Ticks and Tick-Borne Pathogens in Wild Animals and Birds from Two Rehabilitation Facilities in Greece
<p>Map representing the origin of the tick samples.</p> "> Figure 2
<p>Phylogenetic analysis of Rickettsiae sequences based on <span class="html-italic">ompA</span> gene sequences. Analysis was carried out with MEGA-11 software. The sequences were aligned using the alignment program CLUSTAL, which is a part of the MEGA-11 software package. The evolutionary distance values were determined by the method of p-distance and these values were used to construct a phylogenetic tree by the neighbor-joining method. The numbers at nodes are the proportion of 1000 bootstrap that support the topology shown. References sequences of spotted fever <span class="html-italic">Rickettsia</span> group were exported from GenBank.</p> "> Figure 3
<p>Phylogenetic analysis of Hemolivia positive samples based on <span class="html-italic">18S rRNA</span> gene sequences. Analysis was carried out with MEGA-11 software. The sequences were aligned using the alignment program CLUSTAL, which is a part of the MEGA-11 software package. The evolutionary distance values were determined by the method of p-distance and these values were used to construct a phylogenetic tree by the neighbor-joining method. The numbers at nodes are the proportion of 1000 bootstrap that support the topology shown. References sequences of <span class="html-italic">Hemolivia</span> spp. were exported from GenBank.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Tick Collection
2.2. Nucleic Acid Extraction
2.3. PCR Amplification
2.4. Sequence and Phylogenetic Analysis
3. Results
3.1. Tick Collection Outcomes
3.2. Pathogen Detection Results
3.3. Tick Species and Tick-Borne Pathogens on Host Animals
3.4. Phylogenetic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Latrofa, M.S.; Angelou, A.; Giannelli, A.; Annoscia, G.; Ravagnan, S.; Dantas-Torres, F.; Capelli, G.; Halos, L.; Beugnet, F.; Papadopoulos, E.; et al. Ticks and associated pathogens in dogs from Greece. Parasites Vectors 2017, 10, 301. [Google Scholar] [CrossRef] [PubMed]
- Hrazdilova, K.; Lesiczka, P.M.; Bardon, J.; Vyroubalova, S.; Simek, B.; Zurek, L.; Modry, D. Wild boar as a potential reservoir of zoonotic tick-borne pathogens. Ticks Tick-Borne Dis. 2021, 12, 101558. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Roldan, J.A.; Mendoza-Roldan, M.A.; Otranto, D. Reptile vector-borne diseases of zoonotic concern. Int. J. Parasitol. Parasites Wildl. 2021, 15, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Manoj, R.R.S.; Mendoza-Roldan, J.A.; Latrofa, M.S.; Remesar, S.; Brianti, E.; Otranto, D. Molecular detection of zoonotic blood pathogens in ticks from illegally imported turtles in Italy. Acta Trop. 2021, 222, 106038. [Google Scholar] [CrossRef] [PubMed]
- Norte, A.C.; Harris, D.J.; Silveira, D.; Nunes, C.S.; Nuncio, M.S.; Martinez, E.G.; Gimenez, A.; de Sousa, R.; Lopes de Carvalho, I.; Perera, A. Diversity of microorganisms in Hyalomma aegyptium collected from spur-thighed tortoise (Testudo graeca) in North Africa and Anatolia. Transbound. Emerg. Dis. 2022, 69, 1951–1962. [Google Scholar] [CrossRef]
- Szekeres, S.; Docters van Leeuwen, A.; Toth, E.; Majoros, G.; Sprong, H.; Foldvari, G. Road-killed mammals provide insight into tick-borne bacterial pathogen communities within urban habitats. Transbound. Emerg. Dis. 2019, 66, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Majerova, K.; Gutierrez, R.; Fonville, M.; Honig, V.; Papezik, P.; Hofmannova, L.; Lesiczka, P.M.; Nachum-Biala, Y.; Ruzek, D.; Sprong, H.; et al. Hedgehogs and Squirrels as Hosts of Zoonotic Bartonella Species. Pathogens 2021, 10, 686. [Google Scholar] [CrossRef]
- Dumitrache, M.O.; Pastiu, A.I.; Kalmar, Z.; Mircean, V.; Sandor, A.D.; Gherman, C.M.; Pestean, C.; Mihalca, A.D.; Cozma, V. Northern white-breasted hedgehogs Erinaceus roumanicus as hosts for ticks infected with Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in Romania. Ticks Tick-Borne Dis. 2013, 4, 214–217. [Google Scholar] [CrossRef]
- Mumcuoglu, K.Y.; Arslan-Akveran, G.; Aydogdu, S.; Karasartova, D.; Kosar, A.; Savci, U.; Keskin, A.; Taylan-Ozkan, A. Pathogens in ticks collected in Israel: II. Bacteria and protozoa found in Rhipicephalus sanguineus sensu lato and Rhipicephalus turanicus. Ticks Tick-Borne Dis. 2022, 13, 101986. [Google Scholar] [CrossRef] [PubMed]
- Springer, A.; Schutte, K.; Brandes, F.; Reuschel, M.; Fehr, M.; Dobler, G.; Margos, G.; Fingerle, V.; Sprong, H.; Strube, C. Potential drivers of vector-borne pathogens in urban environments: European hedgehogs (Erinaceus europaeus) in the spotlight. One Health 2024, 18, 100764. [Google Scholar] [CrossRef]
- Diakou, A.; Norte, A.C.; Lopes de Carvalho, I.; Nuncio, S.; Novakova, M.; Kautman, M.; Alivizatos, H.; Kazantzidis, S.; Sychra, O.; Literak, I. Ticks and tick-borne pathogens in wild birds in Greece. Parasitol. Res. 2016, 115, 2011–2016. [Google Scholar] [CrossRef] [PubMed]
- Flaisz, B.; Sulyok, K.M.; Kovats, D.; Kontschan, J.; Csorgo, T.; Csipak, A.; Gyuranecz, M.; Hornok, S. Babesia genotypes in Haemaphysalis concinna collected from birds in Hungary reflect phylogeographic connections with Siberia and the Far East. Ticks Tick-Borne Dis. 2017, 8, 666–670. [Google Scholar] [CrossRef] [PubMed]
- Wimbauer, M.; Bakkes, D.K.; Wolfel, S.; Broker, M.; Schaper, S.; Riess, R.; Dobler, G.; Chitimia-Dobler, L. Rickettsia spp. in ticks (Acari: Ixodidae) from wild birds: First detection of Candidatus Rickettsia vini in Hesse, Germany. Ticks Tick-Borne Dis. 2022, 13, 101908. [Google Scholar] [CrossRef] [PubMed]
- Wondim, M.; Dunaj-Malyszko, J.; Okrzeja, J.; Majewski, P.; Czupryna, P.; Pancewicz, S.; Moniuszko-Malinowska, A. Detection of Babesia and Theileria species in ticks from North-Eastern Poland. J. Travel Med. 2023, 30. [Google Scholar] [CrossRef] [PubMed]
- Sandor, A.D.; Kalmar, Z.; Matei, I.; Ionica, A.M.; Marcutan, I.D. Urban Breeding Corvids as Disseminators of Ticks and Emerging Tick-Borne Pathogens. Vector Borne Zoonotic Dis. 2017, 17, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Marcutan, I.D.; Kalmar, Z.; Ionica, A.M.; D'Amico, G.; Mihalca, A.D.; Vasile, C.; Sandor, A.D. Spotted fever group rickettsiae in ticks of migratory birds in Romania. Parasites Vectors 2016, 9, 294. [Google Scholar] [CrossRef] [PubMed]
- Moraga-Fernandez, A.; Chaligiannis, I.; Cabezas-Cruz, A.; Papa, A.; Sotiraki, S.; de la Fuente, J.; G. Fernández de Mera, I. Molecular identification of spotted fever group Rickettsia in ticks collected from dogs and small ruminants in Greece. Exp. Appl. Acarol. 2019, 78, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Athanasiou, L.V.; Kontos, V.I.; Kritsepi Konstantinou, M.; Polizopoulou, Z.S.; Rousou, X.A.; Christodoulopoulos, G. Cross-Sectional Serosurvey and Factors Associated with Exposure of Dogs to Vector-Borne Pathogens in Greece. Vector Borne Zoonotic Dis. 2019, 19, 923–928. [Google Scholar] [CrossRef]
- Guardone, L.; Nogarol, C.; Accorsi, A.; Vitale, N.; Listorti, V.; Scala, S.; Brusadore, S.; Miceli, I.N.; Wolfsgruber, L.; Guercio, A.; et al. Ticks and Tick-Borne Pathogens: Occurrence and Host Associations over Four Years of Wildlife Surveillance in the Liguria Region (Northwest Italy). Animals 2024, 14, 2377. [Google Scholar] [CrossRef] [PubMed]
- Habib, J.; Zenner, L.; Garel, M.; Mercier, A.; Poirel, M.T.; Itty, C.; Appolinaire, J.; Amblard, T.; Benedetti, P.; Sanchis, F.; et al. Prevalence of tick-borne pathogens in ticks collected from the wild mountain ungulates mouflon and chamois in 4 regions of France. Parasite 2024, 31, 21. [Google Scholar] [CrossRef] [PubMed]
- Opalinska, P.; Wierzbicka, A.; Asman, M.; Raczka, G.; Dyderski, M.K.; Nowak-Chmura, M. Fivefold higher abundance of ticks (Acari: Ixodida) on the European roe deer (Capreolus capreolus L.) forest than field ecotypes. Sci. Rep. 2021, 11, 10649. [Google Scholar] [CrossRef] [PubMed]
- Moraga-Fernandez, A.; Munoz-Hernandez, C.; Sanchez-Sanchez, M.; Fernandez de Mera, I.G.; de la Fuente, J. Exploring the diversity of tick-borne pathogens: The case of bacteria (Anaplasma, Rickettsia, Coxiella and Borrelia) protozoa (Babesia and Theileria) and viruses (Orthonairovirus, tick-borne encephalitis virus and louping ill virus) in the European continent. Vet. Microbiol. 2023, 286, 109892. [Google Scholar]
- Aouadi, A.; Leulmi, H.; Boucheikhchoukh, M.; Benakhla, A.; Raoult, D.; Parola, P. Molecular evidence of tick-borne hemoprotozoan-parasites (Theileria ovis and Babesia ovis) and bacteria in ticks and blood from small ruminants in Northern Algeria. Comp. Immunol. Microbiol. Infect. Dis. 2017, 50, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Papa, A.; Tsioka, K.; Kontana, A.; Papadopoulos, C.; Giadinis, N. Bacterial pathogens and endosymbionts in ticks. Ticks Tick-Borne Dis. 2017, 8, 31–35. [Google Scholar] [CrossRef]
- Sokhna, C.; Mediannikov, O.; Fenollar, F.; Bassene, H.; Diatta, G.; Tall, A.; Trape, J.F.; Drancourt, M.; Raoult, D. Point-of-care laboratory of pathogen diagnosis in rural Senegal. PLoS Negl. Trop. Dis. 2013, 7, e1999. [Google Scholar] [CrossRef]
- Martinez-Garcia, G.; Santamaria-Espinosa, R.M.; Lira-Amaya, J.J.; Figueroa, J.V. Challenges in Tick-Borne Pathogen Detection: The Case for Babesia spp. Identification in the Tick Vector. Pathogens 2021, 10, 92. [Google Scholar] [CrossRef]
- Nurmakhanov, T.; Tukhanova, N.; Sayakova, Z.; Sadovskaya, V.; Shevtsov, A.; Tokmurziyeva, G.; Turebekov, N. Outcome of the entomological monitoring for Crimean-Congo haemorrhagic fever virus in the western and southern regions of Kazakhstan in 2021-2022. Front. Epidemiol. 2024, 4, 1310071. [Google Scholar] [CrossRef]
- Achazi, K.; Nitsche, A.; Patel, P.; Radonic, A.; Mantke, O.D.; Niedrig, M. Detection and differentiation of tick-borne encephalitis virus subtypes by a reverse transcription quantitative real-time PCR and pyrosequencing. J. Virol. Methods 2011, 171, 34–39. [Google Scholar] [CrossRef]
- Novakova, M.; Costa, F.B.; Krause, F.; Literak, I.; Labruna, M.B. Rickettsia vini n. sp. (Rickettsiaceae) infecting the tick Ixodes arboricola (Acari: Ixodidae). Parasites Vectors 2016, 9, 469. [Google Scholar] [CrossRef]
- Schorn, S.; Pfister, K.; Reulen, H.; Mahling, M.; Silaghi, C. Occurrence of Babesia spp. Rickettsia spp. and Bartonella spp. in Ixodes ricinus in Bavarian public parks, Germany. Parasites Vectors 2011, 4, 135. [Google Scholar] [CrossRef] [PubMed]
- Bizhga, B.; Sonmez, B.; Bardhaj, L.; Sherifi, K.; Gundemir, O.; Duro, S. Hyalomma aegyptium the dominant hard tick in tortoises Tesdudo hermanni boettgeri found in different regions of Albania. Int. J. Parasitol. Parasites Wildl. 2022, 17, 199–204. [Google Scholar] [CrossRef]
- Siroky, P.; Kamler, M.; Modry, D. Prevalence of Hemolivia mauritanica (Apicomplexa: Adeleina: Haemogregarinidae) in natural populations of tortoises of the genus Testudo in the East Mediterranean region. Folia Parasitol. 2005, 52, 359–361. [Google Scholar] [CrossRef]
- Siroky, P.; Petrzelková, K.J.; Kamler, M.; Mihalca, A.D.; Modry, D. Hyalomma aegyptium as dominant tick in tortoises of the genus Testudo in Balkan countries, with notes on its host preferences. Exp. Appl. Acarol. 2006, 40, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Papa, A.; Chaligiannis, I.; Xanthopoulou, K.; Papaioakim, M.; Papanastasiou, S.; Sotiraki, S. Ticks parasitizing humans in Greece. Vector Borne Zoonotic Dis. 2011, 11, 539–542. [Google Scholar] [CrossRef]
- Kar, S.; Rodriguez, S.E.; Akyildiz, G.; Cajimat, M.N.B.; Bircan, R.; Mears, M.C.; Bente, D.A.; Keles, A.G. Crimean-Congo hemorrhagic fever virus in tortoises and Hyalomma aegyptium ticks in East Thrace, Turkey: Potential of a cryptic transmission cycle. Parasites Vectors 2020, 13, 201. [Google Scholar] [CrossRef] [PubMed]
- Mumcuoglu, K.Y.; Arslan-Akveran, G.; Aydogdu, S.; Karasartova, D.; Kosar, N.; Gureser, A.S.; Shacham, B.; Taylan-Ozkan, A. Pathogens in ticks collected in Israel: I. Bacteria and protozoa in Hyalomma aegyptium and Hyalomma dromedarii collected from tortoises and camels. Ticks Tick-Borne Dis. 2022, 13, 101866. [Google Scholar] [CrossRef] [PubMed]
- Segura, A.; Rafael, M.; Vaz-Rodrigues, R.; Rodriguez, O.; Gortázar, C.; de la Fuente, J. Tick infestation in spur-thighed tortoise population: A pilot study for unraveling epidemiological patterns and demographic consequences. Exp. Appl. Acarol. 2023, 91, 661–679. [Google Scholar] [CrossRef] [PubMed]
- Chaligiannis, I.; Papa, A.; Sotiraki, S. Abstracts of the 1st Conference on Neglected Vectors and Vector-Borne Diseases (EurNegVec): With Management Committee and Working Group Meetings of the COST Action TD1303, April 8-11, 2014, Cluj-Napoca, Romania. Parasites Vectors 2014, 7 (Suppl. S1), O1-P19. [Google Scholar] [CrossRef]
- Psaroulaki, A.; Ragiadakou, D.; Kouris, G.; Papadopoulos, B.; Chaniotis, B.; Tselentis, Y. Ticks, tick-borne rickettsiae, and Coxiella burnetii in the Greek Island of Cephalonia. Ann. N. Y. Acad. Sci. 2006, 1078, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Cicculli, V.; Oscar, M.; Casabianca, F.; Villechenaud, N.; Charrel, R.; de Lamballerie, X.; Falchi, A. Molecular Detection of Spotted-Fever Group Rickettsiae in Ticks Collected from Domestic and Wild Animals in Corsica, France. Pathogens 2019, 8, 138. [Google Scholar] [CrossRef] [PubMed]
- Duscher, G.G.; Hodzic, A.; Hufnagl, P.; Wille-Piazzai, W.; Schötta, A.M.; Markowicz, M.A.; Estrada-Peña, A.; Stanek, G.; Allerberger, F. Adult tick positive for in Austria, October 2018. Eurosurveillance 2018, 23, 9–11. [Google Scholar] [CrossRef]
- Palomar, A.M.; Portillo, A.; Mazuelas, D.; Roncero, L.; Arizaga, J.; Crespo, A.; Gutiérrez, O.; Márquez, F.J.; Cuadrado, J.F.; Eiros, J.M.; et al. Molecular analysis of Crimean-Congo hemorrhagic fever virus and Rickettsia in ticks removed from patients (Spain) and birds (Spain and Morocco), 2009–2015. Ticks Tick-Borne Dis. 2016, 7, 983–987. [Google Scholar] [CrossRef]
- Chisu, V.; Zobba, R.; Foxi, C.; Pisu, D.; Masala, G.; Alberti, A. Molecular detection and groEL typing of Rickettsia aeschlimannii in Sardinian ticks. Parasitol. Res. 2016, 115, 3323–3328. [Google Scholar] [CrossRef] [PubMed]
- Nader, J.; Król, N.; Pfeffer, M.; Ohlendorf, V.; Marklewitz, M.; Drosten, C.; Junglen, S.; Obiegala, A. The diversity of tick-borne bacteria and parasites in ticks collected from the Strandja Nature Park in south-eastern Bulgaria. Parasites Vectors 2018, 11, 165. [Google Scholar] [CrossRef] [PubMed]
- Chitimia-Dobler, L.; Schaper, S.; Riess, R.; Bitterwolf, K.; Frangoulidis, D.; Bestehorn, M.; Springer, A.; Oehme, R.; Drehmann, M.; Lindau, A.; et al. Imported Hyalomma ticks in Germany in 2018. Parasites Vectors 2019, 12, 134. [Google Scholar] [CrossRef] [PubMed]
- Efstratiou, A.; Karanis, G.; Karanis, P. Tick-Borne Pathogens and Diseases in Greece. Microorganisms 2021, 9, 1732. [Google Scholar] [CrossRef]
- Psaroulaki, A.; Germanakis, A.; Gikas, A.; Scoulica, E.; Tselentis, Y. Simultaneous detection of "Rickettsia mongolotimonae" in a patient and in a tick in Greece. J. Clin. Microbiol. 2005, 43, 3558–3559. [Google Scholar] [CrossRef] [PubMed]
- Sandalakis, V.; Chochlakis, D.; Ioannou, I.; Psaroulaki, A. Short Report: Identification of a Novel Uncultured Rickettsia Species Strain (Rickettsia Species Strain Tselenti) in Cyprus. Am. J. Trop. Med. Hyg. 2013, 88, 698–700. [Google Scholar] [CrossRef]
- Guccione, C.; Colomba, C.; Iaria, C.; Cascio, A. Rickettsiales in the WHO European Region: An update from a One Health perspective. Parasites Vectors 2023, 16, 41. [Google Scholar] [CrossRef] [PubMed]
- Drehmann, M.; Chitimia-Dobler, L.; Lindau, A.; Frank, A.; Mai, S.; Fachet, K.; Hauck, D.; Knoll, S.; Strube, C.; Luhken, R.; et al. Ixodes frontalis: A neglected but ubiquitous tick species in Germany. Exp. Appl. Acarol. 2019, 78, 79–91. [Google Scholar] [CrossRef]
- Movila, A.; Alekseev, A.N.; Dubinina, H.V.; Toderas, I. Detection of tick-borne pathogens in ticks from migratory birds in the Baltic region of Russia. Med. Vet. Entomol. 2013, 27, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Wallmenius, K.; Barboutis, C.; Fransson, T.; Jaenson, T.G.T.; Lindgren, P.E.; Nyström, F.; Olsen, B.; Salaneck, E.; Nilsson, K. Spotted fever Rickettsia species in Hyalomma and Ixodes ticks infesting migratory birds in the European Mediterranean area. Parasites Vectors 2014, 7, 318. [Google Scholar] [CrossRef]
- Sukhiashvili, R.; Zhgenti, E.; Khmaladze, E.; Burjanadze, I.; Imnadze, P.; Jiang, J.; St John, H.; Farris, C.M.; Gallagher, T.; Obiso, R.J.; et al. Identification and distribution of nine tick-borne spotted fever group Rickettsiae in the Country of Georgia. Ticks Tick-Borne Dis. 2020, 11, 101470. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, M.M.; Beati, L.; Santos, A.S.; De Sousa, R.; Nuncio, M.S.; Melo, P.; Santos-Reis, M.; Fonseca, C.; Formosinho, P.; Vilela, C.; et al. The hard-tick fauna of mainland Portugal (Acari: Ixodidae): An update on geographical distribution and known associations with hosts and pathogens. Exp. Appl. Acarol. 2011, 55, 85–121. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.S.; Santos-Silva, M.M.; Santos, A.S.; Santos-Silva, M.M. Ixodes Ventalloi Gil Collado, 1936: A Vector Role to Be Explored; BoD–Books on Demand: Norderstedt, Germany, 2018. [Google Scholar]
- Tomassone, L.; Grego, E.; Auricchio, D.; Iori, A.; Giannini, F.; Rambozzi, L. Lyme borreliosis spirochetes and spotted fever group rickettsiae in ixodid ticks from Pianosa island, Tuscany Archipelago, Italy. Vector Borne Zoonotic Dis. 2013, 13, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.S.; de Bruin, A.; Veloso, A.R.; Marques, C.; Pereira da Fonseca, I.; de Sousa, R.; Sprong, H.; Santos-Silva, M.M. Detection of Anaplasma phagocytophilum, Candidatus Neoehrlichia sp. Coxiella burnetii and Rickettsia spp. in questing ticks from a recreational park, Portugal. Ticks Tick-Borne Dis. 2018, 9, 1555–1564. [Google Scholar] [CrossRef]
- Germanakis, A.; Chochlakis, D.; Angelakis, E.; Tselentis, Y.; Psaroulaki, A. Rickettsia aeschlimannii infection in a man, Greece. Emerg. Infect. Dis. 2013, 19, 1176–1177. [Google Scholar] [CrossRef] [PubMed]
- Bitam, I.; Kernif, T.; Harrat, Z.; Parola, P.; Raoult, D. First detection of Rickettsia aeschlimannii in Hyalomma aegyptium from Algeria. Clin. Microbiol. Infect. 2009, 15, 253–254. [Google Scholar] [CrossRef]
- Orkun, Ö.; Karaer, Z.; Cakmak, A.; Nalbantoglu, S. Spotted fever group rickettsiae in ticks in Turkey. Ticks Tick-Borne Dis. 2014, 5, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Silva-Ramos, C.R.; Faccini-Martinez, A.A. Clinical, epidemiological, and laboratory features of Rickettsia africae infection, African tick-bite fever: A systematic review. Infez. Med. 2021, 29, 366–377. [Google Scholar]
- Barradas, P.F.; Lima, C.; Cardoso, L.; Amorim, I.; Gartner, F.; Mesquita, J.R. Molecular Evidence of Hemolivia mauritanica, Ehrlichia spp. and the Endosymbiont Candidatus Midichloria Mitochondrii in Hyalomma aegyptium Infesting Testudo graeca Tortoises from Doha, Qatar. Animals 2020, 11, 30. [Google Scholar] [CrossRef]
Organism | Target Gene | Molecular Diagnostic Method | Primers and Probe | Reference |
---|---|---|---|---|
Ticks | 12S rRNA | Conventional PCR | 5′ AAACTAGGATTAGATACCCT 3′ 5′ AATGAGAGCGACGGGCGATGT 3′ | [11] |
Anaplasma/Ehrlichia spp. | 23S rRNA | Real-time PCR | 5′ TGACAGCGTACCTTTTGCAT 3′ 5′ TGACAGGTAACAGGTTCGGTCCTCA 3′ 5′ FAM-GGATTAGACCCGAAACCAAG-BHQ1 3′ | [12] |
Bartonella spp. | gtlA | Real-time PCR | 5′ GATGCCGGGGAAGGTTTTC 3′ 5′ GCCTGGGAGGACTTGAACCT 3′ 5′ FAM-CGCGCGCTTGATAAGCGTGA-BHQ1 3′ | [13] |
Rickettsia spp. | gtlA | Real-time PCR | 5′ GTGAATGAAAGATTACACTATTTAT 3′ 5′ GTATCTTAGCAATCATTCTAATAGC 3′ 5′ FAM-CGGCAGGTAAGKATGCTACTCAAGATAA-BHQ1 3′ | [13] |
Babesia spp. | 18S rRNA | Real-time PCR | 5′ TTGGGGGCATTCGTANTRAC 3′ 5′ TTCTTGATTAATGAAAACGTCTTG 3′ 5′ FAM-AAGACGAACTACTGCGAAAGCATTTGC-BHQ1 3′ | [14] |
CCHF | M segment | Real-time PCR | 5′ CAAAGAAACACGTGCCGCTT 3′ 5′ ATTCTCCTCGATTTTGTTTTCCAT 3′ 5′ FAM-ACGCCCACA[BHQ1dT]GTGTTCTCTTGAGTGTTAGCA-BHQ1 3′ | [15] |
TBE | NS1 protein region | Real-time PCR | 5′ TGGAYTTYAGACAGGAAYCAACACA 3′ 5′ TCCAGAGACTYTGRTCDGTGTGGA 3′ 5′-FAMCCCATCACTCCWGTGTCAC-BHQ1 3′ | [16] |
Rickettsia spp. | ompA | Conventional PCR | 5′ ATGGCGAATATTTCTCCAAAA 3′ 5′ GTTCCGTTAATGGCAGCATCT 3′ | [17] |
Apicomplexa | 18S rRNA | Conventional PCR | 5′ GTCTTGTAATTGGAATGATGG 3′ 5′ TAGTTTATGGTTAGGACTACG 3′ | [18] |
Number of Ticks | Number of Ticks Infected with Pathogens (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Host | Hyalomma aegyptium | Hyalomma marginatum | Hyalomma anatolicum | Ixodes frontalis | Ixodes ventalloi | Rickettsia spp. | Hemolivia mauritanica | Ehrlichia spp./Anaplasma spp. | Babesia spp. | Bartonella spp. | CCHF | TBE | |
R. aeschlimannii | R. africae | ||||||||||||
Testudo marginata | 46 | - | - | - | - | 5 (11) | 1 (2) | 4 (9) | N/A | N/A | N/A | N/A | N/A |
Tyto alba | - | 18 | - | - | - | 11 (61) | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Columba oenas | 1 | - | - | - | - | 1 (100) | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Erinaceus europaeus | 2 | - | - | - | - | 2 (100) | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Athene noctua | 1 | - | - | - | - | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Testudo hermanni | 2 | - | - | - | - | 2 (100) | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Buteo buteo | 6 | - | - | - | - | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Pica pica | - | - | - | 1 | - | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Canis vulpes | - | - | - | - | 1 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Lepus europaeus | - | - | 3 | - | - | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vourvidis, D.; Tzouganatou, G.; Perdikaris, S.; Kofidou, E.; Martinez-Gonzalez, B.; Emmanouil, M.; Papadogiannakis, E.; Komnenou, A.; Angelakis, E. Ticks and Tick-Borne Pathogens in Wild Animals and Birds from Two Rehabilitation Facilities in Greece. Pathogens 2025, 14, 9. https://doi.org/10.3390/pathogens14010009
Vourvidis D, Tzouganatou G, Perdikaris S, Kofidou E, Martinez-Gonzalez B, Emmanouil M, Papadogiannakis E, Komnenou A, Angelakis E. Ticks and Tick-Borne Pathogens in Wild Animals and Birds from Two Rehabilitation Facilities in Greece. Pathogens. 2025; 14(1):9. https://doi.org/10.3390/pathogens14010009
Chicago/Turabian StyleVourvidis, Dimitrios, Georgia Tzouganatou, Sokratis Perdikaris, Evangelia Kofidou, Beatriz Martinez-Gonzalez, Mary Emmanouil, Emmanouil Papadogiannakis, Anastasia Komnenou, and Emmanouil Angelakis. 2025. "Ticks and Tick-Borne Pathogens in Wild Animals and Birds from Two Rehabilitation Facilities in Greece" Pathogens 14, no. 1: 9. https://doi.org/10.3390/pathogens14010009
APA StyleVourvidis, D., Tzouganatou, G., Perdikaris, S., Kofidou, E., Martinez-Gonzalez, B., Emmanouil, M., Papadogiannakis, E., Komnenou, A., & Angelakis, E. (2025). Ticks and Tick-Borne Pathogens in Wild Animals and Birds from Two Rehabilitation Facilities in Greece. Pathogens, 14(1), 9. https://doi.org/10.3390/pathogens14010009