Diversity and Multiple Infections of Bartonella in Red Deer and Deer Keds
<p>Phylogenetic tree of concatenated sequences. The tree was constructed using concatenated sequences of the <span class="html-italic">gltA</span>, <span class="html-italic">rpoB</span>, <span class="html-italic">nuoG</span>, and ITS loci of genotypes G01–G17 (in bold) and 10 genomes retrieved from GenBank. Bayesian inference was used for tree construction, with support values calculated using maximum likelihood with 500 bootstraps. Nodes with robust support (near 100%) in both models are indicated by black dots. Selected nodes are marked with numbers indicating Bayesian model support/bootstrap support. The number of individuals in which the genotype was detected is noted after the genotype name and the distribution among species in brackets (Ce = <span class="html-italic">Cervus elaphus</span>; Lc = <span class="html-italic">Lipoptena cervi</span>; Lf = <span class="html-italic">L. fortisetosa</span>). <sup>1</sup> Concatenate is missing the <span class="html-italic">nuoG</span> sequence. <sup>2</sup> Concatenate is missing the ITS sequence.</p> "> Figure 2
<p>The genotype network of <span class="html-italic">gltA</span> sequences created using POPart. The sizes of the circles represent the number of deer groups (deer and all its keds) containing the genotype. Genotypes detected by Sanger sequencing are marked in dark blue, those detected by ONT in cyan, and reference genomes from GenBank in orange. Each notch on connecting lines represents one SNP.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Bartonella Cultivation
2.3. DNA Extraction
2.4. PCR and Sequencing
2.5. Nanopore Sequencing
2.6. Phylogenetic Analysis
3. Results
3.1. Collection of Samples
3.2. Results of Bartonella Cultivation
3.3. Population Structure of Deer Keds
3.4. Bartonella Prevalence
3.5. Genotyping of Bartonella spp.
3.6. Multiple Infections
3.7. Nanopore Sequencing of Multiple Infections
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spach, D.H.; Koehler, J.E. Bartonella-associated Infections. Infect. Dis. Clin. N. Am. 1998, 12, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Koehler, J.E.; Glaser, C.A.; Tappero, J.W. Rochalimaea henselae Infection: A New Zoonosis With the Domestic Cat as Reservoir. JAMA 1994, 271, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Vinson, J.; Varela, G.; Molina-Pasquel, C. Trench Fever. III. Induction of Clinical Disease in Volunteers Inoculated with Rickettsia quintana Propagated on Blood Agar. Am. J. Trop. Med. Hyg. 1969, 18, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.S.; Worthington, M.G.; Brenner, D.J.; Moss, C.W.; Hollis, D.G.; Weyant, R.S.; Steigerwalt, A.G.; Weaver, R.E.; Daneshvar, M.I.; O’Connor, S.P. Rochalimaea elizabethae sp. Nov. Isolated from a Patient with Endocarditis. J. Clin. Microbiol. 1993, 31, 872–881. [Google Scholar] [CrossRef]
- Kordick, D.L.; Hilyard, E.J.; Hadfield, T.L.; Wilson, K.H.; Steigerwalt, A.G.; Brenner, D.J.; Breitschwerdt, E.B. Bartonella clarridgeiae, a Newly Recognized Zoonotic Pathogen Causing Inoculation Papules, Fever, and Lymphadenopathy (Cat Scratch Disease). J. Clin. Microbiol. 1997, 35, 1813–1818. [Google Scholar] [CrossRef]
- Kerkhoff, F.T.; Bergmans, A.M.C.; Zee, A.; Rothova, A. Demonstration of Bartonella grahamii DNA in Ocular Fluids of a Patient with Neuroretinitis. J. Clin. Microbiol. 1999, 37, 4034–4038. [Google Scholar] [CrossRef]
- Roux, V.; Eykyn, S.J.; Wyllie, S.; Raoult, D. Bartonella vinsonii Subsp. Berkhoffii as an Agent of Afebrile Blood Culture-Negative Endocarditis in a Human. J. Clin. Microbiol. 2000, 38, 1698–1700. [Google Scholar] [CrossRef]
- Kosoy, M.; Murray, M.; Gilmore, J.R.D.; Bai, Y.; Gage, K.L. Bartonella Strains from Ground Squirrels Are Identical to Bartonella washoensis Isolated from a Human Patient. J. Clin. Microbiol. 2003, 41, 645–650. [Google Scholar] [CrossRef]
- Avidor, B.; Graidy, M.; Efrat, G.; Leibowitz, C.; Shapira, G.; Schattner, A.; Zimhony, O.; Giladi, M. Bartonella koehlerae, a New Cat-Associated Agent of Culture-Negative Human Endocarditis. J. Clin. Microbiol. 2004, 42, 3462–3468. [Google Scholar] [CrossRef]
- Fenollar, F.; Sire, S.; Raoult, D. Bartonella vinsonii Subsp. Arupensis as an Agent of Blood Culture-Negative Endocarditis in a Human. J. Clin. Microbiol. 2005, 43, 945–947. [Google Scholar] [CrossRef]
- Raoult, D.; Roblot, F.; Rolain, J.-M.; Besnier, J.-M.; Loulergue, J.; Bastides, F.; Choutet, P. First Isolation of Bartonella alsatica from a Valve of a Patient with Endocarditis. J. Clin. Microbiol. 2006, 44, 278–279. [Google Scholar] [CrossRef] [PubMed]
- Eremeeva, M.E.; Gerns, H.L.; Lydy, S.L.; Goo, J.S.; Ryan, E.T.; Mathew, S.S.; Ferraro, M.J.; Holden, J.M.; Nicholson, W.L.; Dasch, G.A. Bacteremia, Fever, and Splenomegaly Caused by a Newly Recognized Bartonella Species. N. Engl. J. Med. 2007, 356, 2381–2387. [Google Scholar] [CrossRef] [PubMed]
- Kosoy, M.; Morway, C.; Sheff, K.W.; Bai, Y.; Colborn, J.; Chalcraft, L.; Dowell, S.F.; Peruski, L.F.; Maloney, S.A.; Baggett, H. Bartonella tamiae sp. Nov., a Newly Recognized Pathogen Isolated from Three Human Patients from Thailand. J. Clin. Microbiol. 2007, 46, 772–775. [Google Scholar] [CrossRef] [PubMed]
- Maggi, R.G.; Kosoy, M.; Mintzer, M.; Breitschwerdt, E.B. Isolation of Candidatus Bartonella melophagi from Human Blood. Emerg. Infect. Dis. 2009, 15, 66–68. [Google Scholar] [CrossRef]
- Rolain, J.; Boureau-Voultoury, A.; Raoult, D. Serological Evidence of Bartonella vinsonii Lymphadenopathies in a Child Bitten by a Dog. Clin. Microbiol. Infect. 2009, 15, 122–123. [Google Scholar] [CrossRef]
- Kosoy, M.; Peruski, L.F.; Maloney, S.A.; Boonmar, S.; Sitdhirasdr, A.; Lerdthusnee, K.; Baggett, H.; Morway, C.; Bai, Y.; Sheff, K. Identification of Bartonella Infections in Febrile Human Patients from Thailand and Their Potential Animal Reservoirs. Am. J. Trop. Med. Hyg. 2010, 82, 1140–1145. [Google Scholar] [CrossRef]
- Lin, E.Y.; Tsigrelis, C.; Baddour, L.M.; Lepidi, H.; Rolain, J.-M.; Patel, R.; Raoult, D. Candidatus Bartonella mayotimonensis and Endocarditis. Emerg. Infect. Dis. 2010, 16, 500–503. [Google Scholar] [CrossRef]
- Mullins, K.E.; Hang, J.; Jiang, J.; Leguia, M.; Kasper, M.R.; Maguiña, C.; Jarman, R.G.; Blazes, D.L.; Richards, A.L. Molecular Typing of “Candidatus Bartonella ancashi”, a New Human Pathogen Causing Verruga Peruana. J. Clin. Microbiol. 2013, 51, 3865–3868. [Google Scholar] [CrossRef]
- Kandelaki, G.; Malania, L.; Bai, Y.; Chakvetadze, N.; Katsitadze, G.; Imnadze, P.; Nelson, C.; Harrus, S.; Kosoy, M. Human Lymphadenopathy Caused by Ratborne Bartonella, Tbilisi, Georgia. Emerg. Infect. Dis. 2016, 22, 544–546. [Google Scholar] [CrossRef]
- Vayssier-Taussat, M.; Moutailler, S.; Féménia, F.; Raymond, P.; Croce, O.; La Scola, B.; Fournier, P.-E.; Raoult, D. Identification of Novel Zoonotic Activity of Bartonella spp., France. Emerg. Infect. Dis. 2016, 22, 457–462. [Google Scholar] [CrossRef]
- Czech Statistical Office. Basic Data on Hunting Grounds, Game Stock. and Hunting—From 1 April 2022 to 31 March 2023. Available online: https://www.czso.cz/csu/czso/basic-data-on-hunting-grounds-game-stock-and-hunting-from-1-april-2022-to-31-march-2023 (accessed on 27 November 2023).
- Lotocký, M.; Turek, K. Myslivecká statistika 2022/2023. Myslivost 2023, 2023, 22. [Google Scholar]
- Czech Statistical Office. Population—Annual Time Series. Available online: https://www.czso.cz/csu/czso/population_hd (accessed on 30 October 2023).
- Oliva, F. OTÁZKY NA VÍKEND: Češi Potvrdili Pověst Houbařského Národa. Sbíráme i Lesní Plody. SC&C. Available online: https://scac.cz/otazky-na-vikend-cesi-potvrdili-povest-houbarskeho-naroda-sbirame-i-lesni-plody/ (accessed on 24 June 2024).
- Engel, P.; Salzburger, W.; Liesch, M.; Chang, C.-C.; Maruyama, S.; Lanz, C.; Calteau, A.; Lajus, A.; Médigue, C.; Schuster, S.C.; et al. Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella. PLoS Genet. 2011, 7, e1001296. [Google Scholar] [CrossRef] [PubMed]
- Parte, A.C.; Sardà Carbasse, J.; Meier-Kolthoff, J.P.; Reimer, L.C.; Göker, M. List of Prokaryotic Names with Standing in Nomenclature (LPSN) Moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 2020, 70, 5607–5612. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebi Ashtiani, Z.; Ahmadinezhad, M.; Bagheri Amiri, F.; Esmaeili, S. Geographical Distribution of Bartonella spp. in the Countries of the WHO Eastern Mediterranean Region (WHO-EMRO). J. Infect. Public Health 2024, 17, 612–618. [Google Scholar] [CrossRef]
- do Amaral, R.B.; Cardozo, M.V.; Varani, A.d.M.; Furquim, M.E.C.; Dias, C.M.; de Assis, W.O.; da Silva, A.R.; Herrera, H.M.; Machado, R.Z.; André, M.R. First Report of Bartonella spp. in Marsupials from Brazil, with a Description of Bartonella harrusi sp. Nov. and a New Proposal for the Taxonomic Reclassification of Species of the Genus Bartonella. Microorganisms 2022, 10, 1609. [Google Scholar] [CrossRef]
- Miao, Y.; Guo, W.; Zhang, W.; Chen, Z.; Mian, D.; Li, R.; Xu, A.; Chen, M.; Li, D. Detection of Bartonella spp. in Farmed Deer (Artiodactyla: Cervidae) Using Multiplex Assays in the Qinghai-Tibet Plateau, China. Microbiol. Spectr. 2024, 12, e0412023. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Liu, Z.; Liu, J.; Yang, J.; Li, Q.; Li, Y.; Luo, J.; Yin, H. Molecular Survey of Anaplasma and Ehrlichia of Red Deer and Sika Deer in Gansu, China in 2013. Transbound. Emerg. Dis. 2016, 63, e228–e236. [Google Scholar] [CrossRef]
- Dehio, C.; Lanz, C.; Pohl, R.; Behrens, P.; Bermond, D.; Piémont, Y.; Pelz, K.; Sander, A. Bartonella schoenbuchii sp. Nov., Isolated from the Blood of Wild Roe Deer. Int. J. Syst. Evol. Microbiol. 2001, 51 Pt 4, 1557–1565. [Google Scholar] [CrossRef]
- Korhonen, E.M.; Pérez Vera, C.; Pulliainen, A.T.; Sironen, T.; Aaltonen, K.; Kortet, R.; Härkönen, L.; Härkönen, S.; Paakkonen, T.; Nieminen, P.; et al. Molecular Detection of Bartonella spp. in Deer Ked Pupae, Adult Keds and Moose Blood in Finland. Epidemiol. Infect. 2015, 143, 578–585. [Google Scholar] [CrossRef]
- Greco, G.; Zarea, A.A.K.; Sgroi, G.; Tempesta, M.; D’Alessio, N.; Lanave, G.; Bezerra-Santos, M.A.; Iatta, R.; Veneziano, V.; Otranto, D.; et al. Zoonotic Bartonella Species in Eurasian Wolves and Other Free-Ranging Wild Mammals from Italy. Zoonoses Public Health 2021, 68, 316–326. [Google Scholar] [CrossRef]
- Jentzsch, M.; Knauthe, C. Lausfliegen-Präparate aus Instituts- und Museumssammlungen Sachsens. Entomol. Nachrichten Berichte 2019, 63, 135–141. [Google Scholar]
- Rantanen, T.; Reunala, T.; Vuojolahti, P.; Hackman, W. Persistent Pruritic Papules from Deer Ked Bites. Acta Derm. Venereol. 1982, 62, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Buczek, W.; Buczek, A.M.; Bartosik, K.; Buczek, A. Comparison of Skin Lesions Caused by Ixodes ricinus Ticks and Lipoptena cervi Deer Keds Infesting Humans in the Natural Environment. Int. J. Environ. Res. Public Health 2020, 17, 3316. [Google Scholar] [CrossRef] [PubMed]
- Dehio, C.; Sauder, U.; Hiestand, R. Isolation of Bartonella schoenbuchensis from Lipoptena cervi, a Blood-Sucking Arthropod Causing Deer Ked Dermatitis. J. Clin. Microbiol. 2004, 42, 5320–5323. [Google Scholar] [CrossRef] [PubMed]
- Maślanko, W.; Bartosik, K.; Raszewska-Famielec, M.; Szwaj, E.; Asman, M. Exposure of Humans to Attacks by Deer Keds and Consequences of Their Bites—A Case Report with Environmental Background. Insects 2020, 11, 859. [Google Scholar] [CrossRef]
- de Bruin, A.; van Leeuwen, A.D.; Jahfari, S.; Takken, W.; Földvári, M.; Dremmel, L.; Sprong, H.; Földvári, G. Vertical Transmission of Bartonella schoenbuchensis in Lipoptena cervi. Parasites Vectors 2015, 8, 176. [Google Scholar] [CrossRef]
- Duodu, S.; Madslien, K.; Hjelm, E.; Molin, Y.; Paziewska-Harris, A.; Harris, P.D.; Colquhoun, D.J.; Ytrehus, B. Bartonella Infections in Deer Keds (Lipoptena cervi) and Moose (Alces alces) in Norway. Appl. Environ. Microbiol. 2013, 79, 322–327. [Google Scholar] [CrossRef]
- Halos, L.; Jamal, T.; Maillard, R.; Girard, B.; Guillot, J.; Chomel, B.; Vayssier-Taussat, M.; Boulouis, H.-J. Role of Hippoboscidae Flies as Potential Vectors of Bartonella spp. Infecting Wild and Domestic Ruminants. Appl. Environ. Microbiol. 2004, 70, 6302–6305. [Google Scholar] [CrossRef]
- Regier, Y.; Komma, K.; Weigel, M.; Pulliainen, A.T.; Göttig, S.; Hain, T.; Kempf, V.A.J. Microbiome Analysis Reveals the Presence of Bartonella spp. and Acinetobacter spp. in Deer Keds (Lipoptena cervi). Front. Microbiol. 2018, 9, 3100. [Google Scholar] [CrossRef]
- Szewczyk, T.; Werszko, J.; Steiner-Bogdaszewska, Ż.; Jeżewski, W.; Laskowski, Z.; Karbowiak, G. Molecular Detection of Bartonella spp. in Deer Ked (Lipoptena cervi) in Poland. Parasites Vectors 2017, 10, 487. [Google Scholar] [CrossRef]
- Vogt, I.; Schröter, S.; Schreiter, R.; Sprong, H.; Volfová, K.; Jentzsch, M.; Freick, M. Detection of Bartonella schoenbuchensis (Sub)Species DNA in Different Louse Fly Species in Saxony, Germany: The Proof of Multiple PCR Analysis Necessity in Case of Ruminant-Associated Bartonellae Determination. Vet. Med. Sci. 2024, 10, e1417. [Google Scholar] [CrossRef] [PubMed]
- Bartosik, K.; Maślanko, W.; Buczek, A.; Asman, M.; Witecka, J.; Szwaj, E.; Błaszkiewicz, P.S.; Świsłocka, M. Two New Haplotypes of Bartonella sp. Isolated from Lipoptena fortisetosa (Diptera: Hippoboscidae) in SE Poland. Insects 2021, 12, 485. [Google Scholar] [CrossRef] [PubMed]
- Gałęcki, R.; Jaroszewski, J.; Bakuła, T.; Galon, E.M.; Xuan, X. Molecular Detection of Selected Pathogens with Zoonotic Potential in Deer Keds (Lipoptena fortisetosa). Pathogens 2021, 10, 324. [Google Scholar] [CrossRef]
- Sato, S.; Kabeya, H.; Ishiguro, S.; Shibasaki, Y.; Maruyama, S. Lipoptena fortisetosa as a Vector of Bartonella Bacteria in Japanese Sika Deer (Cervus nippon). Parasites Vectors 2021, 14, 73. [Google Scholar] [CrossRef]
- Solis Cayo, L.; Hammerbauerová, I.; Sommer, J.; Nemati, Z.; Ballhorn, W.; Tsukayama, P.; Dichter, A.; Votýpka, J.; Kempf, V.A.J. Genome Sequences of Three Bartonella schoenbuchensis Strains from Czechia. Microbiol. Resour. Announc. 2024, 13, e00397-24. [Google Scholar] [CrossRef]
- Gutiérrez, R.; Vayssier-Taussat, M.; Buffet, J.-P.; Harrus, S. Guidelines for the Isolation, Molecular Detection, and Characterization of Bartonella Species. Vector Borne Zoonotic Dis. 2017, 17, 42–50. [Google Scholar] [CrossRef]
- Riess, T.; Dietrich, F.; Schmidt, K.V.; Kaiser, P.O.; Schwarz, H.; Schäfer, A.; Kempf, V.A.J. Analysis of a Novel Insect Cell Culture Medium-Based Growth Medium for Bartonella Species. Appl. Environ. Microbiol. 2008, 74, 5224–5227. [Google Scholar] [CrossRef]
- Larsson, J. Eulerr: Area-Proportional Euler and Venn Diagrams with Ellipses. 2024. Available online: https://CRAN.R-project.org/package=eulerr (accessed on 16 January 2024).
- Larsson, J. Eulerr: Area-Proportional Euler Diagrams with Ellipses. Bachelor’s Thesis, Lund University, Lund, Sweden, 2018. [Google Scholar]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA Primers for Amplification of Mitochondrial Cytochrome c Oxidase Subunit I from Diverse Metazoan Invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Norman, A.F.; Regnery, R.; Jameson, P.; Greene, C.; Krause, D.C. Differentiation of Bartonella-like Isolates at the Species Level by PCR-Restriction Fragment Length Polymorphism in the Citrate Synthase Gene. J. Clin. Microbiol. 1995, 33, 1797–1803. [Google Scholar] [CrossRef]
- Birtles, R.J.; Raoult, D. Comparison of Partial Citrate Synthase Gene (gltA) Sequences for Phylogenetic Analysis of Bartonella Species. Int. J. Syst. Bacteriol. 1996, 46, 891–897. [Google Scholar] [CrossRef]
- Billeter, S.A.; Gundi, V.A.K.B.; Rood, M.P.; Kosoy, M.Y. Molecular Detection and Identification of Bartonella Species in Xenopsylla cheopis Fleas (Siphonaptera: Pulicidae) Collected from Rattus norvegicus Rats in Los Angeles, California. Appl. Environ. Microbiol. 2011, 77, 7850–7852. [Google Scholar] [CrossRef] [PubMed]
- Maggi, R.G.; Breitschwerdt, E.B. Potential Limitations of the 16S-23S rRNA Intergenic Region for Molecular Detection of Bartonella Species. J. Clin. Microbiol. 2005, 43, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
- Colborn, J.M.; Kosoy, M.Y.; Motin, V.L.; Telepnev, M.V.; Valbuena, G.; Myint, K.S.; Fofanov, Y.; Putonti, C.; Feng, C.; Peruski, L. Improved Detection of Bartonella DNA in Mammalian Hosts and Arthropod Vectors by Real-Time PCR Using the NADH Dehydrogenase Gamma Subunit (nuoG). J. Clin. Microbiol. 2010, 48, 4630–4633. [Google Scholar] [CrossRef] [PubMed]
- Renesto, P.; Gouvernet, J.; Drancourt, M.; Roux, V.; Raoult, D. Use of rpoB Gene Analysis for Detection and Identification of Bartonella Species. J. Clin. Microbiol. 2001, 39, 430–437. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Holt, K.E. Performance of Neural Network Basecalling Tools for Oxford Nanopore Sequencing. Genome Biol. 2019, 20, 129. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Completing Bacterial Genome Assemblies with Multiplex MinION Sequencing. Microb. Genom. 2017, 3, e000132. [Google Scholar] [CrossRef]
- Biomatters. Geneious Prime 2023.2.1. 2023. Available online: https://www.geneious.com (accessed on 6 February 2024).
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian Inference of Phylogenetic Trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.-F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef]
- Bandelt, H.J.; Forster, P.; Röhl, A. Median-Joining Networks for Inferring Intraspecific Phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Leigh, J.W.; Bryant, D. POPART: Full-Feature Software for Haplotype Network Construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Theodor, O. Lipoptena parvula, n. sp., Eine Neue Art Aus Der Tschechoslowakei (Diptera, Hippoboscidae). Acta Entomol. Musei Natl. Pragae 1967, 1967, 275–278. [Google Scholar]
- Koehler, J.E.; Quinn, F.D.; Berger, T.G.; LeBoit, P.E.; Tappero, J.W. Isolation of Rochalimaea Species from Cutaneous and Osseous Lesions of Bacillary Angiomatosis. N. Engl. J. Med. 1992, 327, 1625–1631. [Google Scholar] [CrossRef]
- Sato, S.; Kabeya, H.; Yamazaki, M.; Takeno, S.; Suzuki, K.; Kobayashi, S.; Souma, K.; Masuko, T.; Chomel, B.B.; Maruyama, S. Prevalence and Genetic Diversity of Bartonella Species in Sika Deer (Cervus nippon) in Japan. Comp. Immunol. Microbiol. Infect. Dis. 2012, 35, 575–581. [Google Scholar] [CrossRef]
- Biedrzycka, A.; Solarz, W.; Okarma, H. Hybridization between Native and Introduced Species of Deer in Eastern Europe. J. Mammal. 2012, 93, 1331–1341. [Google Scholar] [CrossRef]
- Razanske, I.; Rosef, O.; Radzijevskaja, J.; Klepeckiene, K.; Lipatova, I.; Paulauskas, A. Infections with Bartonella spp. in Free-Ranging Cervids and Deer Keds (Lipoptena cervi) in Norway. Comp. Immunol. Microbiol. Infect. Dis. 2018, 58, 26–30. [Google Scholar] [CrossRef]
- Izenour, K.; Zikeli, S.; Kalalah, A.; Ditchkoff, S.S.; Starkey, L.A.; Wang, C.; Zohdy, S. Diverse Bartonella spp. Detected in White-Tailed Deer (Odocoileus virginianus) and Associated Keds (Lipoptena mazamae) in the Southeastern USA. J. Wildl. Dis. 2020, 56, 505–511. [Google Scholar] [CrossRef]
Locus | Reaction Name | Primer Name | Sequence 5′–3′ | Source | Product Size (bp) |
---|---|---|---|---|---|
gltA 379 bp | gltA short | gltA_BhCS.781p | GGGGACCAGCTCATGGTGG | [54] | 379 |
gltA_BhCS.1137n | AATGCAAAAAGAACAGTAAACA | [54] | |||
gltA 740 bp | gltA-D | gltA_443F-D | GCYATGTCTGCATTYTATCA | [55] ** | 790 |
gltA_1210R | GATCYTCAATCATTTCTTTCCA | [56] | |||
gltA-D nested | gltA_443F-D | GCYATGTCTGCATTYTATCA | [55] ** | 740 | |
gltA_1137n | AATGCAAAAAGAACAGTAAACA | [54] | |||
ITS | ITS alt * | ITSalt_F | ATGATGATCCCAAGCCTTC | [57] ** | 700–1000 |
ITSalt_R | CTTCTCTTCACAATTTCAATAGAAC | This study | |||
nuoG | nuoG * | nuoG_F | GGCGTGATTGTTCTCGTTA | [58] | 366 |
nuoG_R | CACGACCACGGCTATCAAT | [58] | |||
rpoB | rpoB-D | rpoB_1400F-D | CGCATTGGYTTRCTTCGTATG | [59] ** | 893 |
rpoB_2300R-D | GTAGAYTGATTRGAACGCTG | [59] ** | |||
rpoB-D nested | rpoB_1596F-D | CGCATTATGGTCGTATTTGTCC | [59] ** | 628 | |
rpoB_2300R-D | GTAGAYTGATTRGAACGCTG | [59] ** |
Year | 2016 | 2020 | 2021 | 2022 |
---|---|---|---|---|
Deer examined | 38 | 47 | 57 | 10 |
Keds collected | 129 Lc:15, Lf:114 | 99 Lc:11, Lf:88 | 85 Lc:23, Lf:62 | 9 Lc:1, Lf:8 |
Spleen samples | 46 | 57 | 10 | |
Ear samples | 47 | 57 | 10 | |
Blood samples | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammerbauerová, I.; Richtrová, E.; Kybicová, K.; Pajer, P.; Votýpka, J. Diversity and Multiple Infections of Bartonella in Red Deer and Deer Keds. Pathogens 2025, 14, 6. https://doi.org/10.3390/pathogens14010006
Hammerbauerová I, Richtrová E, Kybicová K, Pajer P, Votýpka J. Diversity and Multiple Infections of Bartonella in Red Deer and Deer Keds. Pathogens. 2025; 14(1):6. https://doi.org/10.3390/pathogens14010006
Chicago/Turabian StyleHammerbauerová, Iva, Eva Richtrová, Kateřina Kybicová, Petr Pajer, and Jan Votýpka. 2025. "Diversity and Multiple Infections of Bartonella in Red Deer and Deer Keds" Pathogens 14, no. 1: 6. https://doi.org/10.3390/pathogens14010006
APA StyleHammerbauerová, I., Richtrová, E., Kybicová, K., Pajer, P., & Votýpka, J. (2025). Diversity and Multiple Infections of Bartonella in Red Deer and Deer Keds. Pathogens, 14(1), 6. https://doi.org/10.3390/pathogens14010006