Tailed Deer Infected with Chronic Wasting Disease. PLoS ONE 2011, 6, e18345. [Google Scholar] [CrossRef] [PubMed]
- Daus, M.L.; Beekes, M. Chronic Wasting Disease: Fingerprinting the Culprit in Risk Assessments. Prion 2012, 6, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Houston, F.; Andréoletti, O. Animal Prion Diseases: The Risks to Human Health. Brain Pathol. 2019, 29, 248–262. [Google Scholar] [CrossRef]
- Imran, M.; Mahmood, S. An Overview of Animal Prion Diseases. Virol. J. 2011, 8, 493. [Google Scholar] [CrossRef]
- Oesch, B.; Westaway, D.; Wälchli, M.; McKinley, M.P.; Kent, S.B.; Aebersold, R.; Barry, R.A.; Tempst, P.; Teplow, D.B.; Hood, L.E. A Cellular Gene Encodes Scrapie PrP 27-30 Protein. Cell 1985, 40, 735–746. [Google Scholar] [CrossRef]
- Race, R.E.; Raines, A.; Baron, T.G.; Miller, M.W.; Jenny, A.; Williams, E.S. Comparison of Abnormal Prion Protein Glycoform Patterns from Transmissible Spongiform Encephalopathy Agent-Infected Deer, Elk, Sheep, and Cattle. J. Virol. 2002, 76, 12365–12368. [Google Scholar] [CrossRef]
- Race, B.; Meade-White, K.D.; Miller, M.W.; Barbian, K.D.; Rubenstein, R.; LaFauci, G.; Cervenakova, L.; Favara, C.; Gardner, D.; Long, D.; et al. Susceptibilities of Nonhuman Primates to Chronic Wasting Disease. Emerg. Infect. Dis. 2009, 15, 1366–1376. [Google Scholar] [CrossRef]
- Johnson, C.J.; Aiken, J.M.; McKenzie, D.; Samuel, M.D.; Pedersen, J.A. Highly Efficient Amplification of Chronic Wasting Disease Agent by Protein Misfolding Cyclic Amplification with Beads (PMCAb). PLoS ONE 2012, 7, e35383. [Google Scholar] [CrossRef]
- Meyerett-Reid, C.; Wyckoff, A.C.; Spraker, T.; Pulford, B.; Bender, H.; Zabel, M.D. De Novo Generation of a Unique Cervid Prion Strain Using Protein Misfolding Cyclic Amplification. mSphere 2017, 2. [Google Scholar] [CrossRef]
- Aguzzi, A.; Heikenwalder, M.; Polymenidou, M. Insights into Prion Strains and Neurotoxicity. Nat. Rev. Mol. Cell Biol. 2007, 8, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Collinge, J. Prion Strain Mutation and Selection. Science 2010, 328, 1111–1112. [Google Scholar] [CrossRef] [PubMed]
- Holec, S.A.M.; Yuan, Q.; Bartz, J.C. Alteration of Prion Strain Emergence by Nonhost Factors. mSphere 2019, 4. [Google Scholar] [CrossRef] [PubMed]
- Telling, G.C. Nucleic Acid-Free Mutation of Prion Strains. Prion 2010, 4, 252–255. [Google Scholar] [CrossRef]
- Bessen, R.A.; Kocisko, D.A.; Raymond, G.J.; Nandan, S.; Lansbury, P.T.; Caughey, B. Non-Genetic Propagation of Strain-Specific Properties of Scrapie Prion Protein. Nature 1995, 375, 698–700. [Google Scholar] [CrossRef]
- Block, A.J.; Bartz, J.C. Prion Strains: Shining New Light on Old Concepts. Cell Tissue Res. 2023, 392, 113–133. [Google Scholar] [CrossRef]
- Pritzkow, S. Transmission, Strain Diversity, and Zoonotic Potential of Chronic Wasting Disease. Viruses 2022, 14, 1390. [Google Scholar] [CrossRef]
- Williams, E.S.; Young, S. Chronic Wasting Disease of Captive Mule Deer: A Spongiform Encephalopathy. J. Wildl. Dis. 1980, 16, 89–98. [Google Scholar] [CrossRef]
- Williams, E.S.; Young, S. Spongiform Encephalopathy of Rocky Mountain Elk. J. Wildl. Dis. 1982, 18, 465–471. [Google Scholar] [CrossRef]
- [USGS], United States Geological Survey. Expanding Distribution of Chronic Wasting Disease. United States Geological Survey [USGS]. Available online: https://www.usgs.gov/centers/nwhc/science/expanding-distribution-chronic-wasting-disease?qt-science_center_objects=0#qt-science_center_objects (accessed on 16 February 2024).
- Nonno, R.; Di Bari, M.A.; Pirisinu, L.; D’Agostino, C.; Vanni, I.; Chiappini, B.; Marcon, S.; Riccardi, G.; Tran, L.; Vikøren, T.; et al. Studies in Bank Voles Reveal Strain Differences between Chronic Wasting Disease Prions from Norway and North America. Proc. Natl. Acad. Sci. USA 2020, 117, 31417–31426. [Google Scholar] [CrossRef]
- Sun, J.L.; Kim, S.; Crowell, J.; Webster, B.K.; Raisley, E.K.; Lowe, D.C.; Bian, J.; Korpenfelt, S.L.; Benestad, S.L.; Telling, G.C. Novel Prion Strain as Cause of Chronic Wasting Disease in a Moose, Finland. Emerg. Infect. Dis. 2023, 29, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Pritzkow, S.; Gorski, D.; Ramirez, F.; Telling, G.C.; Benestad, S.L.; Soto, C. North American and Norwegian Chronic Wasting Disease Prions Exhibit Different Potential for Interspecies Transmission and Zoonotic Risk. J. Infect. Dis. 2021, 225, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Bian, J.; Kim, S.; Kane, S.J.; Crowell, J.; Sun, J.L.; Christiansen, J.; Saijo, E.; Moreno, J.A.; DiLisio, J.; Burnett, E.; et al. Adaptive Selection of a Prion Strain Conformer Corresponding to Established North American CWD During Propagation of Novel Emergent Norwegian Strains in Mice Expressing Elk or Deer Prion Protein. PLoS Pathog. 2021, 17, e1009748. [Google Scholar] [CrossRef] [PubMed]
- Hamir, A.N.; Greenlee, J.J.; Nicholson, E.M.; Kunkle, R.A.; Richt, J.A.; Miller, J.M.; Hall, M. Experimental Transmission of Chronic Wasting Disease (CWD) from Elk and White-Tailed Deer to Fallow Deer by Intracerebral Route: Final Report. Can. J. Vet. Res. 2011, 75, 152–156. [Google Scholar]
- Herbst, A.; Velásquez, C.D.; Triscott, E.; Aiken, J.M.; McKenzie, D. Chronic Wasting Disease Prion Strain Emergence and Host Range Expansion. Emerg. Infect. Dis. 2017, 23, 1598–1600. [Google Scholar] [CrossRef]
- Raymond, G.J.; Raymond, L.D.; Meade-White, K.D.; Hughson, A.G.; Favara, C.; Gardner, D.; Williams, E.S.; Miller, M.W.; Race, R.E.; Caughey, B. Transmission and Adaptation of Chronic Wasting Disease to Hamsters and Transgenic Mice: Evidence for Strains. J. Virol. 2007, 81, 4305–4314. [Google Scholar] [CrossRef]
- Bessen, R.A.; Robinson, C.J.; Seelig, D.M.; Watschke, C.P.; Lowe, D.; Shearin, H.; Martinka, S.; Babcock, A.M. Transmission of Chronic Wasting Disease Identifies a Prion Strain Causing Cachexia and Heart Infection in Hamsters. PLoS ONE 2011, 6, e28026. [Google Scholar] [CrossRef]
- Crowell, J.; Hughson, A.; Caughey, B.; Bessen, R.A. Host Determinants of Prion Strain Diversity Independent of Prion Protein Genotype. J. Virol. 2015, 89, 10427–10441. [Google Scholar] [CrossRef]
- Baral, P.K.; Swayampakula, M.; Aguzzi, A.; James, M.N. X-ray Structural and Molecular Dynamical Studies of the Globular Domains of Cow, Deer, Elk and Syrian Hamster Prion Proteins. J. Struct. Biol. 2015, 192, 37–47. [Google Scholar] [CrossRef]
- Orrú, C.D.; Groveman, B.R.; Raymond, L.D.; Hughson, A.G.; Nonno, R.; Zou, W.; Ghetti, B.; Gambetti, P.; Caughey, B. Bank Vole Prion Protein as an Apparently Universal Substrate for RT-QuIC-Based Detection and Discrimination of Prion Strains. PLoS Pathog. 2015, 11, e1004983. [Google Scholar] [CrossRef]
- Watts, J.C.; Giles, K.; Patel, S.; Oehler, A.; DeArmond, S.J.; Prusiner, S.B. Evidence That Bank Vole PrP Is a Universal Acceptor for Prions. PLoS Pathog. 2014, 10, e1003990. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.J.; Carlson, C.M.; Schneider, J.R.; Johnson, C.J.; Greenlee, J.J. Increased Attack Rates and Decreased Incubation Periods in Raccoons with Chronic Wasting Disease Passaged Through Meadow Voles. Emerg. Infect. Dis. 2022, 28, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Cassmann, E.D.; Moore, S.J.; Greenlee, J.J. Experimental Oronasal Transmission of Chronic Wasting Disease Agent from White-Tailed Deer to Suffolk Sheep. Emerg. Infect. Dis. 2021, 27, 3156–3158. [Google Scholar] [CrossRef] [PubMed]
- Cassmann, E.D.; Frese, R.D.; Greenlee, J.J. Second Passage of Chronic Wasting Disease of Mule Deer to Sheep by Intracranial Inoculation Compared to Classical Scrapie. J. Vet. Diagn. Investig. 2021, 33, 711–720. [Google Scholar] [CrossRef]
- Harrathi, C.; Fernández-Borges, N.; Eraña, H.; Elezgarai, S.R.; Venegas, V.; Charco, J.M.; Castilla, J. Insights into the Bidirectional Properties of the Sheep-Deer Prion Transmission Barrier. Mol. Neurobiol. 2019, 56, 5287–5303. [Google Scholar] [CrossRef]
- Bartz, J.C.; Marsh, R.F.; McKenzie, D.I.; Aiken, J.M. The Host Range of Chronic Wasting Disease Is Altered on Passage in Ferrets. Virology 1998, 251, 297–301. [Google Scholar] [CrossRef]
- Perrott, M.R.; Sigurdson, C.J.; Mason, G.L.; Hoover, E.A. Evidence for Distinct Chronic Wasting Disease (CWD) Strains in Experimental CWD in Ferrets. J. Gen. Virol. 2012, 93, 212–221. [Google Scholar] [CrossRef]
- Greenlee, J.J.; Nicholson, E.M.; Smith, J.D.; Kunkle, R.A.; Hamir, A.N. Susceptibility of Cattle to the Agent of Chronic Wasting Disease from Elk after Intracranial Inoculation. J. Vet. Diagn. Investig. 2012, 24, 1087–1093. [Google Scholar] [CrossRef]
- Raymond, G.J.; Bossers, A.; Raymond, L.D.; O’Rourke, K.I.; McHolland, L.E.; Bryant, P.K.; Miller, M.W.; Williams, E.S.; Smits, M.; Caughey, B. Evidence of a Molecular Barrier Limiting Susceptibility of Humans, Cattle and Sheep to Chronic Wasting Disease. EMBO J. 2000, 19, 4425–4430. [Google Scholar] [CrossRef]
- Cook, M.; Hensley-McBain, T.; Grindeland, A. Mouse Models of Chronic Wasting Disease: A Review. Front. Virol. 2023, 3, 1055487. [Google Scholar] [CrossRef]
- Herbst, A.; Wohlgemuth, S.; Yang, J.; Castle, A.R.; Moreno, D.M.; Otero, A.; Aiken, J.M.; Westaway, D.; McKenzie, D. Susceptibility of Beavers to Chronic Wasting Disease. Biology 2022, 11, 667. [Google Scholar] [CrossRef] [PubMed]
- Angers, R.C.; Kang, H.E.; Napier, D.; Browning, S.; Seward, T.; Mathiason, C.; Balachandran, A.; McKenzie, D.; Castilla, J.; Soto, C.; et al. Prion Strain Mutation Determined by Prion Protein Conformational Compatibility and Primary Structure. Science 2010, 328, 1154–1158. [Google Scholar] [CrossRef] [PubMed]
- Arifin, M.I.; Hannaoui, S.; Chang, S.C.; Thapa, S.; Schatzl, H.M.; Gilch, S. Cervid Prion Protein Polymorphisms: Role in Chronic Wasting Disease Pathogenesis. Int. J. Mol. Sci. 2021, 22, 2271. [Google Scholar] [CrossRef] [PubMed]
- Hannaoui, S.; Triscott, E.; Duque Velásquez, C.; Chang, S.C.; Arifin, M.I.; Zemlyankina, I.; Tang, X.; Bollinger, T.; Wille, H.; McKenzie, D.; et al. New and Distinct Chronic Wasting Disease Strains Associated with Cervid Polymorphism at Codon 116 of the Prnp Gene. PLoS Pathog. 2021, 17, e1009795. [Google Scholar] [CrossRef]
- Hannaoui, S.; Zemlyankina, I.; Chang, S.C.; Arifin, M.I.; Béringue, V.; McKenzie, D.; Schatzl, H.M.; Gilch, S. Transmission of Cervid Prions to Humanized Mice Demonstrates the Zoonotic Potential of CWD. Acta Neuropathol. 2022, 144, 767–784. [Google Scholar] [CrossRef]
- Otero, A.; Duque Velasquez, C.; McKenzie, D.; Aiken, J. Emergence of CWD Strains. Cell Tissue Res. 2023, 392, 135–148. [Google Scholar] [CrossRef]
- Duque Velásquez, C.; Kim, C.; Herbst, A.; Daude, N.; Garza, M.C.; Wille, H.; Aiken, J.; McKenzie, D. Deer Prion Proteins Modulate the Emergence and Adaptation of Chronic Wasting Disease Strains. J. Virol. 2015, 89, 12362–12373. [Google Scholar] [CrossRef]
- Béringue, V.; Herzog, L.; Jaumain, E.; Reine, F.; Sibille, P.; Le Dur, A.; Vilotte, J.L.; Laude, H. Facilitated Cross-Species Transmission of Prions in Extraneural tissue. Science 2012, 335, 472–475. [Google Scholar] [CrossRef]
- Collinge, J.; Clarke, A.R. A General Model of Prion Strains and Their Pathogenicity. Science 2007, 318, 930–936. [Google Scholar] [CrossRef]
- Bosque, P.J. Bovine Spongiform Encephalopathy, Chronic Wasting Disease, Scrapie, and the Threat to Humans from Prion Disease Epizootics. Curr. Neurol. Neurosci. Rep. 2002, 2, 488–495. [Google Scholar] [CrossRef]
- Bruce, M.E.; Boyle, A.; Cousens, S.; McConnell, I.; Foster, J.; Goldmann, W.; Fraser, H. Strain Characterization of Natural Sheep Scrapie and Comparison with BSE. J. Gen. Virol. 2002, 83, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Bian, J.; Christiansen, J.R.; Moreno, J.A.; Kane, S.J.; Khaychuk, V.; Gallegos, J.; Kim, S.; Telling, G.C. Primary Structural Differences At Residue 226 of Deer and Elk PrP Dictate Selection of Distinct CWD Prion Strains in Gene-Targeted Mice. Proc. Natl. Acad. Sci. USA 2019, 116, 12478–12487. [Google Scholar] [CrossRef] [PubMed]
- Angers, R.C.; Seward, T.S.; Napier, D.; Green, M.; Hoover, E.; Spraker, T.; O’Rourke, K.; Balachandran, A.; Telling, G.C. Chronic Wasting Disease Prions in Elk Antler Velvet. Emerg. Infect. Dis. 2009, 15, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Browning, S.R.; Mason, G.L.; Seward, T.; Green, M.; Eliason, G.A.; Mathiason, C.; Miller, M.W.; Williams, E.S.; Hoover, E.; Telling, G.C. Transmission of Prions from Mule Deer and Elk with Chronic Wasting Disease to Transgenic Mice Expressing Cervid PrP. J. Virol. 2004, 78, 13345–13350. [Google Scholar] [CrossRef]
- Green, K.M.; Browning, S.R.; Seward, T.S.; Jewell, J.E.; Ross, D.L.; Green, M.A.; Williams, E.S.; Hoover, E.A.; Telling, G.C. The Elk PRNP Codon 132 Polymorphism Controls Cervid and Scrapie Prion Propagation. J. Gen. Virol. 2008, 89, 598–608. [Google Scholar] [CrossRef]
- Angers, R.C.; Browning, S.R.; Seward, T.S.; Sigurdson, C.J.; Miller, M.W.; Hoover, E.A.; Telling, G.C. Prions in Skeletal Muscles of Deer with Chronic Wasting Disease. Science 2006, 311, 1117. [Google Scholar] [CrossRef]
- Green, K.M.; Castilla, J.; Seward, T.S.; Napier, D.L.; Jewell, J.E.; Soto, C.; Telling, G.C. Accelerated High Fidelity Prion Amplification within and Across Prion Species Barriers. PLoS Pathog. 2008, 4, e1000139. [Google Scholar] [CrossRef]
- Otero, A.; Duque Velásquez, C.; Aiken, J.; McKenzie, D. White-Tailed Deer S96 Prion Protein Does Not Support Stable In Vitro Propagation of Most Common CWD Strains. Sci. Rep. 2021, 11, 11193. [Google Scholar] [CrossRef]
- Pushie, M.J.; Shaykhutdinov, R.; Nazyrova, A.; Graham, C.; Vogel, H.J. An NMR Metabolomics Study of Elk Inoculated with Chronic Wasting Disease. J. Toxicol. Environ. Health A 2011, 74, 1476–1492. [Google Scholar] [CrossRef]
- Gordon, P.M.; Schütz, E.; Beck, J.; Urnovitz, H.B.; Graham, C.; Clark, R.; Dudas, S.; Czub, S.; Sensen, M.; Brenig, B.; et al. Disease-specific Motifs Can Be Identified in Circulating Nucleic Acids from Live Elk and Cattle Infected with Transmissible Spongiform Encephalopathies. Nucleic Acids Res. 2009, 37, 550–556. [Google Scholar] [CrossRef]
- Johnson, C.J.; Herbst, A.; Duque-Velasquez, C.; Vanderloo, J.P.; Bochsler, P.; Chappell, R.; McKenzie, D. Prion Protein Polymorphisms Affect Chronic Wasting Disease Progression. PLoS ONE 2011, 6, e17450. [Google Scholar] [CrossRef] [PubMed]
- Duque Velásquez, C.; Kim, C.; Haldiman, T.; Herbst, A.; Aiken, J.; Safar, J.G.; McKenzie, D. Chronic Wasting Disease (CWD) Prion Strains Evolve via Adaptive Diversification of Conformers in Hosts Expressing Prion Protein Polymorphisms. J. Biol. Chem. 2020, 295, 4985–5001. [Google Scholar] [CrossRef] [PubMed]
- Hannaoui, S.; Amidian, S.; Cheng, Y.C.; Duque Velásquez, C.; Dorosh, L.; Law, S.; Telling, G.; Stepanova, M.; McKenzie, D.; Wille, H.; et al. Destabilizing Polymorphism in Cervid Prion Protein Hydrophobic Core Determines Prion Conformation and Conversion Efficiency. PLoS Pathog. 2017, 13, e1006553. [Google Scholar] [CrossRef] [PubMed]
- Otero, A.; Duque Velásquez, C.; Johnson, C.; Herbst, A.; Bolea, R.; Badiola, J.J.; Aiken, J.; McKenzie, D. Prion Protein Polymorphisms Associated with Reduced CWD Susceptibility Limit Peripheral PrP. BMC Vet. Res. 2019, 15, 50. [Google Scholar] [CrossRef]
- Dickinson, A.G.; Meikle, V.M. Host-Genotype and Agent Effects in Scrapie Incubation: Change in Allelic Interaction with Different Strains of Agent. Mol. Gen. Genet. 1971, 112, 73–79. [Google Scholar] [CrossRef]
- Cortez, L.M.; Sim, V.L. Implications of Prion Polymorphisms. Prion 2013, 7, 276–279. [Google Scholar] [CrossRef]
- Carta, M.; Aguzzi, A. Molecular Foundations of Prion Strain Diversity. Curr. Opin. Neurobiol. 2022, 72, 22–31. [Google Scholar] [CrossRef]
- Safar, J.G.; Xiao, X.; Kabir, M.E.; Chen, S.; Kim, C.; Haldiman, T.; Cohen, Y.; Chen, W.; Cohen, M.L.; Surewicz, W.K. Structural Determinants of Phenotypic Diversity and Replication Rate of Human Prions. PLoS Pathog. 2015, 11, e1004832. [Google Scholar] [CrossRef]
- Tamgüney, G.; Giles, K.; Bouzamondo-Bernstein, E.; Bosque, P.J.; Miller, M.W.; Safar, J.; DeArmond, S.J.; Prusiner, S.B. Transmission of Elk and Deer Prions to Transgenic Mice. J. Virol. 2006, 80, 9104–9114. [Google Scholar] [CrossRef]
- Watts, J.C.; Prusiner, S.B. Mouse Models for Studying the Formation and Propagation of Prions. J. Biol. Chem. 2014, 289, 19841–19849. [Google Scholar] [CrossRef]
- Arifin, M.I.; Hannaoui, S.; Ng, R.A.; Zeng, D.; Zemlyankina, I.; Ahmed-Hassan, H.; Schatzl, H.M.; Kaczmarczyk, L.; Jackson, W.S.; Benestad, S.L.; et al. Norwegian Moose CWD Induces Clinical Disease and Neuroinvasion in Gene-Targeted Mice Expressing Cervid S138N Prion Protein. PLoS Pathog. 2024, 20, e1012350. [Google Scholar] [CrossRef] [PubMed]
- Cassard, H.; Huor, A.; Espinosa, J.C.; Douet, J.Y.; Lugan, S.; Aron, N.; Vilette, D.; Delisle, M.B.; Marín-Moreno, A.; Peran, P.; et al. Prions from Sporadic Creutzfeldt-Jakob Disease Patients Propagate as Strain Mixtures. mBio 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, A.; Iwasaki, Y.; Takao, M.; Saito, Y.; Iwaki, T.; Qi, Z.; Torimoto, R.; Shimazaki, T.; Munesue, Y.; Isoda, N.; et al. A Novel Combination of Prion Strain Co-Occurrence in Patients with Sporadic Creutzfeldt-Jakob Disease. Am. J. Pathol. 2019, 189, 1276–1283. [Google Scholar] [CrossRef] [PubMed]
- Saunders, S.E.; Bartz, J.C.; Bartelt-Hunt, S.L. Influence of Prion Strain on Prion Protein Adsorption to Soil in a Competitive Matrix. Environ. Sci. Technol. 2009, 43, 5242–5248. [Google Scholar] [CrossRef]
- Schutt, C.R.; Bartz, J.C. Prion Interference with Multiple Prion Isolates. Prion 2008, 2, 61–63. [Google Scholar] [CrossRef]
- Sigurdson, C.J.; Bartz, J.C.; Glatzel, M. Cellular and Molecular Mchanisms of pion dsease. Annu. Rev. Pathol. 2019, 14, 497–516. [Google Scholar] [CrossRef]
- Sigurdson, C.J.; Nilsson, K.P.; Hornemann, S.; Manco, G.; Polymenidou, M.; Schwarz, P.; Leclerc, M.; Hammarström, P.; Wüthrich, K.; Aguzzi, A. Prion Strain Discrimination Using Luminescent Conjugated Polymers. Nat. Methods 2007, 4, 1023–1030. [Google Scholar] [CrossRef]
- Saunders, S.E.; Bartelt-Hunt, S.L.; Bartz, J.C. Occurrence, Transmission, and Zoonotic Potential of Chronic Wasting Disease. Emerg. Infect. Dis. 2012, 18, 369–376. [Google Scholar] [CrossRef]
- Barria, M.A.; Balachandran, A.; Morita, M.; Kitamoto, T.; Barron, R.; Manson, J.; Knight, R.; Ironside, J.W.; Head, M.W. Molecular Barriers to Zoonotic Transmission of Prions. Emerg. Infect. Dis. 2014, 20, 88–97. [Google Scholar] [CrossRef]
- CIDRAP. Center for Infectious Disease Research and Policy. Available online: https://www.cidrap.umn.edu/ (accessed on 21 February 2025).
- Dormann, C.; Gruber, B.; Fruend, J. Introducing the Bipartite Package: Analysing Ecological Networks. R News 2008, 8, 8–11. Available online: https://journal.r-project.org/articles/RN-2008-010/ (accessed on 21 February 2025).
- Csárdi, G.; Nepusz, T. The Igraph Software Package for Complex Network Research. Comput. Sci. Eng. 2006. Available online: https://api.semanticscholar.org/CorpusID:16923281 (accessed on 21 February 2025).
- Robinson, S.J.; Samuel, M.D.; O’Rourke, K.I.; Johnson, C.J. The Role of Genetics in Chronic Wasting Disease of North American Cervids. Prion 2012, 6, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Le Dur, A.; Lai, T.L.; Stinnakre, M.G.; Laisne, A.; Chenais, N.; Rakotobe, S.; Passet, B.; Reine, F.; Soulier, S.; Herzog, L.; et al. Divergent Prion Strain Evolution Driven by PrP(C) Expression Level in Transgenic Mice. Nat. Commun. 2017, 8, 14170. [Google Scholar] [CrossRef] [PubMed]
- Meade-White, K.; Race, B.; Trifilo, M.; Bossers, A.; Favara, C.; Lacasse, R.; Miller, M.; Williams, E.; Oldstone, M.; Race, R.; et al. Resistance to Chronic Wasting Disease in Transgenic Mice Expressing a Naturally Occurring Allelic Variant of Deer Prion Protein. J. Virol. 2007, 81, 4533–4539. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.J.; Erickson-Beltran, M.L.; Duque Velásquez, C.; Aiken, J.M.; McKenzie, D. A General Mass Spectrometry-Based Method of Quantitating Prion Polymorphisms from Heterozygous Chronic Wasting Disease-Infected Cervids. Anal. Chem. 2020, 92, 1276–1284. [Google Scholar] [CrossRef]
- Hannaoui, S.; Schatzl, H.M.; Gilch, S. Chronic Wasting Disease: Emerging Prions and Their Potential Risk. PLoS Pathog. 2017, 13, e1006619. [Google Scholar] [CrossRef]
- O’Rourke, K.I.; Spraker, T.R.; Zhuang, D.; Greenlee, J.J.; Gidlewski, T.E.; Hamir, A.N. Elk with a Long Incubation Prion Disease Phenotype Have a Unique PrPd Profile. Neuroreport 2007, 18, 1935–1938. [Google Scholar] [CrossRef]
- Moore, S.J.; Vrentas, C.E.; Hwang, S.; West Greenlee, M.H.; Nicholson, E.M.; Greenlee, J.J. Pathologic and Biochemical Characterization of PrP. BMC Vet. Res. 2018, 14, 80. [Google Scholar] [CrossRef]
- Kong, Q.; Huang, S.; Zou, W.; Vanegas, D.; Wang, M.; Wu, D.; Yuan, J.; Zheng, M.; Bai, H.; Deng, H.; et al. Chronic Wasting Disease of Elk: Transmissibility to Humans Examined by Transgenic Mouse Models. J. Neurosci. 2005, 25, 7944–7949. [Google Scholar] [CrossRef]
- Moore, J.; Tatum, T.; Hwang, S.; Vrentas, C.; West Greenlee, M.H.; Kong, Q.; Nicholson, E.; Greenlee, J. Novel Strain of the Chronic Wasting Disease Agent Isolated from Experimentally Inoculated Elk with LL132 Prion Protein. Sci. Rep. 2020, 10, 3148. [Google Scholar] [CrossRef]
- Wolfe, L.L.; Fox, K.A.; Miller, M.W. “Atypical” Chronic Wasting Disease in PRNP Genotype 225FF Mule Deer. J. Wildl. Dis. 2014, 50, 660–665. [Google Scholar] [CrossRef]
- Angers, R.; Christiansen, J.; Nalls, A.V.; Kang, H.E.; Hunter, N.; Hoover, E.; Mathiason, C.K.; Sheetz, M.; Telling, G.C. Structural Effects of PrP Polymorphisms on Intra- and Interspecies Prion Transmission. Proc. Natl. Acad. Sci. USA 2014, 111, 11169–11174. [Google Scholar] [CrossRef] [PubMed]
- Baeten, L.A.; Powers, B.E.; Jewell, J.E.; Spraker, T.R.; Miller, M.W. A Natural Case of Chronic Wasting Disease in a Free-Ranging Moose (Alces Alces Shirasi). J. Wildl. Dis. 2007, 43, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Haley, N.J.; Hoover, E.A. Chronic Wasting Disease of Cervids: Current Knowledge and Future Perspectives. Annu. Rev. Anim. Biosci. 2015, 3, 305–325. [Google Scholar] [CrossRef] [PubMed]
- Soldevila, M.; Calafell, F.; Andrés, A.M.; Yagüe, J.; Helgason, A.; Stefánsson, K.; Bertranpetit, J. Prion Susceptibility and Protective Alleles Exhibit Marked Geographic Differences. Hum. Mutat. 2003, 22, 104–105. [Google Scholar] [CrossRef]
- Zlotnik, I.; Rennie, J.C. Further Observations on the Experimental Transmission of Scrapie from Sheep and Goats to Laboratory Mice. J. Comp. Pathol. 1963, 73, 150–162. [Google Scholar] [CrossRef]
- Zlotnik, I.; Rennie, J.C. Experimental Transmission of Mouse Passaged Scrapie to Goats, Sheep, Rats and Hamsters. J. Comp. Pathol. 1965, 75, 147–157. [Google Scholar] [CrossRef]
- Kimberlin, R. Slow Virus Diseases of Animals and Man. In North-Holland Research Monographs; North-Holland Pub. Co.: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Ernst, S.; Nonno, R.; Langeveld, J.; Andreoletti, O.; Acin, C.; Papasavva-Stylianou, P.; Sklaviadis, T.; Acutis, P.L.; van Keulen, L.; Spiropoulos, J.; et al. Characterisation of European Field Goat Prion Isolates in Ovine PrP Overexpressing Transgenic Mice (Tgshp IX) Reveals Distinct Prion Strains. Pathogens 2024, 13, 629. [Google Scholar] [CrossRef]
- Nonno, R.; Marin-Moreno, A.; Carlos Espinosa, J.; Fast, C.; Van Keulen, L.; Spiropoulos, J.; Lantier, I.; Andreoletti, O.; Pirisinu, L.; Di Bari, M.A.; et al. Characterization of Goat Prions Demonstrates Geographical Variation of Scrapie Strains in Europe and Reveals the Composite Nature of Prion Strains. Sci. Rep. 2020, 10, 19. [Google Scholar] [CrossRef]
- Marin-Moreno, A.; Aguilar-Calvo, P.; Espinosa, J.C.; Zamora-Ceballos, M.; Pitarch, J.L.; Gonzalez, L.; Fernandez-Borges, N.; Orge, L.; Andreoletti, O.; Nonno, R.; et al. Classical Scrapie in Small Ruminants Is Caused by at Least Four Different Prion Strains. Vet. Res. 2021, 52, 57. [Google Scholar] [CrossRef]
- NC1209. NC1209: North American Interdisciplinary Chronic Wasting Disease Research Consortium. Available online: https://www.cwd-research.com/home (accessed on 15 May 2023).
- Barria, M.A.; Libori, A.; Mitchell, G.; Head, M.W. Susceptibility of Human Prion Protein to Conversion by Chronic Wasting Disease Prions. Emerg. Infect. Dis. 2018, 24, 1482–1489. [Google Scholar] [CrossRef]
- Benavente, R.; Reed, J.H.; Lockwood, M.; Morales, R. PMCA Screening of Retropharyngeal Lymph Nodes in White-Tailed Deer and Comparisons with ELISA and IHC. Sci. Rep. 2023, 13, 20171. [Google Scholar] [CrossRef]
- Alam, P.; Hoyt, F.; Artikis, E.; Soukup, J.; Hughson, A.G.; Schwartz, C.L.; Barbian, K.; Miller, M.W.; Race, B.; Caughey, B. Cryo-EM Structure of a Natural Prion: Chronic Wasting Disease Fibrils from Deer. Acta Neuropathol. 2024, 148, 56. [Google Scholar] [CrossRef]
Animal_ID | Strain | Species | State | Tissue | References |
---|---|---|---|---|---|
012-09442 | CWD1 | Elk | Colorado | Brain | [43,53] |
012-22012 | CWD1 | Elk | Colorado | Brain | [43] |
001-44720 | CWD1/CWD2 | Elk | Colorado | Brain | [43,53] |
02-0306 | CWD1/CWD2 | Elk | Saskatchewan | Antler velvet, Brain | [43,54] |
7378-47 | CWD1/CWD2 | Elk | Wyoming | Brain | [43,54,55,56] |
W97 | CWD1/CWD2 | Mule Deer | Colorado | Brain | [43] |
7138 | CWD1/CWD2 | Mule Deer | Wyoming | Brain | [43] |
8481 | CWD1/CWD2 | Mule Deer | Wyoming | Brain | [43] |
8905 | CWD1/CWD2 | Mule Deer | Wyoming | Brain | [43] |
WTD_Angers | CWD1 | White-tailed Deer | Wisconsin | Brain | [43] |
01-0306 | CWD2 | Elk | Saskatchewan | Antler velvet, Brain | [43,53,54] |
03-0306 | CWD2 | Elk | Saskatchewan | Antler velvet, Brain | [43,54] |
99W12389 | CWD1/CWD2 | Elk | Wyoming | Brain | [43,53,54,56] |
001-39647 | CWD1/CWD2 | Mule Deer | Colorado | Brain | [43] |
989-09147 | CWD1/CWD2 | Mule Deer | Colorado | Brain | [43] |
D08 | CWD1/CWD2 | Mule Deer | Colorado | Muscle | [57] |
H92 | CWD1/CWD2 | Mule Deer | Colorado | Brain, Muscle | [43,57] |
CWD Pool | CWD1/CWD2 | Mule Deer | Colorado (captive) | Brain | [43] |
D10 | CWD1/CWD2 | Mule Deer | Colorado (captive) | Brain, Muscle | [43,53,54,55,56,57] |
D92 | CWD1/CWD2 | Mule Deer | Colorado (captive) | Brain | [43,54] |
Db99 | CWD1/CWD2 | Mule Deer | Colorado (captive) | Brain | [43,53,55,56] |
978-24384 | CWD1/CWD2 | Mule Deer | Colorado | Brain | [43,53] |
9179 | CWD1/CWD2 | Mule Deer | Wyoming | Brain | [43] |
04-22412 | CWD1/CWD2 | Mule Deer | Wyoming | Brain | [43,58] |
5941 | CWD1/CWD2 | Mule Deer | Colorado | Muscle | [57] |
CWD_Elk pool | CWD2 | Elk | Alberta (captive) | Brain | [26,42,43,59,60,61] |
001-403022 | CWD2 | Elk | Colorado | Brain | [43,53] |
04-0306 | CWD2 | Elk | Saskatchewan | Antler velvet, Brain | [43,53,54] |
V92 | CWD2 | Mule Deer | Colorado | Brain | [43] |
33968 | CWD2 | Mule Deer | Colorado | Brain, Muscle | [43,57] |
1275 (96GS) | Wisc-1 | White-tailed Deer | Wisconsin | Brain | [62] |
1277 (96GG) | Wisc-1 | White-tailed Deer | Wisconsin | Brain | [48,62,63] |
1279 (95QH/96GS) | H95+/Wisc-1 | White-tailed Deer | Wisconsin | Brain | [26,45,48,59,62,63] |
1281 (96GS) | Wisc-1 | White-tailed Deer | Wisconsin | Brain | [26,45,48,59,62,63,64,65] |
1285 (96GS) | Wisc-1 | White-tailed Deer | Wisconsin | Brain | [62] |
1289 (96GG) | Wisc-1 | White-tailed Deer | Wisconsin | Brain | [62] |
1291 (96GG) | Wisc-1 | White-tailed Deer | Wisconsin | Brain | [62] |
1293 (96GG) | Wisc-1 | White-tailed Deer | Wisconsin | Brain | [26,45,48,59,62,63,64] |
1295 (96GG) | Wisc-1 | White-tailed Deer | Wisconsin | Brain | [62] |
1297 (95QH/96GG) | Wisc-1/H95+ | White-tailed Deer | Wisconsin | Brain | [26,44,45,48,59,62,63] |
54344 (96GG) | Wisc-1 | White-tailed Deer | Wisconsin | Brain | [62] |
74792 (96GG) | Wisc-1 | White-tailed Deer | Wisconsin | Brain | [62] |
W14-70036 | 116AG | White-tailed Deer | Saskatchewan | Brain | [45,64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walter, W.D.; Herbst, A.; Lue, C.-H.; Bartz, J.C.; Hopkins, M.C. Overview of North American Isolates of Chronic Wasting Disease Used for Strain Research. Pathogens 2025, 14, 250. https://doi.org/10.3390/pathogens14030250
Walter WD, Herbst A, Lue C-H, Bartz JC, Hopkins MC. Overview of North American Isolates of Chronic Wasting Disease Used for Strain Research. Pathogens. 2025; 14(3):250. https://doi.org/10.3390/pathogens14030250
Chicago/Turabian StyleWalter, W. David, Allen Herbst, Chia-Hua Lue, Jason C. Bartz, and M. Camille Hopkins. 2025. "Overview of North American Isolates of Chronic Wasting Disease Used for Strain Research" Pathogens 14, no. 3: 250. https://doi.org/10.3390/pathogens14030250
APA StyleWalter, W. D., Herbst, A., Lue, C.-H., Bartz, J. C., & Hopkins, M. C. (2025). Overview of North American Isolates of Chronic Wasting Disease Used for Strain Research. Pathogens, 14(3), 250. https://doi.org/10.3390/pathogens14030250