Ligands for Intestinal Intraepithelial T Lymphocytes in Health and Disease
Abstract
:1. Introduction
2. T-IEL Ligands in Steady-State Condition
2.1. Monitoring Lumen Microbes
2.1.1. Direct Sensing via TCRs
2.1.2. Indirect Sensing Through IEC-Mediated Cytokine Signaling
2.2. Modulating Receptor Expression and Signaling Pathways for Immune Tolerance
2.2.1. Reduced TCR Signaling in Natural T-IELs
2.2.2. Regulation of Co-Receptor Expression and Signaling Pathways
2.3. Essential Ligands for T-IEL Survival
2.3.1. TCR and Co-Receptor Signaling Requirements
2.3.2. Microbial Signals and Cytokine-Dependent Survival Signals
2.3.3. Dietary and Microbial-Derived Components
2.4. T-IEL Surveillance and Barrier Maintenance
2.5. Crosstalk Between T-IELs and the Enteric Nervous System
3. T-IEL Ligands in Diseases
3.1. Infectious Diseases
3.1.1. Pathogen-Derived Ligands and T-IEL-Mediated Clearance
Early Responses Mediated by Cytokine Receptor Signaling
TCR-Dependent Mechanisms
Co-Receptor Interactions
3.2. Chronic Diseases
3.2.1. Celiac Disease
3.2.2. Inflammatory Bowel Disease
3.2.3. Cancer
3.3. Epithelial Repair and Healing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soderholm, A.T.; Pedicord, V.A. Intestinal epithelial cells: At the interface of the microbiota and mucosal immunity. Immunology 2019, 158, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Xu, G.; Chen, M.; Ma, H. Intestinal uptake and tolerance to food antigens. Front. Immunol. 2022, 13, 906122. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Qiu, Y.; Yang, H. Intestinal intraepithelial lymphocytes: Maintainers of intestinal immune tolerance and regulators of intestinal immunity. J. Leukoc. Biol. 2021, 109, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Vandereyken, M.; James, O.J.; Swamy, M. Mechanisms of activation of innate-like intraepithelial t lymphocytes. Mucosal Immunol. 2020, 13, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Hoytema Van Konijnenburg, D.P.; Reis, B.S.; Pedicord, V.A.; Farache, J.; Victora, G.D.; Mucida, D. Intestinal epithelial and intraepithelial t cell crosstalk mediates a dynamic response to infection. Cell 2017, 171, 783–794.e713. [Google Scholar] [CrossRef]
- Gui, Y.; Cheng, H.; Zhou, J.; Xu, H.; Han, J.; Zhang, D. Development and function of natural tcr+ cd8αα+ intraepithelial lymphocytes. Front. Immunol. 2022, 13, 1059042. [Google Scholar] [CrossRef] [PubMed]
- Pobezinsky, L.A.; Angelov, G.S.; Tai, X.; Jeurling, S.; Van Laethem, F.; Feigenbaum, L.; Park, J.-H.; Singer, A. Clonal deletion and the fate of autoreactive thymocytes that survive negative selection. Nat. Immunol. 2012, 13, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Leishman, A.J.; Gapin, L.; Capone, M.; Palmer, E.; Macdonald, H.R.; Kronenberg, M.; Cheroutre, H. Precursors of functional mhc class i- or class ii-restricted cd8αα+ t CELLS are positively selected in the thymus by agonist self-peptides. Immunity 2002, 16, 355–364. [Google Scholar] [CrossRef]
- McDonald, B.D.; Bunker, J.J.; Ishizuka, I.E.; Jabri, B.; Bendelac, A. Elevated t cell receptor Signaling identifies a thymic precursor to the tcrαβ+cd4−cd8β− intraepithelial lymphocyte lineage. Immunity 2014, 41, 219–229. [Google Scholar] [CrossRef]
- Di Marco Barros, R.; Roberts, N.A.; Dart, R.J.; Vantourout, P.; Jandke, A.; Nussbaumer, O.; Deban, L.; Cipolat, S.; Hart, R.; Iannitto, M.L.; et al. Epithelia use butyrophilin-like molecules to shape organ-specific γδ t cell compartments. Cell 2016, 167, 203–218.e217. [Google Scholar] [CrossRef] [PubMed]
- McDonald, B.D.; Jabri, B.; Bendelac, A. Diverse developmental pathways of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 2018, 18, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Bono, M.; Tejon, G.; Flores-Santibañez, F.; Fernandez, D.; Rosemblatt, M.; Sauma, D. Retinoic acid as a modulator of T cell immunity. Nutrients 2016, 8, 349. [Google Scholar] [CrossRef] [PubMed]
- Svensson, M.; Marsal, J.; Ericsson, A.; Carramolino, L.; Brodén, T.; Márquez, G.; Agace, W.W. Ccl25 mediates the localization of recently activated cd8αβ+ lymphocytes to the small-intestinal mucosa. J. Clin. Investig. 2002, 110, 1113–1121. [Google Scholar] [CrossRef]
- Agace, W.W. T-cell recruitment to the intestinal mucosa. Trends Immunol. 2008, 29, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Johansson-Lindbom, B.; Svensson, M.; Wurbel, M.-A.; Malissen, B.; MáRquez, G.; Agace, W. Selective generation of gut tropic t cells in gut-associated lymphoid tissue (galt). J. Exp. Med. 2003, 198, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Jaensson, E.; Uronen-Hansson, H.; Pabst, O.; Eksteen, B.; Tian, J.; Coombes, J.L.; Berg, P.-L.; Davidsson, T.; Powrie, F.; Johansson-Lindbom, B.; et al. Small intestinal cd103+ dendritic cells display unique functional properties that are conserved between mice and humans. J. Exp. Med. 2008, 205, 2139–2149. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.J.; Butcher, E.C. Rapid acquisition of tissue-specific homing phenotypes by cd4+ t cells activated in cutaneous or mucosal lymphoid tissues. J. Exp. Med. 2002, 195, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Staton, T.L.; Habtezion, A.; Winslow, M.M.; Sato, T.; Love, P.E.; Butcher, E.C. Cd8+ recent thymic emigrants home to and efficiently repopulate the small intestine epithelium. Nat. Immunol. 2006, 7, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Norment, A.M.; Bogatzki, L.Y.; Gantner, B.N.; Bevan, M.J. Murine ccr9, a chemokine receptor for thymus-expressed chemokine that is up-regulated following pre-tcr signaling. J. Immunol. 2000, 164, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Ruscher, R.; Lee, S.T.; Salgado, O.C.; Breed, E.R.; Osum, S.H.; Hogquist, K.A. Intestinal cd8αα iels derived from two distinct thymic precursors have staggered ontogeny. J. Exp. Med. 2020, 217, e20192336. [Google Scholar] [CrossRef] [PubMed]
- Siegers, G.M. Integral roles for integrins in γδ t cell function. Front. Immunol. 2018, 9, 521. [Google Scholar] [CrossRef]
- Yu, S.; Bruce, D.; Froicu, M.; Weaver, V.; Cantorna, M.T. Failure of t cell homing, reduced cd4/cd8αα intraepithelial lymphocytes, and inflammation in the gut of vitamin d receptor ko mice. Proc. Natl. Acad. Sci. USA 2008, 105, 20834–20839. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Ward, E.J.; Marelli-Berg, F.M. Mechanisms of t cell organotropism. Cell Mol. Life Sci. 2016, 73, 3009–3033. [Google Scholar] [CrossRef] [PubMed]
- Iwata, M.; Hirakiyama, A.; Eshima, Y.; Kagechika, H.; Kato, C.; Song, S.-Y. Retinoic acid imprints gut-homing specificity on t cells. Immunity 2004, 21, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Hada, A.; Li, L.; Kandel, A.; Jin, Y.; Xiao, Z. Characterization of bovine intraepithelial t lymphocytes in the gut. Pathogens 2023, 12, 1173. [Google Scholar] [CrossRef] [PubMed]
- Van Kaer, L.; Olivares-Villagómez, D. Development, homeostasis, and functions of intestinal intraepithelial lymphocytes. J. Immunol. 2018, 200, 2235–2244. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, A.; Mucida, D.; Bilate, A.M. Intraepithelial lymphocytes of the intestine. Annu. Rev. Immunol. 2024, 42, 289–316. [Google Scholar] [CrossRef] [PubMed]
- Gascoigne, N.R.J.; Rybakin, V.; Acuto, O.; Brzostek, J. Tcr signal strength and t cell development. Annu. Rev. Cell Dev. Biol. 2016, 32, 327–348. [Google Scholar] [CrossRef] [PubMed]
- Szeto, C.; Lobos, C.A.; Nguyen, A.T.; Gras, S. Tcr recognition of peptide–mhc-i: Rule makers and breakers. Int. J. Mol. Sci. 2020, 22, 68. [Google Scholar] [CrossRef]
- Sundberg, E.J.; Deng, L.; Mariuzza, R.A. Tcr recognition of peptide/mhc class ii complexes and superantigens. Semin. Immunol. 2007, 19, 262–271. [Google Scholar] [CrossRef]
- Deseke, M.; Prinz, I. Ligand recognition by the γδ tcr and discrimination between homeostasis and stress conditions. Cell. Mol. Immunol. 2020, 17, 914–924. [Google Scholar] [CrossRef]
- Ruscher, R.; Kummer, R.L.; Lee, Y.J.; Jameson, S.C.; Hogquist, K.A. CD8αα intraepithelial lymphocytes arise from two main thymic precursors. Nat. Immunol. 2017, 18, 771–779. [Google Scholar] [CrossRef]
- Das, G.; Gould, D.S.; Augustine, M.M.; Fragoso, G.; Scitto, E.; Stroynowski, I.; Van Kaer, L.; Schust, D.J.; Ploegh, H.; Janeway, C.A. Qa-2–dependent selection of cd8α/α t cell receptor α/β+ cells in murine intestinal intraepithelial lymphocytes. J. Exp. Med. 2000, 192, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Gapin, L.; Cheroutre, H.; Kronenberg, M. Cutting edge: Tcr alpha beta+ cd8 alpha alpha+ t cells are found in intestinal intraepithelial lymphocytes of mice that lack classical mhc class I molecules. J. Immunol. 1999, 163, 4100–4104. [Google Scholar] [CrossRef] [PubMed]
- Olivares-Villagómez, D.; Van Kaer, L. Intestinal intraepithelial lymphocytes: Sentinels of the mucosal barrier. Trends Immunol. 2018, 39, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Ruscher, R.; Hogquist, K.A. Development, ontogeny, and maintenance of tcrαβ(+) cd8αα iel. Curr. Opin. Immunol. 2019, 58, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Matsuzaki, G.; Kenai, H.; Nomoto, K. Progenies of fetal thymocytes are the major source of cd4-cd8+ alpha alpha intestinal intraepithelial lymphocytes early in ontogeny. Eur. J. Immunol. 1994, 24, 1785–1791. [Google Scholar] [CrossRef]
- Watt, H.J.; Chawla, A.S.; Lamoliatte, F.; Pryde, S.; Knatko, E.; Rasmussen, K.D.; Bending, D.; Swamy, M. Rewiring of the tcr signalosome in natural intestinal Intraepithelial t lymphocytes drives non-deletional tolerance. bioRxiv 2023, preprint. [Google Scholar] [CrossRef]
- Qiu, Y.; Pu, A.; Zheng, H.; Liu, M.; Chen, W.; Wang, W.; Xiao, W.; Yang, H. Tlr2-dependent signaling for il-15 production is essential for the homeostasis of intestinal intraepithelial lymphocytes. Mediat. Inflamm. 2016, 2016, 4281865. [Google Scholar] [CrossRef] [PubMed]
- Mayassi, T.; Jabri, B. Human intraepithelial lymphocytes. Mucosal Immunol. 2018, 11, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, M.; Mizunuma, T.; Takimoto, H.; Kumazawa, Y. Development of tcrαβ cd8αα intestinal intraepithelial lymphocytes is promoted by interleukin-15-producing epithelial cells constitutively stimulated by gram-negative bacteria via tlr4. Biol. Pharm. Bull. 2004, 27, 883–889. [Google Scholar] [CrossRef]
- Yu, Q.; Tang, C.; Xun, S.; Yajima, T.; Takeda, K.; Yoshikai, Y. Myd88-dependent signaling for il-15 production plays an important role in maintenance of cd8αα tcrαβ and tcrγδ intestinal intraepithelial lymphocytes. J. Immunol. 2006, 176, 6180–6185. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.D.; Edelblum, K.L. Sentinels at the frontline: The role of intraepithelial lymphocytes in inflammatory bowel disease. Curr. Pharmacol. Rep. 2017, 3, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Klose, C.S.N.; Blatz, K.; D’Hargues, Y.; Hernandez, P.P.; Kofoed-Nielsen, M.; Ripka, J.F.; Ebert, K.; Arnold, S.J.; Diefenbach, A.; Palmer, E.; et al. The transcription factor t-bet is induced by il-15 and thymic agonist selection and controls cd8αα+ intraepithelial Lymphocyte development. Immunity 2014, 41, 230–243. [Google Scholar] [CrossRef]
- Akama, Y.; Murao, A.; Aziz, M.; Wang, P. Extracellular cirp induces cd4cd8αα intraepithelial lymphocyte cytotoxicity in sepsis. Mol. Med. 2024, 30, 17. [Google Scholar] [CrossRef] [PubMed]
- Bousbaine, D.; Fisch, L.I.; London, M.; Bhagchandani, P.; Rezende de Castro, T.B.; Mimee, M.; Olesen, S.; Reis, B.S.; VanInsberghe, D.; Bortolatto, J.; et al. A conserved bacteroidetes antigen induces anti-inflammatory intestinal t lymphocytes. Science 2022, 377, 660–666. [Google Scholar] [CrossRef]
- Tuganbaev, T.; Mor, U.; Bashiardes, S.; Liwinski, T.; Nobs, S.P.; Leshem, A.; Dori-Bachash, M.; Thaiss, C.A.; Pinker, E.Y.; Ratiner, K.; et al. Diet diurnally regulates small intestinal microbiome-epithelial-immune homeostasis and enteritis. Cell 2020, 182, 1441–1459.e1421. [Google Scholar] [CrossRef]
- Brabec, T.; Schwarzer, M.; Kováčová, K.; Dobešová, M.; Schierová, D.; Březina, J.; Pacáková, I.; Šrůtková, D.; Ben-Nun, O.; Goldfarb, Y.; et al. Epithelial antigen presentation controls commensal-specific intraepithelial t-cells in the gut. bioRxiv 2022, preprint. [Google Scholar] [CrossRef]
- Kuhn, K.A.; Schulz, H.M.; Regner, E.H.; Severs, E.L.; Hendrickson, J.D.; Mehta, G.; Whitney, A.K.; Ir, D.; Ohri, N.; Robertson, C.E.; et al. Bacteroidales recruit il-6-producing intraepithelial lymphocytes in the colon to promote barrier integrity. Mucosal Immunol. 2018, 11, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lanasa, D.; Park, J.-H. Pathways and mechanisms of cd4+cd8αα+ intraepithelial t cell development. Trends Immunol. 2024, 45, 288–302. [Google Scholar] [CrossRef]
- Cervantes-Barragan, L.; Chai, J.N.; Tianero, M.D.; Di Luccia, B.; Ahern, P.P.; Merriman, J.; Cortez, V.S.; Caparon, M.G.; Donia, M.S.; Gilfillan, S.; et al. Lactobacillus reuteri induces gut intraepithelial cd4(+)cd8αα(+) t cells. Science 2017, 357, 806–810. [Google Scholar] [CrossRef]
- Kawaguchi, M.; Nanno, M.; Umesaki, Y.; Matsumoto, S.; Okada, Y.; Cai, Z.; Shimamura, T.; Matsuoka, Y.; Ohwaki, M.; Ishikawa, H. Cytolytic activity of intestinal intraepithelial lymphocytes in germ-free mice is strain dependent and determined by t cells expressing gamma delta t-cell antigen receptors. Proc. Natl. Acad. Sci. USA 1993, 90, 8591–8594. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.S.; Severson, K.M.; Vaishnava, S.; Behrendt, C.L.; Yu, X.; Benjamin, J.L.; Ruhn, K.A.; Hou, B.; Defranco, A.L.; Yarovinsky, F.; et al. γδ intraepithelial lymphocytes are essential mediators of host–microbial homeostasis at the intestinal mucosal surface. Proc. Natl. Acad. Sci. USA 2011, 108, 8743–8748. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.S.; Behrendt, C.L.; Hooper, L.V. Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury. J. Immunol. 2009, 182, 3047–3054. [Google Scholar] [CrossRef]
- Chen, B.; Ni, X.; Sun, R.; Zeng, B.; Wei, H.; Tian, Z.; Wei, H. Commensal bacteria-dependent cd8αβ+ t cells in the intestinal epithelium produce antimicrobial peptides. Front. Immunol. 2018, 9, 1065. [Google Scholar] [CrossRef] [PubMed]
- Masopust, D.; Jiang, J.; Shen, H.; Lefrançois, L. Direct analysis of the dynamics of the intestinal mucosa cd8 t cell response to systemic virus infection1. J. Immunol. 2001, 166, 2348–2356. [Google Scholar] [CrossRef]
- Masopust, D.; Vezys, V.; Marzo, A.L.; LefrançOis, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 2001, 291, 2413–2417. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Surh, C.D.; Lee, Y.J. Microbial colonization at early life promotes the development of diet-induced cd8αβ Intraepithelial t cells. Mol Cells 2019, 42, 313–320. [Google Scholar] [CrossRef]
- Vaishnava, S.; Yamamoto, M.; Severson, K.M.; Ruhn, K.A.; Yu, X.; Koren, O.; Ley, R.; Wakeland, E.K.; Hooper, L.V. The antibacterial lectin regiiiγ promotes the spatial segregation of microbiota and host in the intestine. Science 2011, 334, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Stögerer, T.; Stäger, S. Innate immune sensing by cells of the adaptive immune system. Front. Immunol. 2020, 11, 1081. [Google Scholar] [CrossRef]
- Latthe, M.; Terry, L.; Macdonald, T.T. High frequency of cd8αα homodimer-bearing t cells in human fetal intestine. Eur. J. Immunol. 1994, 24, 1703–1705. [Google Scholar] [CrossRef] [PubMed]
- Kuo, S.; El Guindy, A.; Panwala, C.M.; Hagan, P.M.; Camerini, V. Differential appearance of t cell subsets in the large and small intestine of neonatal mice. Pediatr. Res. 2001, 49, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Torow, N.; Yu, K.; Hassani, K.; Freitag, J.; Schulz, O.; Basic, M.; Brennecke, A.; Sparwasser, T.; Wagner, N.; Bleich, A.; et al. Active suppression of intestinal cd4+tcrαβ+ T-lymphocyte maturation during the postnatal period. Nat. Commun. 2015, 6, 7725. [Google Scholar] [CrossRef]
- Manzano, M.; Abadía-Molina, A.C.; García-Olivares, E.; Gil, A.; Rueda, R. Absolute counts and distribution of lymphocyte subsets in small intestine of balb/c mice change during weaning. J. Nutr. 2002, 132, 2757–2762. [Google Scholar] [CrossRef] [PubMed]
- Helgeland, L.; Brandtzaeg, P.; Rolstad, B.; Vaage, J.T. Sequential development of intraepithelial γδ and αβ t lymphocytes expressing cd8αβ in neonatal rat intestine: Requirement for the thymus. Immunology 1997, 92, 447–456. [Google Scholar] [CrossRef]
- Steege, J.C.; Buurman, W.A.; Forget, P.P. The neonatal development of intraepithelial and lamina propria lymphocytes in the murine small intestine. Dev. Immunol. 1997, 5, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Umesaki, Y.; Setoyama, H.; Matsumoto, S.; Okada, Y. Expansion of alpha beta t-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 1993, 79, 32–37. [Google Scholar]
- Lockhart, A.; Reed, A.; Rezende De Castro, T.; Herman, C.; Campos Canesso, M.C.; Mucida, D. Dietary protein shapes the profile and repertoire of intestinal cd4+ t cells. J. Exp. Med. 2023, 220, e20221816. [Google Scholar] [CrossRef] [PubMed]
- Cheroutre, H.; Lambolez, F.; Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 2011, 11, 445–456. [Google Scholar] [CrossRef]
- Love, P.E.; Hayes, S.M. Itam-mediated signaling by the t-cell antigen receptor. Cold Spring Harb. Perspect. Biol. 2010, 2, a002485. [Google Scholar] [CrossRef] [PubMed]
- Nambiar, M.P.; Fisher, C.U.; Kumar, A.; Tsokos, C.G.; Warke, V.G.; Tsokos, G.C. Forced expression of the fc receptor gamma-chain renders human t cells hyperresponsive to tcr/cd3 stimulation. J. Immunol. 2003, 170, 2871–2876. [Google Scholar] [CrossRef] [PubMed]
- Németh, T.; Futosi, K.; Szabó, M.; Aradi, P.; Saito, T.; Mócsai, A.; Jakus, Z. Importance of fc receptor γ-chain itam tyrosines in neutrophil activation and in vivo autoimmune arthritis. Front. Immunol. 2019, 10, 252. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Jing, R.; Qian, L.; Zhou, C.; Sun, J. Engineering cytoplasmic signaling of cd28ζ cars for improved therapeutic functions. Front. Immunol. 2020, 11, 1046. [Google Scholar] [CrossRef] [PubMed]
- Balagopalan, L.; Kortum, R.L.; Coussens, N.P.; Barr, V.A.; Samelson, L.E. The linker for activation of t cells (lat) signaling hub: From signaling complexes to microclusters. J. Biol. Chem. 2015, 290, 26422–26429. [Google Scholar] [CrossRef] [PubMed]
- Brenes, A.J.; Vandereyken, M.; James, O.J.; Watt, H.; Hukelmann, J.; Spinelli, L.; Dikovskaya, D.; Lamond, A.I.; Swamy, M. Tissue environment, not ontogeny, defines murine intestinal intraepithelial t lymphocytes. eLife 2021, 10, e70055. [Google Scholar] [CrossRef]
- Denning, T.L.; Granger, S.W.; Mucida, D.; Graddy, R.; Leclercq, G.; Zhang, W.; Honey, K.; Rasmussen, J.P.; Cheroutre, H.; Rudensky, A.Y.; et al. Mouse tcralphabeta+cd8alphaalpha intraepithelial lymphocytes express genes that down-regulate their antigen reactivity and suppress immune responses. J. Immunol. 2007, 178, 4230–4239. [Google Scholar] [CrossRef] [PubMed]
- Bas, A.; Swamy, M.; Abeler-Dörner, L.; Williams, G.; Pang, D.J.; Barbee, S.D.; Hayday, A.C. Butyrophilin-like 1 encodes an enterocyte protein that selectively regulates functional interactions with t lymphocytes. Proc. Natl. Acad. Sci. USA 2011, 108, 4376–4381. [Google Scholar] [CrossRef]
- Melandri, D.; Zlatareva, I.; Chaleil, R.A.G.; Dart, R.J.; Chancellor, A.; Nussbaumer, O.; Polyakova, O.; Roberts, N.A.; Wesch, D.; Kabelitz, D.; et al. The γδtcr combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat. Immunol. 2018, 19, 1352–1365. [Google Scholar] [CrossRef]
- Bilate, A.M.; London, M.; Castro, T.B.R.; Mesin, L.; Bortolatto, J.; Kongthong, S.; Harnagel, A.; Victora, G.D.; Mucida, D. T cell receptor is required for differentiation, but not maintenance, of intestinal cd4+ intraepithelial lymphocytes. Immunity 2020, 53, 1001–1014.e1020. [Google Scholar] [CrossRef] [PubMed]
- Reis, B.S.; van Konijnenburg DP, H.; Grivennikov, S.I.; Mucida, D. Transcription factor t-bet regulates intraepithelial lymphocyte functional maturation. Immunity 2014, 41, 244–256. [Google Scholar] [CrossRef]
- Konkel, J.E.; Maruyama, T.; Carpenter, A.C.; Xiong, Y.; Zamarron, B.F.; Hall, B.E.; Kulkarni, A.B.; Zhang, P.; Bosselut, R.; Chen, W. Control of the development of cd8αα+ intestinal intraepithelial lymphocytes by tgf-β. Nat. Immunol. 2011, 12, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Van Kaer, L.; Algood HM, S.; Singh, K.; Parekh, V.V.; Greer, M.J.; Piazuelo, M.B.; Weitkamp, J.-H.; Matta, P.; Chaturvedi, R.; Wilson, K.T.; et al. Cd8αα+ innate-type lymphocytes in the intestinal epithelium mediate mucosal immunity. Immunity 2014, 41, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Reis, B.S.; Rogoz, A.; Costa-Pinto, F.A.; Taniuchi, I.; Mucida, D. Mutual expression of the transcription factors runx3 and thpok regulates intestinal cd4+ t cell immunity. Nat. Immunol. 2013, 14, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Park, Y.; Wang-Zhu, Y.; Larange, A.; Arens, R.; Bernardo, I.; Olivares-Villagómez, D.; Herndler-Brandstetter, D.; Abraham, N.; Grubeck-Loebenstein, B.; et al. Mucosal memory cd8+ t cells are selected in the periphery by an mhc class I molecule. Nat. Immunol. 2011, 12, 1086–1095. [Google Scholar] [CrossRef]
- Olivares-Villagómez, D.; Mendez-Fernandez, Y.V.; Parekh, V.V.; Lalani, S.; Vincent, T.L.; Cheroutre, H.; Van Kaer, L. Thymus leukemia antigen controls intraepithelial lymphocyte function and inflammatory bowel disease. Proc. Natl. Acad. Sci. USA 2008, 105, 17931–17936. [Google Scholar] [CrossRef] [PubMed]
- Jarry, A.; Cerf-Bensussan, N.; Brousse, N.; Selz, F.; Guy-Grand, D. Subsets of cd3+ (t cell receptor alpha/beta or gamma/delta) and cd3- lymphocytes isolated from normal human gut epithelium display phenotypical features different from their counterparts in peripheral blood. Eur. J. Immunol. 1990, 20, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Beumer-Chuwonpad, A.; Behr, F.M.; Van Alphen, F.P.J.; Kragten, N.A.M.; Hoogendijk, A.J.; Van Den Biggelaar, M.; Van Gisbergen, K.P.J.M. Intestinal tissue-resident memory t cells maintain distinct identity from circulating memory T cells after in vitro restimulation. Eur. J. Immunol. 2024, 54, 2350873. [Google Scholar] [CrossRef] [PubMed]
- Cabinian, A.; Sinsimer, D.; Tang, M.; Jang, Y.; Choi, B.; Laouar, Y.; Laouar, A. Gut symbiotic microbes imprint intestinal immune cells with the innate receptor slamf4 which contributes to gut immune protection against enteric pathogens. Gut 2018, 67, 847–859. [Google Scholar] [CrossRef]
- Kojima, T.; Tsuchiya, K.; Ikemizu, S.; Yoshikawa, S.; Yamanishi, Y.; Watanabe, M.; Karasuyama, H. Novel cd200 homologues isec1 and isec2 are gastrointestinal secretory cell-specific ligands of inhibitory receptor cd200r. Sci. Rep. 2016, 6, 36457. [Google Scholar] [CrossRef]
- Bülck, C.; Nyström, E.E.; Koudelka, T.; Mannbar-Frahm, M.; Andresen, G.; Radhouani, M.; Tran, F.; Scharfenberg, F.; Schrell, F.; Armbrust, F.; et al. Proteolytic processing of galectin-3 by meprin metalloproteases is crucial for host-microbiome homeostasis. Sci. Adv. 2023, 9, eadf4055. [Google Scholar] [CrossRef]
- Tsai, H.-F.; Wu, C.-S.; Chen, Y.-L.; Liao, H.-J.; Chyuan, I.-T.; Hsu, P.-N. Galectin-3 suppresses mucosal inflammation and reduces disease severity in experimental colitis. J. Mol. Med. 2016, 94, 545–556. [Google Scholar] [CrossRef]
- Shi, A.-P.; Tang, X.-Y.; Xiong, Y.-L.; Zheng, K.-F.; Liu, Y.-J.; Shi, X.-G.; Lv, Y.; Jiang, T.; Ma, N.; Zhao, J.-B. Immune checkpoint lag3 and its ligand fgl1 in cancer. Front. Immunol. 2022, 12, 785091. [Google Scholar] [CrossRef]
- Heuberger, C.; Pott, J.; Maloy, K.J. Why do intestinal epithelial cells express mhc class II? Immunology 2021, 162, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Taveirne, S.; Filtjens, J.; Van Ammel, E.; De Colvenaer, V.; Kerre, T.; Taghon, T.; Vandekerckhove, B.; Plum, J.; Held, W.; Leclercq, G. Inhibitory receptors specific for mhc class I educate murine nk cells but not cd8αα intestinal intraepithelial t lymphocytes. Blood 2011, 118, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Rosen, D.B.; Araki, M.; Hamerman, J.A.; Chen, T.; Yamamura, T.; Lanier, L.L. A Structural Basis for the Association of dap12 with mouse, but not human, nkg2d. J. Immunol. 2004, 173, 2470–2478. [Google Scholar] [CrossRef]
- Meresse, B.; Curran, S.A.; Ciszewski, C.; Orbelyan, G.; Setty, M.; Bhagat, G.; Lee, L.; Tretiakova, M.; Semrad, C.; Kistner, E.; et al. Reprogramming of ctls into natural killer–like cells in celiac disease. J. Exp. Med. 2006, 203, 1343–1355. [Google Scholar] [CrossRef]
- Wu, J.; Song, Y.; Bakker, A.B.H.; Bauer, S.; Spies, T.; Lanier, L.L.; Phillips, J.H. An activating immunoreceptor complex formed by nkg2d and dap10. Science 1999, 285, 730–732. [Google Scholar] [CrossRef] [PubMed]
- Meresse, B.; Chen, Z.; Ciszewski, C.; Tretiakova, M.; Bhagat, G.; Krausz, T.N.; Raulet, D.H.; Lanier, L.L.; Groh, V.; Spies, T. Coordinated induction by il15 of a tcr-independent nkg2d signaling pathway converts ctl into lymphokine-activated killer cells in celiac disease. Immunity 2004, 21, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Spillane, K.M.; Maher, J. The role and regulation of the nkg2d/nkg2d ligand system in cancer. Biology 2023, 12, 1079. [Google Scholar] [CrossRef]
- Mistry, A.R.; O’Callaghan, C.A. Regulation of ligands for the activating receptor nkg2d. Immunology 2007, 121, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Lodolce, J.P.; Boone, D.L.; Chai, S.; Swain, R.E.; Dassopoulos, T.; Trettin, S.; Ma, A. Il-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 1998, 9, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Seo, G.Y.; Takahashi, D.; Wang, Q.; Mikulski, Z.; Chen, A.; Chou, T.F.; Marcovecchio, P.; McArdle, S.; Sethi, A.; Shui, J.W.; et al. Epithelial hvem maintains intraepithelial t cell survival and contributes to host protection. Sci. Immunol. 2022, 7, eabm6931. [Google Scholar] [CrossRef]
- Abdalqadir, N.; Adeli, K. Glp-1 and glp-2 orchestrate intestine integrity, gut microbiota, and immune system crosstalk. Microorganisms 2022, 10, 2061. [Google Scholar] [CrossRef] [PubMed]
- Yusta, B.; Baggio, L.L.; Koehler, J.; Holland, D.; Cao, X.; Pinnell, L.J.; Johnson-Henry, K.C.; Yeung, W.; Surette, M.G.; Bang, K.W.A.; et al. Glp-1r agonists modulate enteric immune responses through the intestinal intraepithelial lymphocyte glp-1r. Diabetes 2015, 64, 2537–2549. [Google Scholar] [CrossRef]
- He, S.; Kahles, F.; Rattik, S.; Nairz, M.; Mcalpine, C.S.; Anzai, A.; Selgrade, D.; Fenn, A.M.; Chan, C.T.; Mindur, J.E.; et al. Gut intraepithelial t cells calibrate metabolism and accelerate cardiovascular disease. Nature 2019, 566, 115–119. [Google Scholar] [CrossRef]
- Edelblum, K.L.; Shen, L.; Weber, C.R.; Marchiando, A.M.; Clay, B.S.; Wang, Y.; Prinz, I.; Malissen, B.; Sperling, A.I.; Turner, J.R. Dynamic migration of γδ intraepithelial lymphocytes requires occludin. Proc. Natl. Acad. Sci. USA 2012, 109, 7097–7102. [Google Scholar] [CrossRef] [PubMed]
- Parsa, R.; London, M.; Rezende de Castro, T.B.; Reis, B.; Buissant des Amorie, J.; Smith, J.G.; Mucida, D. Newly recruited intraepithelial ly6a(+)ccr9(+)cd4(+) t cells protect against enteric viral infection. Immunity 2022, 55, 1234–1249.e1236. [Google Scholar] [CrossRef] [PubMed]
- Lebrero-Fernández, C.; Bergström, J.H.; Pelaseyed, T.; Bas-Forsberg, A. Murine butyrophilin-like 1 and btnl6 Form heteromeric complexes in small intestinal epithelial cells and promote proliferation of local t lymphocytes. Front. Immunol. 2016, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Lebrero-Fernández, C.; Bas-Forsberg, A. The ontogeny of butyrophilin-like (btnl) 1 and btnl6 in murine small intestine. Sci. Rep. 2016, 6, 31524. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, T.; Karunakaran, M.M. Butyrophilins: γδ t cell receptor ligands, immunomodulators and more. Front. Immunol. 2022, 13, 876493. [Google Scholar] [CrossRef] [PubMed]
- Golovchenko, N.; Xu, W.; Galan, M.; Edelblum, K. Loss of γδ intraepithelial lymphocytes and reduced immunosurveillance of the epithelial barrier precedes the onset of crohn’s disease-like ileitis. FASEB J. 2022, 36, r4615. [Google Scholar] [CrossRef]
- Helgeland, L.; Dissen, E.; Dai, K.-Z.; Midtvedt, T.; Brandtzaeg, P.; Vaage, J.T. Microbial colonization induces oligoclonal expansions of intraepithelial cd8 t cells in the gut. Eur. J. Immunol. 2004, 34, 3389–3400. [Google Scholar] [CrossRef] [PubMed]
- Helgeland, L.; Vaage, J.T.; Rolstad, B.; Midtvedt, T.; Brandtzaeg, P. Microbial colonization influences composition and t-cell receptor vβ repertoire of intraepithelial lymphocytes in rat intestine. Immunology 1996, 89, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Helgeland, L.; Johansen, F.-E.; Utgaard, J.O.; Vaage, J.T.; Brandtzaeg, P. Oligoclonality of rat intestinal intraepithelial t lymphocytes: Overlapping tcr β-chain repertoires in the cd4 single-positive and cd4/cd8 double-positive subsets. J. Immunol. 1999, 162, 2683–2692. [Google Scholar] [CrossRef]
- Regnault, A.; Levraud, J.-P.; Lim, A.; Six, A.; Moreau, C.; Cumano, A.; Kourilsky, P. The expansion and selection of t cell receptor αβ intestinal intraepithelial t cell clones. Eur. J. Immunol. 1996, 26, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Regnault, A.; Cumano, A.; Vassalli, P.; Guy-Grand, D.; Kourilsky, P. Oligoclonal repertoire of the cd8 alpha alpha and the cd8 alpha beta tcr-alpha/beta murine intestinal intraepithelial t lymphocytes: Evidence for the random emergence of t cells. J. Exp. Med. 1994, 180, 1345–1358. [Google Scholar] [CrossRef]
- Suzuki, H.; Jeong, K.I.; Itoh, K.; Doi, K. Regional variations in the distributions of small intestinal intraepithelial lymphocytes in germ-free and specific pathogen-free mice. Exp. Mol. Pathol. 2002, 72, 230–235. [Google Scholar] [CrossRef]
- Imaoka, A.; Matsumoto, S.; Setoyama, H.; Okada, Y.; Umesaki, Y. Proliferative recruitment of intestinal intraepithelial lymphocytes after microbial colonization of germ-free mice. Eur. J. Immunol. 1996, 26, 945–948. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, X.; Zeng, B.; Liu, L.; Tardivel, A.; Wei, H.; Han, J.; Macdonald, H.R.; Tschopp, J.; Tian, Z.; et al. Recognition of gut microbiota by nod2 is essential for the homeostasis of intestinal intraepithelial lymphocytes. J. Exp. Med. 2013, 210, 2465–2476. [Google Scholar] [CrossRef]
- Li, Y.; Innocentin, S.; Withers, D.R.; Roberts, N.A.; Gallagher, A.R.; Grigorieva, E.F.; Wilhelm, C.; Veldhoen, M. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 2011, 147, 629–640. [Google Scholar] [CrossRef]
- Boismenu, R.; Havran, W.L. Modulation of epithelial cell growth by intraepithelial γδ t cells. Science 1994, 266, 1253–1255. [Google Scholar] [CrossRef] [PubMed]
- Komano, H.; Fujiura, Y.; Kawaguchi, M.; Matsumoto, S.; Hashimoto, Y.; Obana, S.; Mombaerts, P.; Tonegawa, S.; Yamamoto, H.; Itohara, S. Homeostatic regulation of intestinal epithelia by intraepithelial gamma delta t cells. Proc. Natl. Acad. Sci. USA 1995, 92, 6147–6151. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.-J.; Ma, A.-H.; Qin, Y.-H. Activation of the aryl hydrocarbon receptor in inflammatory bowel disease: Insights from gut microbiota. Front. Cell. Infect. Microbiol. 2023, 13, 1279172. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhu, Y.; Wei, Y.; Fan, S.; Xia, L.; Chen, Q.; Lu, Y.; Wu, D.; Liu, X.; Peng, X. Glutamine alleviates intestinal injury in a murine burn sepsis model by maintaining intestinal intraepithelial lymphocyte homeostasis. Eur. J. Pharmacol. 2023, 940, 175480. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhang, H.; Zhang, Y.; Goh, B.; Bao, B.; Mello, S.S.; Sun, X.; Zheng, W.; Gazzaniga, F.S.; Wu, M.; et al. Gut microbial fatty acid isomerization modulates intraepithelial t cells. Nature 2023, 619, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Edelblum, K.L.; Singh, G.; Odenwald, M.A.; Lingaraju, A.; El Bissati, K.; Mcleod, R.; Sperling, A.I.; Turner, J.R. γδ intraepithelial lymphocyte migration limits transepithelial pathogen invasion and systemic disease in mice. Gastroenterology 2015, 148, 1417–1426. [Google Scholar] [CrossRef]
- Wu, C.-J.; Mannan, P.; Lu, M.; Udey, M.C. Epithelial cell adhesion molecule (epcam) regulates claudin dynamics and tight junctions. J. Biol. Chem. 2013, 288, 12253–12268. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.D.; Ethridge, A.D.; Lipstein, R.; Kumar, S.; Wang, Y.; Jabri, B.; Turner, J.R.; Edelblum, K.L. Epithelial il-15 is a critical regulator of γδ intraepithelial lymphocyte motility within the intestinal mucosa. J. Immunol. 2018, 201, 747–756. [Google Scholar] [CrossRef]
- Al-Sadi, R.; Khatib, K.; Guo, S.; Ye, D.; Youssef, M.; Ma, T. Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. Am. J. Physiol. Gastrointest. Liver. Physiol. 2011, 300, G1054–G1064. [Google Scholar] [CrossRef] [PubMed]
- Grigoryan, M.; Kedees, M.H.; Charron, M.J.; Guz, Y.; Teitelman, G. Regulation of mouse intestinal l cell progenitors proliferation by the glucagon family of peptides. Endocrinology 2012, 153, 3076–3088. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, Y.; Torphy, R.J.; Sun, Y.; Miller, E.N.; Ho, F.; Borcherding, N.; Wu, T.; Torres, R.M.; Zhang, W.; Schulick, R.D.; et al. The gpr171 pathway suppresses t cell activation and limits antitumor immunity. Nat. Commun. 2021, 12, 5857. [Google Scholar] [CrossRef] [PubMed]
- Ganea, D.; Hooper, K.M.; Kong, W. The neuropeptide vasoactive intestinal peptide: Direct effects on immune cells and involvement in inflammatory and autoimmune diseases. Acta Physiol. 2015, 213, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Smalley, S.G.R.; Barrow, P.A.; Foster, N. Immunomodulation of innate immune responses by vasoactive intestinal peptide (vip): Its therapeutic potential in inflammatory disease. Clin. Exp. Immunol. 2009, 157, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Martínez, C.; Juarranz, Y.; Gutiérrez-Cañas, I.; Carrión, M.; Pérez-García, S.; Villanueva-Romero, R.; Castro, D.; Lamana, A.; Mellado, M.; González-Álvaro, I.; et al. A clinical approach for the use of vip axis in inflammatory and autoimmune diseases. Int. J. Mol. Sci. 2019, 21, 65. [Google Scholar] [CrossRef] [PubMed]
- Dalton, J.E.; Cruickshank, S.M.; Egan, C.E.; Mears, R.; Newton, D.J.; Andrew, E.M.; Lawrence, B.; Howell, G.; Else, K.J.; Gubbels, M.J.; et al. Intraepithelial gammadelta+ lymphocytes maintain the integrity of intestinal epithelial tight junctions in response to infection. Gastroenterology 2006, 131, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, C.; Zhou, Z.; Zhang, J.; Zhang, J.; Tian, Z. Small intestinal intraepithelial lymphocytes expressing cd8 and t cell receptor γδ are involved in bacterial clearance during salmonella enterica serovar typhimurium infection. Infect. Immun. 2012, 80, 565–574. [Google Scholar] [CrossRef]
- Zufferey, C.; Erhart, D.; Saurer, L.; Mueller, C. Production of interferon-γ by activated t-cell receptor-αβ cd8αβ intestinal intraepithelial lymphocytes is required and sufficient for disruption of the intestinal barrier integrity. Immunology 2009, 128, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Moretto, M.; Weiss, L.M.; Khan, I.A. Induction of a rapid and strong antigen-specific intraepithelial lymphocyte response during oral Encephalitozoon cuniculi Infection. J. Immunol. 2004, 172, 4402–4409. [Google Scholar] [CrossRef] [PubMed]
- Chardès, T.; Buzoni-Gatel, D.; Lepage, A.; Bernard, F.; Bout, D. Toxoplasma gondii oral infection induces specific cytotoxic cd8 alpha/beta+ thy-1+ gut intraepithelial lymphocytes, lytic for parasite-infected enterocytes. J. Immunol. 1994, 153, 4596–4603. [Google Scholar] [CrossRef]
- Lepage, A.C.; Buzoni-Gatel, D.; Bout, D.T.; Kasper, L.H. Gut-derived intraepithelial lymphocytes induce long term immunity against toxoplasma gondii1. J. Immunol. 1998, 161, 4902–4908. [Google Scholar] [CrossRef] [PubMed]
- Culshaw, R.J.; Bancroft, G.J.; Mcdonald, V. Gut intraepithelial lymphocytes induce immunity against cryptosporidium infection through a mechanism involving gamma interferon production. Infect. Immun. 1997, 65, 3074–3079. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.; Bühler-Jungo, M.; Mueller, C. Intestinal intraepithelial lymphocytes exert potent protective cytotoxic activity during an acute virus infection. J. Immunol. 2000, 164, 1986–1994. [Google Scholar] [CrossRef] [PubMed]
- Siebrecht, M.S.; Hsia, E.; Spychaiski, C.; Nagler-Anderson, C. Stimulation of murine intestinal intraepithelial lymphocytes by the bacterial superantigen staphylococcal enterotoxin B. Int. Immunol. 1993, 5, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Wei, H.; Sun, R.; Zhang, J.; Tian, Z. NKG2D recognition mediates toll-like receptor 3 signaling-induced breakdown of epithelial homeostasis in the small intestines of mice. Proc. Natl. Acad. Sci. USA 2007, 104, 7512–7515. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Sally, B.; Ciszewski, C.; Abadie, V.; Curran, S.A.; Groh, V.; Fitzgerald, O.; Winchester, R.J.; Jabri, B. Interleukin 15 primes natural killer cells to kill via nkg2d and cpla2 and this pathway is active in psoriatic arthritis. PLoS ONE 2013, 8, e76292. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.L.; La Manna, M.P.; Arena De Souza, V.; Walker, A.; Gibbs-Howe, D.; Kulkarni, R.; Fergusson, J.R.; Mulakkal, N.C.; Monteiro, M.; Bunjobpol, W.; et al. An hla-e-targeted tcr bispecific molecule redirects t cell immunity against Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2024, 121, e2318003121. [Google Scholar] [CrossRef]
- Tan, C.L.; Peluso, M.J.; Drijvers, J.M.; Mera, C.M.; Grande, S.M.; Brown, K.E.; Godec, J.; Freeman, G.J.; Sharpe, A.H. Cd160 stimulates cd8+ t cell responses and is required for optimal protective immunity to Listeria monocytogenes. ImmunoHorizons 2018, 2, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Shui, J.-W.; Larange, A.; Kim, G.; Vela, J.L.; Zahner, S.; Cheroutre, H.; Kronenberg, M. Hvem signalling at mucosal barriers provides host defence against pathogenic bacteria. Nature 2012, 488, 222–225. [Google Scholar] [CrossRef]
- Wang, H.-C.; Klein, J.R. Multiple levels of activation of murine cd8+ intraepithelial lymphocytes defined by ox40 (cd134) expression: Effects on cell-mediated cytotoxicity, ifn-γ, and il-10 regulation1. J. Immunol. 2001, 167, 6717–6723. [Google Scholar] [CrossRef]
- Voisine, J.; Abadie, V. Interplay between gluten, hla, innate and adaptive immunity orchestrates the development of coeliac disease. Front. Immunol. 2021, 12, 674313. [Google Scholar] [CrossRef] [PubMed]
- Abadie, V.R.; Kim, S.M.; Lejeune, T.; Palanski, B.A.; Ernest, J.D.; Tastet, O.; Voisine, J.; Discepolo, V.; Marietta, E.V.; Hawash, M.B.F.; et al. IL-15, gluten and hla-dq8 drive tissue destruction in coeliac disease. Nature 2020, 578, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Jabri, B.; De Serre, N.P.M.; Cellier, C.; Evans, K.; Gache, C.; Carvalho, C.; Mougenot, J.F.; Allez, M.; Jian, R.; Desreumaux, P.; et al. Selective expansion of intraepithelial lymphocytes expressing the hla-e–specific natural killer receptor cd94 in celiac disease. Gastroenterology 2000, 118, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Hüe, S.; Mention, J.-J.; Monteiro, R.C.; Zhang, S.; Cellier, C.; Schmitz, J.; Verkarre, V.; Fodil, N.; Bahram, S.; Cerf-Bensussan, N.; et al. A Direct role for nkg2d/mica interaction in villous atrophy during celiac disease. Immunity 2004, 21, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Ebert, E.C.; Groh, V. Dissection of spontaneous cytotoxicity by human intestinal intraepithelial lymphocytes: Mic on colon cancer triggers nkg2d-mediated lysis through fas ligand. Immunology 2008, 124, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, R.; Nemoto, Y.; Yonemoto, Y.; Tanaka, S.; Takei, Y.; Oshima, S.; Nagaishi, T.; Tsuchiya, K.; Nozaki, K.; Mizutani, T.; et al. Intraepithelial lymphocytes suppress intestinal tumor growth by cell-to-cell contact via cd103/E-cadherin signal. Cell. Mol. Gastroenterol. Hepatol. 2021, 11, 1483–1503. [Google Scholar] [CrossRef]
- Meehan, T.F.; Witherden, D.A.; Kim, C.-H.; Sendaydiego, K.; Ye, I.; Garijo, O.; Komori, H.K.; Kumanogoh, A.; Kikutani, H.; Eckmann, L.; et al. Protection against colitis by cd100-dependent modulation of intraepithelial γδ t lymphocyte function. Mucosal. Immunol. 2014, 7, 134–142. [Google Scholar] [CrossRef]
- Nakamura, T.; Matsuzaki, G.; Takimoto, H.; Nomoto, K. Age-associated changes in the proliferative response of rat intestinal intraepithelial leukocytes to bacterial antigens. Gastroenterology 1995, 109, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.R.; Hautefort, I.; Dalton, J.E.; Overweg, K.; Egan, C.E.; Bongaerts, R.J.; Newton, D.J.; Cruickshank, S.M.; Andrew, E.M.; Carding, S.R. Intestinal intraepithelial lymphocyte-enterocyte crosstalk regulates production of bactericidal angiogenin 4 by paneth cells upon microbial challenge. PLoS ONE 2013, 8, e84553. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.-E.; Stockinger, B.; Helmby, H. IL-22 Mediates goblet cell hyperplasia and worm expulsion in intestinal helminth infection. PLoS Pathog. 2013, 9, e1003698. [Google Scholar] [CrossRef] [PubMed]
- Inagaki-Ohara, K.; Sakamoto, Y.; Dohi, T.; Smith, A.L. γδ T cells play a protective role during infection with Nippostrongylus brasiliensis by promoting goblet cell function in the small intestine. Immunology 2011, 134, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Liu, Y.; Lau, Y.-L.; Tu, W. γδ-t cells: An unpolished sword in human anti-infection immunity. Cell. Mol. Immunol. 2013, 10, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, S.R.T.; Ribot, J.C.; Silva-Santos, B. Five layers of receptor signaling in γΒ t-cell differentiation and activation. Front. Immunol. 2015, 6, 15. [Google Scholar] [CrossRef]
- Serrano, R.; Wesch, D.; Kabelitz, D. Activation of human γδ t cells: Modulation by toll-like receptor 8 ligands and role of monocytes. Cells 2020, 9, 713. [Google Scholar] [CrossRef]
- Lai, Y.-G.; Gelfanov, V.; Gelfanova, V.; Kulik, L.; Chu, C.-L.; Jeng, S.-W.; Liao, N.-S. Il-15 promotes survival but not effector function differentiation of cd8+ tcrαβ+ intestinal intraepithelial lymphocytes. J. Immunol. 1999, 163, 5843–5850. [Google Scholar] [CrossRef] [PubMed]
- Ebert, E.C. Interleukin 15 is a potent stimulant of intraepithelial lymphocytes. Gastroenterology 1998, 115, 1439–1445. [Google Scholar] [CrossRef] [PubMed]
- Ebert, E.C. Il-15 converts human intestinal intraepithelial lymphocytes to cd94 producers of ifn-gamma and il-10, the latter promoting Fas ligand-mediated cytotoxicity. Immunology 2005, 115, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.A.; Casciotti, L. Il-15 prolongs the duration of cd8+ t cell-mediated immunity in mice infected with a vaccine strain of Toxoplasma gondii. J. Immunol. 1999, 163, 4503–4509. [Google Scholar] [CrossRef]
- Montufar-Solis, D.; Garza, T.; Klein, J.R. T-cell activation in the intestinal mucosa. Immunol. Rev. 2007, 215, 189–201. [Google Scholar] [CrossRef]
- Guk, S.-M.; Yong, T.-S.; Chai, J.-Y. Role of murine intestinal intraepithelial lymphocytes and lamina propria lymphocytes against primary and challenge infections with cryptosporidium parvum. J. Parasitol. 2003, 89, 270–275. [Google Scholar] [CrossRef]
- Yamamoto, S.; Russ, F.; Teixeira, H.C.; Conradt, P.; Kaufmann, S.H. Listeria monocytogenes-induced gamma interferon secretion by intestinal intraepithelial gamma/delta t lymphocytes. Infect. Immun. 1993, 61, 2154–2161. [Google Scholar] [CrossRef]
- Shimokawa, C.; Senba, M.; Kobayashi, S.; Kikuchi, M.; Obi, S.; Olia, A.; Hamano, S.; Hisaeda, H. Intestinal inflammation-mediated clearance of amebic parasites is dependent on ifn-γ. J. Immunol. 2018, 200, 1101–1109. [Google Scholar] [CrossRef]
- Li, Y.; Liu, M.; Zuo, Z.; Liu, J.; Yu, X.; Guan, Y.; Zhan, R.; Han, Q.; Zhang, J.; Zhou, R.; et al. Tlr9 regulates the nf-κB–nlrp3–il-1β pathway negatively in Salmonella -Induced nkg2d-mediated intestinal inflammation. J. Immunol. 2017, 199, 761–773. [Google Scholar] [CrossRef]
- Jaeger, N.; Gamini, R.; Cella, M.; Schettini, J.L.; Bugatti, M.; Zhao, S.; Rosadini, C.V.; Esaulova, E.; Di Luccia, B.; Kinnett, B.; et al. Single-cell analyses of Crohn’s disease tissues reveal intestinal intraepithelial t cells heterogeneity and altered subset distributions. Nat. Commun. 2021, 12, 1921. [Google Scholar] [CrossRef] [PubMed]
- Sollid, L.M. Coeliac disease: Dissecting a complex inflammatory disorder. Nat. Rev. Immunol. 2002, 2, 647–655. [Google Scholar] [CrossRef] [PubMed]
- De Kauwe, A.L.; Chen, Z.; Anderson, R.P.; Keech, C.L.; Price, J.D.; Wijburg, O.; Jackson, D.C.; Ladhams, J.; Allison, J.; Mccluskey, J. Resistance to celiac disease in humanized hla-dr3-dq2-transgenic mice expressing specific anti-gliadin cd4+ t cells. J. Immunol. 2009, 182, 7440–7450. [Google Scholar] [CrossRef] [PubMed]
- Marietta, E.; Black, K.; Camilleri, M.; Krause, P.; Rogers, R.S.; David, C.; Pittelkow, M.R.; Murray, J.A. A new model for dermatitis herpetiformis that uses hla-dq8 transgenic nod mice. J. Clin. Investig. 2004, 114, 1090–1097. [Google Scholar] [CrossRef] [PubMed]
- Depaolo, R.W.; Abadie, V.; Tang, F.; Fehlner-Peach, H.; Hall, J.A.; Wang, W.; Marietta, E.V.; Kasarda, D.D.; Waldmann, T.A.; Murray, J.A.; et al. Co-adjuvant effects of retinoic acid and il-15 induce inflammatory immunity to dietary antigens. Nature 2011, 471, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Kaukinen, K.; Collin, P.; Maki, M. Latent coeliac disease or coeliac disease beyond villous atrophy? Gut 2007, 56, 1339–1340. [Google Scholar] [CrossRef] [PubMed]
- Tosco, A.; Salvati, V.M.; Auricchio, R.; Maglio, M.; Borrelli, M.; Coruzzo, A.; Paparo, F.; Boffardi, M.; Esposito, A.; D’Adamo, G.; et al. Natural history of potential celiac disease in children. Clin. Gastroenterol. Hepatol. 2011, 9, 320–325, quiz e336. [Google Scholar] [CrossRef]
- Sumida, H. Recent advances in roles of G-protein coupled receptors in intestinal intraepithelial lymphocytes. Biosci. Microbiota Food Health 2020, 39, 77–82. [Google Scholar] [CrossRef]
- Reis, B.S.; Darcy, P.W.; Khan, I.Z.; Moon, C.S.; Kornberg, A.E.; Schneider, V.S.; Alvarez, Y.; Eleso, O.; Zhu, C.; Schernthanner, M.; et al. Tcr-vγδ usage distinguishes protumor from antitumor intestinal γδ t cell subsets. Science 2022, 377, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Pritchard, D.M.; Yu, L.-G. Galectin-3 promotes secretion of proteases that decrease epithelium integrity in human colon cancer cells. Cell Death Dis. 2023, 14, 268. [Google Scholar] [CrossRef]
- Qiao, S.-W.; Dahal-Koirala, S.; Eggesbø, L.M.; Lundin, K.E.A.; Sollid, L.M. Frequency of gluten-reactive t cells in active celiac lesions estimated by direct cell cloning. Front. Immunol. 2021, 12, 646163. [Google Scholar] [CrossRef] [PubMed]
- Matysiak-Budnik, T.; Malamut, G.; De Serre, N.P.-M.; Grosdidier, E.; Seguier, S.; Brousse, N.; Caillat-Zucman, S.; Cerf-Bensussan, N.; Schmitz, J.; Cellier, C. Long-term follow-up of 61 coeliac patients diagnosed in childhood: Evolution toward latency is possible on a normal diet. Gut 2007, 56, 1379–1386. [Google Scholar] [CrossRef]
- Abadie, V.; Discepolo, V.; Jabri, B. Intraepithelial lymphocytes in celiac disease immunopathology. Semin. Immunopathol. 2012, 34, 551–566. [Google Scholar] [CrossRef] [PubMed]
- James, O.J.; Vandereyken, M.; Marchingo, J.M.; Singh, F.; Bray, S.E.; Wilson, J.; Love, A.G.; Swamy, M. Il-15 and pim kinases direct the metabolic programming of intestinal intraepithelial lymphocytes. Nat. Commun. 2021, 12, 4290. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, A.; Murray, D. Quantitation of intraepithelial lymphocytes in human jejunum. Gut 1971, 12, 988–994. [Google Scholar] [CrossRef] [PubMed]
- Marsh, M.; Heal, C. Evolutionary developments in interpreting the gluten-induced mucosal celiac lesion: An archimedian heuristic. Nutrients 2017, 9, 213. [Google Scholar] [CrossRef]
- Eggesbø, L.M.; Risnes, L.F.; Neumann, R.S.; Lundin, K.E.A.; Christophersen, A.; Sollid, L.M. Single-cell tcr sequencing of gut intraepithelial γδ t cells reveals a vast and diverse repertoire in celiac disease. Mucosal Immunol. 2020, 13, 313–321. [Google Scholar] [CrossRef]
- Mayassi, T.; Ladell, K.; Gudjonson, H.; Mclaren, J.E.; Shaw, D.G.; Tran, M.T.; Rokicka, J.J.; Lawrence, I.; Grenier, J.-C.; Van Unen, V.; et al. Chronic inflammation permanently reshapes tissue-resident immunity in celiac disease. Cell 2019, 176, 967–981.e919. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, G.; Naiyer, A.J.; Shah, J.G.; Harper, J.; Jabri, B.; Wang, T.C.; Green, P.H.R.; Manavalan, J.S. Small intestinal cd8+tcrγδ+nkg2a+ intraepithelial lymphocytes have attributes of regulatory cells in patients with celiac disease. J. Clin. Investig. 2008, 118, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, H.; Ishiguro, Y.; Munakata, A.; Morita, T. Multiple Accumulation of Vδ2+ γδ t-cell clonotypes in intestinal mucosa from patients with Crohn’s disease. Dig. Dis. Sci. 2001, 46, 410–416. [Google Scholar] [CrossRef]
- Yeung, M.M.; Melgar, S.; Baranov, V.; Öberg, Å.; Danielsson, Å.; Hammarström, S.; Hammarström, M.L. Characterisation of mucosal lymphoid aggregates in ulcerative colitis: Immune cell phenotype and tcr-γδ expression. Gut 2000, 47, 215. [Google Scholar] [CrossRef]
- Jensen-Jarolim, E.; Gscheidlinger, R.; Oberhuber, G.; Neuchrist, C.; Lucas, T.; Bises, G.; Radauer, C.; Willheim, M.; Scheiner, O.; Liu, F.-T.; et al. The constitutive expression of galectin-3 is downregulated in the intestinal epithelia of Crohn’s disease patients, and tumour necrosis factor alpha decreases the level of galectin-3-specific mRNA in hct-8 cells. Eur. J. Gastroenterol. Hepatol. 2002, 14, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Lippert, E.; Stieber-Gunckel, M.; Dunger, N.; Falk, W.; Obermeier, F.; Kunst, C. Galectin-3 modulates experimental colitis. Digestion 2015, 92, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Frol’Ová, L.; Smetana, K.; Borovská, D.; Kitanovičová, A.; Klimešová, K.; Janatková, I.; Malíčková, K.; Lukáš, M.; Drastich, P.; Beneš, Z.; et al. Detection of galectin-3 in patients with inflammatory bowel diseases: New serum marker of active forms of IBD? Inflamm. Res. 2009, 58, 503–512. [Google Scholar] [CrossRef]
- Zundler, S.; Becker, E.; Spocinska, M.; Slawik, M.; Parga-Vidal, L.; Stark, R.; Wiendl, M.; Atreya, R.; Rath, T.; Leppkes, M.; et al. Hobit- and blimp-1-driven cd4+ tissue-resident memory t cells control chronic intestinal inflammation. Nat. Immunol. 2019, 20, 288–300. [Google Scholar] [CrossRef]
- Roosenboom, B.; Wahab, P.J.; Smids, C.; Groenen, M.J.M.; Van Koolwijk, E.; Van Lochem, E.G.; Horjus Talabur Horje, C.S. Intestinal cd103+cd4+ and cd103+cd8+ t-cell Subsets in the gut of inflammatory bowel disease patients at diagnosis and during follow-up. Inflamm. Bowel Dis. 2019, 25, 1497–1509. [Google Scholar] [CrossRef]
- Lamb, C.A.; Mansfield, J.C.; Tew, G.W.; Gibbons, D.; Long, A.K.; Irving, P.; Diehl, L.; Eastham-Anderson, J.; Price, M.B.; O’Boyle, G.; et al. αEβ7 Integrin identifies subsets of pro-inflammatory colonic cd4+ t lymphocytes in ulcerative colitis. J. Crohn’s Colitis 2016, 11, jjw189. [Google Scholar] [CrossRef]
- Bishu, S.; El Zaatari, M.; Hayashi, A.; Hou, G.; Bowers, N.; Kinnucan, J.; Manoogian, B.; Muza-Moons, M.; Zhang, M.; Grasberger, H.; et al. Cd4+ tissue-resident memory t cells expand and are a major source of mucosal tumour necrosis factor α in active crohn’s disease. J. Crohn’s Colitis 2019, 13, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Bottois, H.; Ngollo, M.; Hammoudi, N.; Courau, T.; Bonnereau, J.; Chardiny, V.; Grand, C.; Gergaud, B.; Allez, M.; Le Bourhis, L. Klrg1 and cd103 expressions define distinct intestinal tissue-resident memory cd8 t cell subsets modulated in crohn’s disease. Front. Immunol. 2020, 11, 896. [Google Scholar] [CrossRef]
- SchöN, M.P.; Arya, A.; Murphy, E.A.; Adams, C.M.; Strauch, U.G.; Agace, W.W.; Marsal, J.; Donohue, J.P.; Her, H.; Beier, D.R.; et al. Mucosal t lymphocyte numbers are selectively reduced in integrin αe (cd103)-deficient mice. J. Immunol. 1999, 162, 6641–6649. [Google Scholar] [CrossRef] [PubMed]
- Guy-Grand, D.; Cuénod-Jabri, B.; Malassis-Seris, M.; Selz, F.; Vassalli, P. Complexity of the mouse gut t cell immune system: Identification of two distinct natural killer t cell intraepithelial lineages. Eur. J. Immunol. 1996, 26, 2248–2256. [Google Scholar] [CrossRef] [PubMed]
- Mikulak, J.; Oriolo, F.; Bruni, E.; Roberto, A.; Colombo, F.S.; Villa, A.; Bosticardo, M.; Bortolomai, I.; Lo Presti, E.; Meraviglia, S.; et al. Nkp46-expressing human gut-resident intraepithelial vδ1 t cell subpopulation exhibits high antitumor activity against colorectal cancer. JCI Insight 2019, 4, e125884. [Google Scholar] [CrossRef] [PubMed]
- Cohen, C.J.; Shieh, J.T.C.; Pickles, R.J.; Okegawa, T.; Hsieh, J.-T.; Bergelson, J.M. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc. Natl. Acad. Sci. USA 2001, 98, 15191–15196. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hada, A.; Xiao, Z. Ligands for Intestinal Intraepithelial T Lymphocytes in Health and Disease. Pathogens 2025, 14, 109. https://doi.org/10.3390/pathogens14020109
Hada A, Xiao Z. Ligands for Intestinal Intraepithelial T Lymphocytes in Health and Disease. Pathogens. 2025; 14(2):109. https://doi.org/10.3390/pathogens14020109
Chicago/Turabian StyleHada, Akanksha, and Zhengguo Xiao. 2025. "Ligands for Intestinal Intraepithelial T Lymphocytes in Health and Disease" Pathogens 14, no. 2: 109. https://doi.org/10.3390/pathogens14020109
APA StyleHada, A., & Xiao, Z. (2025). Ligands for Intestinal Intraepithelial T Lymphocytes in Health and Disease. Pathogens, 14(2), 109. https://doi.org/10.3390/pathogens14020109