Anti-Inflammatory Potential and Synergic Activities of Eclipta prostrata (L.) L. Leaf-Derived Ointment Formulation in Combination with the Non-Steroidal Anti-Inflammatory Drug Diclofenac in Suppressing Atopic Dermatitis (AD)
<p>GC-MS chemical profiling of <span class="html-italic">E. prostrata</span> in methanolic fraction. TIC = tentatively identified compounds); min = minutes.</p> "> Figure 2
<p>Inhibition percentage of <span class="html-italic">E. prostrata</span> methanolic extract alone and in combination with diclofenac on egg albumin denaturation. EP = <span class="html-italic">E. prostrata,</span> EP + D = <span class="html-italic">E. prostrata</span> + diclofenac.</p> "> Figure 3
<p>Heat-inducing hemolysishaemolysis percentage of <span class="html-italic">E. prostrata</span> methanolic extract alone and in combination with diclofenac. EP = <span class="html-italic">E. prostrata,</span> EP + D = <span class="html-italic">E. prostrata</span> + diclofenac.</p> "> Figure 4
<p><span class="html-italic">E. prostrata</span> 15% methanolic extract cream effect on human skin prepared.</p> "> Figure 5
<p>Cell viability percentage of <span class="html-italic">E. prostrata</span> methanolic extract after treating L<sub>929</sub> cells using MTT assay. (<b>A</b>) Untreated L<sub>929</sub> cell morphology. (<b>B</b>) L<sub>929</sub> cell morphology after treatment with <span class="html-italic">E. prostrata</span>. (<b>C</b>) The graph represents the percentage of cell viability after treatment.</p> "> Figure 6
<p><span class="html-italic">E. prostrata</span> methanolic extract antibacterial activity against <span class="html-italic">S. aureus.</span> Two different concentrations exhibited inhibition zones around the well. Note: P—positive control (tetracycline) and v—vehicle control.</p> "> Figure 7
<p><span class="html-italic">E. prostrata</span> methanolic extract MIC was determined against <span class="html-italic">S. aureus</span>, and the growth inhibition was noted at 1 mg/mL.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Plants and Their Extraction
2.2. Phytochemical Screening of the Eclipta prostrata Extract
2.3. Identification of Bioactive Metabolites in the Extract Using GCMS
2.4. Egg Albumin Denaturation Inhibition Assay for the Extract
2.5. Heat-Induced Haemolysis
2.6. Preparation of Anti-Inflammatory Cream Using the Extract
2.7. E. prostrata Methanolic Extract Cytotoxicity
2.8. Antibacterial Activity of E. prostrata Methanolic Extract
2.9. Determination of MIC for E. prostrata Methanolic Extract
2.10. Statistical Analysis
3. Results
3.1. Phytochemical Screening of E. prostrata Methanolic Extract
3.2. GC-MS Profiling of E. prostrata Methanolic Extract
3.3. Egg Albumin Denaturation Inhibition Assay of the Extract
3.4. Heat-Induced Haemolysis
3.5. E. prostrata Methanolic Extract Cream and Its Cytotoxicity Analysis
3.6. Antibacterial Activity of E. prostrata Methanolic Extract
3.7. E. prostrata Methanolic Extract MIC Determination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hrestak, D.; Matijašić, M.; Čipčić Paljetak, H.; Ledić Drvar, D.; Ljubojević Hadžavdić, S.; Perić, M. Skin Microbiota in Atopic Dermatitis. Int. J. Mol. Sci. 2022, 23, 3503. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuji, T.; Gallo, R.L. The role of the skin microbiome in atopic dermatitis. Ann. Allergy Asthma Immunol. 2019, 122, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Romanovsky, A.A. Skin temperature: Its role in thermoregulation. Acta Physiol. 2014, 210, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Richardson, M. Understanding the structure and function of the skin. Nurs. Times 2003, 99, 46–48. [Google Scholar] [PubMed]
- Lopez-Ojeda, W.; Pandey, A.; Alhajj, M.; Oakley, A.M. Anatomy, Skin (Integument). [Updated 17 October 2022]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441980/ (accessed on 20 November 2024).
- Weidinger, S.; Beck, L.A.; Bieber, T.; Kabashima, K.; Irvine, A.D. Atopic dermatitis. Nat. Rev. Dis. Primers 2018, 4, 1. [Google Scholar] [CrossRef]
- Mohammad, S.; Karim, M.R.; Iqbal, S.; Lee, J.H.; Mathiyalagan, R.; Kim, Y.J.; Yang, D.U.; Yang, D.C. Atopic dermatitis: Pathophysiology, microbiota, and metabolome—A comprehensive review. Microbiol. Res. 2024, 281, 127595. [Google Scholar] [CrossRef]
- Baker, P.; Huang, C.; Radi, R.; Moll, S.B.; Jules, E.; Arbiser, J.L. Skin Barrier Function: The Interplay of Physical, Chemical, and Immunologic Properties. Cells 2023, 12, 2745. [Google Scholar] [CrossRef]
- Skowron, K.; Bauza-Kaszewska, J.; Kraszewska, Z.; Wiktorczyk-Kapischke, N.; Grudlewska-Buda, K.; Kwiecińska-Piróg, J.; Wałecka-Zacharska, E.; Radtke, L.; Gospodarek-Komkowska, E. Human Skin Microbiome: Impact of Intrinsic and Extrinsic Factors on Skin Microbiota. Microorganisms 2021, 9, 543. [Google Scholar] [CrossRef]
- Douladiris, N.; Vakirlis, E.; Vassilopoulou, E. Atopic Dermatitis and Water: Is There an Optimum Water Intake Level for Improving Atopic Skin? Children 2023, 10, 273. [Google Scholar] [CrossRef]
- Parker, E.R.; Mo, J.; Goodman, R.S. The dermatological manifestations of extreme weather events: A comprehensive review of skin disease and vulnerability. J. Clim. Change Health 2022, 8, 100162. [Google Scholar] [CrossRef]
- Liao, J.C.; Deng, J.S.; Chiu, C.S.; Huang, S.S.; Hou, W.C.; Lin, W.C.; Huang, G.J. Chemical compositions, anti-inflammatory, antiproliferative and radical-scavenging activities of Actinidia callosa var. ephippioides. Am. J. Chin. Med. 2012, 40, 1047–1062. [Google Scholar] [CrossRef] [PubMed]
- Hussein, R.S.; Bin Dayel, S.; Abahussein, O.; El-Sherbiny, A.A. Influences on Skin and Intrinsic Aging: Biological, Environmental, and Therapeutic Insights. J. Cosmet. Dermatol. 2024, e16688. [Google Scholar] [CrossRef] [PubMed]
- Beken, B.; Serttas, R.; Yazicioglu, M.; Turkekul, K.; Erdogan, S. Quercetin Improves Inflammation, Oxidative Stress, and Impaired Wound Healing in Atopic Dermatitis Model of Human Keratinocytes. Pediatr. Allergy Immunol. Pulmonol. 2020, 33, 69–79. [Google Scholar] [CrossRef]
- Cronkite, D.A.; Strutt, T.M. The Regulation of Inflammation by Innate and Adaptive Lymphocytes. J. Immunol. Res. 2018, 2018, 1467538. [Google Scholar] [CrossRef]
- Laveti, D.; Kumar, M.; Hemalatha, R.; Sistla, R.; Naidu, V.G.; Talla, V.; Verma, V.; Kaur, N.; Nagpal, R. Anti-inflammatory treatments for chronic diseases: A review. Inflamm. Allergy Drug Targets 2013, 12, 349–361. [Google Scholar] [CrossRef]
- Sohail, R.; Mathew, M.; Patel, K.K.; Reddy, S.A.; Haider, Z.; Naria, M.; Habib, A.; Abdin, Z.U.; Razzaq Chaudhry, W.; Akbar, A. Effects of Non-steroidal Anti-inflammatory Drugs (NSAIDs) and Gastroprotective NSAIDs on the Gastrointestinal Tract: A Narrative Review. Cureus 2023, 15, e37080. [Google Scholar] [CrossRef]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef]
- Cedillo-Cortezano, M.; Martinez-Cuevas, L.R.; López JA, M.; Barrera López, I.L.; Escutia-Perez, S.; Petricevich, V.L. Use of Medicinal Plants in the Process of Wound Healing: A Literature Review. Pharmaceuticals 2014, 17, 303. [Google Scholar] [CrossRef]
- Tung, B.T.; Linh, T.V.; Thao, T.P.; Thuan, N.D. Anti-inflammatory Agents from Medicinal Plants. In Phytochemical Drug Discovery for Central Nervous System Disorders; Egbuna, C., Rudrapal, M., Eds.; Wiley: Hoboken, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Gonfa, Y.H.; Tessema, F.B.; Bachheti, A.; Rai, N.; Tadesse, M.G.; Singab, A.N.; Chaubey, K.K.; Bachheti, R.K. Anti-inflammatory activity of phytochemicals from medicinal plants and their nanoparticles: A review. Curr. Res. Biotechnol. 2023, 6, 100152. [Google Scholar] [CrossRef]
- Fürst, R.; Zündorf, I. Plant-Derived Anti-Inflammatory Compounds: Hopes and Disappointments regarding the Translation of Preclinical Knowledge into Clinical Progress. Mediat. Inflamm. 2014, 2014, 146832. [Google Scholar] [CrossRef]
- Kumari, C.S.; Govindasamy, S.; Sukumar, E. Lipid lowering activity of Ecliptaprostrata in experimental hyperlipidemia. J. Ethnopharmacol. 2006, 105, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Pithayanukul, I. Anti-venom potential of butanolic extract of Ecliptaprostrata against Malayan pit viper venom. J. Ethnopharmacol. 2004, 90, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Giang, L.T.; Park, S.; Cuc, N.T.; Tai, B.H.; Kiem, P.V.; Hang, N.T.M.; Ban, N.K.; Van Cuong, P.; Nhiem, N.X. Bithiophene and coumestan derivatives from Eclipta prostrata (L.) L. and their hepatoprotective activity. J. Asian Nat. Prod. Res. 2024, 26, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Timalsina, D.; Devkota, H.P. Eclipta prostrata (L.) L. (Asteraceae): Ethnomedicinal Uses, Chemical Constituents, and Biological Activities. Biomolecules 2021, 11, 1738. [Google Scholar] [CrossRef] [PubMed]
- Harley, B.K.; Quagraine, A.M.; Neglo, D.; Aggrey, M.O.; Orman, E.; Mireku-Gyimah, N.A. Metabolite Profiling, Antifungal, Biofilm Formation Prevention and Disruption of Mature Biofilm Activities of Erythrina senegalensis Stem Bark Extract Against Candida albicans and Candida glabrata. PLoS ONE 2022, 17, e0278096. [Google Scholar] [CrossRef]
- Muhammad, I.; Luo, W.; Shoaib, R.M.; Li, G.-L.; Ul Hassan, S.S.; Yang, Z.-H.; Xiao, X.; Tu, G.-L.; Yan, S.-K.; Ma, X.-P.; et al. Guaiane-type sesquiterpenoids from Cinnamomum migao H. W. Li: And their anti-inflammatory activities. Phytochemistry 2021, 190, 112850. [Google Scholar] [CrossRef]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the Total Phenolic, Flavonoid and Proline Contents in Burkina Fasan Honey, as Well as Their Radical Scavenging Activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Fiuza, S.M.; Gomes, C.; Teixeira, L.J.; Girão Da Cruz, M.T.; Cordeiro, M.N.D.S.; Milhazes, N.; Borges, F.; Marques, M.P.M. Phenolic Acid Derivatives with Potential Anticancer Properties—A Structure-Activity Relationship Study. Part 1: Methyl, Propyl and Octyl Esters of Caffeic and Gallic Acids. Bioorg. Med. Chem. 2004, 12, 3581–3589. [Google Scholar] [CrossRef]
- Edeoga, H.O.; Okwu, D.E.; Mbaebie, B.O. Phytochemical Constituents of Some Nigerian Medicinal Plants. Afr. J. Biotechnol. 2005, 4, 685–688. [Google Scholar] [CrossRef]
- Kielhorn, S.; Thorngate, J.H. Oral Sensations Associated with the Flavan-3-Ols (+)-Catechin and (−)-Epicatechin. Food Qual. Prefer. 1999, 10, 109–116. [Google Scholar] [CrossRef]
- Dubey, D.; Patnaik, R.; Ghosh, G.; Padhy, R.N. In Vitro Antibacterial Activity, Gas Chromatography-Mass Spectrometry Analysis of Woodfordia fruticosa Kurz. Leaf Extract and Host Toxicity Testing With In Vitro Cultured Lymphocytes From Human Umbilical Cord Blood. Osong Public Health Res. Perspect. 2014, 5, 298–312. [Google Scholar] [CrossRef] [PubMed]
- Ameena, M.; Meignana Arumugham, I.; Ramalingam, K.; Rajeshkumar, S. Evaluation of the Anti-inflammatory, Antimicrobial, Antioxidant, and Cytotoxic Effects of Chitosan Thiocolchicoside-Lauric Acid Nanogel. Cureus 2023, 15, e46003. [Google Scholar] [CrossRef]
- Mariotto, S.; Esposito, E.; Di Paola, R.; Ciampa, A.; Mazzon, E.; de Prati, A.C.; Darra, E.; Vincenzi, S.; Cucinotta, G.; Caminiti, R.; et al. Protective effect of Arbutus unedo aqueous extract in carrageenan-induced lung inflammation in mice. Pharmacol. Res. 2008, 57, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.; Gonçalves, L.; Marto, J.; Martins, A.M.; Silva, A.N.; Pinto, P.; Martins, M.; Fraga, C.; Ribeiro, H.M. Investigations of Olive Oil Industry By-Products Extracts with Potential Skin Benefits in Topical Formulations. Pharmaceutics 2021, 13, 465. [Google Scholar] [CrossRef]
- Meiyazhagan, G.; Raju, R.; Winfred, S.B.; Mannivanan, B.; Bhoopalan, H.; Shankar, V. Bioactivity Studies of β-Lactam Derived Polycyclic Fused Pyrrolidine/Pyrrolizidine Derivatives in Dentistry: In Vitro, In Vivo and In Silico Studies. PLoS ONE 2015, 10, e0131433. [Google Scholar] [CrossRef]
- Meiyazhagan, G.; Winfred, S.B.; Jayashree, B.; Prabhu, D.; Raghavan, S.; Surabi, R.P.; Ravishankar, P.; Deivanayagam, K.; Ragavachary, R.; Jeyaraman, J.; et al. β-Lactam Substituted Polycyclic Fused Pyrrolidine/Pyrrolizidine Derivatives Eradicate Candida albicans in an Ex Vivo Human Dentinal Tubule Model by Inhibiting Sterol 14-α Demethylase and cAMP Pathway. Biochim. Biophys. Acta (BBA) Gen. Subj. 2016, 1860, 636–647. [Google Scholar] [CrossRef]
- Reuter, J.; Merfort, I.; Schempp, C.M. Botanicals in Dermatology. Am. J. Clin. Dermatol. 2010, 11, 247–267. [Google Scholar] [CrossRef]
- Kaneria, M.J.; Rakholiya, K.D.; Chanda, S.V. Chapter 15—Role of Medicinal Plants and Bioactive Compounds Against Skin Disease-Causing Microbes, with Special Emphasis on Their Mechanisms of Action. In The Microbiology of Skin, Soft Tissue, Bone and Joint Infections; Kon, K., Rai, M., Eds.; Academic Press: Cambridge, MA, USA, 2017; Volume 2, pp. 255–269. [Google Scholar]
- Lee, H.Y. Enhancement of Skin Anti-Inflammatory Activities of Eclipta prostrata L. from the Ultrasonic Extraction Process. Appl. Sci. 2017, 7, 1227. [Google Scholar] [CrossRef]
- Morel, L.J.F.; Carmona, F.; Guimarães, C.C.; Moreira, L.G.Q.; Leão, P.D.S.; Crevelin, E.J.; Batah, S.S.; Fabro, A.T.; França, S.C.; Borges, M.C.; et al. A methanolic extract of Eclipta prostrata (L.) L. decreases inflammation in a murine model of chronic allergic asthma via inhibition of the NF-kappa-B pathway. J. Ethnopharmacol. 2024, 318, 116930. [Google Scholar] [CrossRef]
- Kang, Y.M.; Kim, H.M.; Lee, H.; Lee, D.S.; An, H.J. Anti-inflammatory effects of Eclipta prostrata Linné on house dust mite-induced atopic dermatitis in vivo and in vitro. J. Ethnopharmacol. 2022, 292, 115233. [Google Scholar] [CrossRef]
- Arunachalam, G.; Subramanian, N.; Pazhani, G.P.; Ravichandran, V. Anti-inflammatory activity of methanolic extract of Eclipta prostrata L. (Astearaceae). Afr. J. Pharm. Pharmacol. 2009, 3, 97–100. [Google Scholar]
- Myo, H.; Liana, D.; Phanumartwiwath, A. Unlocking Therapeutic Potential: Comprehensive Extraction, Profiling, and Pharmacological Evaluation of Bioactive Compounds from Eclipta alba (L.) Hassk. for Dermatological Applications. Plants 2023, 13, 33. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, R.U.; Pund, M.M.; Gacche, R.N. Evaluation of the anti-inflammatory activity of selected medicinal plants used in Indian traditional medication system in vitro as well as in vivo. J. Tradit. Complement. Med. 2015, 6, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Hirano, T. The molecular mechanisms of chronic inflammation development. Front. Immunol. 2012, 3, 323. [Google Scholar] [CrossRef] [PubMed]
- Goryanin, I.; Ovchinnikov, L.; Vesnin, S.; Ivanov, Y. Monitoring Protein Denaturation of Egg White Using Passive Microwave Radiometry (MWR). Diagnostics 2022, 12, 1498. [Google Scholar] [CrossRef]
- Dharmadeva, S.; Galgamuwa, L.S.; Prasadinie, C.; Kumarasinghe, N. In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. Ayu 2018, 39, 239–242. [Google Scholar] [CrossRef]
- Boussoualim, N.; Trabsa, H.; Krache, I.; Ouhida, S.; Arrar, L.; Baghiani, A. In vitro Anti-hemolytic Effect, in vivo Anti-inflammatory and in vitro Antioxidant Activity of Anchusa azurea Mill. Anti Inflamm. Anti Allergy Agents Med. Chem. 2022, 21, 24–33. [Google Scholar] [CrossRef]
- Ahmed, T.; Archie, S.R.; Faruk, A.; Chowdhury, F.A.; Al Shoyaib, A.; Ahsan, C.R. Evaluation of the Anti-Inflammatory Activities of Diclofenac Sodium, Prednisolone and Atorvastatin in Combination with Ascorbic Acid. Anti Inflamm. Anti Allergy Agents Med. Chem. 2020, 19, 291–301. [Google Scholar] [CrossRef]
- Misery, L.; Sibaud, V.; Merial-Kieny, C.; Taieb, C. Sensitive skin in the American population: Prevalence, clinical data, and role of the dermatologist. Int. J. Dermatol. 2011, 50, 961–967. [Google Scholar] [CrossRef]
- Inamadar, A.C.; Palit, A. Sensitive skin: An overview. Indian J. Dermatol. Venereol. Leprol. 2013, 79, 9–16. [Google Scholar] [CrossRef]
- Farage, M.A.; Maibach, H.I. Sensitive skin: Closing in on a physiological cause. Contact Dermatol. 2010, 62, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Mummed, B.; Abraha, A.; Feyera, T.; Nigusse, A.; Assefa, S. In Vitro Antibacterial Activity of Selected Medicinal Plants in the Traditional Treatment of Skin and Wound Infections in Eastern Ethiopia. Biomed. Res. Int. 2018, 2018, 1862401. [Google Scholar] [CrossRef] [PubMed]
- Bakht, J.; Islam, A.; Ali, H.; Tayyab, M.; Shafi, M. Antimicrobial Potentials of Eclipta alba by Disc Diffusion Method. Afr. J. Biotechnol. 2011, 10, 7658–7667. [Google Scholar]
- Uddin, M.N.; Rahman, M.A.; Ahmed, N.U.; Rana, M.S.; Akter, R.; Chowdhury, A.M.A. Antioxidant, Cytotoxic and Antimicrobial Properties of Eclipta alba Ethanol Extract. Int. J. Biol. Med. Res. 2010, 4, 341–346. [Google Scholar]
Sl. No. | Phytochemicals | Results |
---|---|---|
1. | Tannin | Positive |
2. | Flavonoids | Positive |
3. | Saponin | Positive |
4. | Steroid | Negative |
5. | Terpenoid | Positive |
6. | Glycosides | Positive |
7. | Phenol | Positive |
8. | Alkaloids | Positive |
9. | Quinone | Positive |
10. | Protein | Positive |
Peak No. | Retention Time | Peak Area% | Height% | Name of the Compound | Structure |
---|---|---|---|---|---|
1 | 7.797 | 2.65 | 2.14 | 2-[5-(2-Hydroxypropyl)oxolan-2-yl]propanoic acid | |
2 | 7.942 | 2.52 | 2.87 | dl-Menthol | |
3 | 8.410 | 4.78 | 5.19 | Dodecane | |
4 | 11.055 | 5.69 | 5.06 | Undecane, 4,7-dimethyl- | |
5 | 13.449 | 2.39 | 4.58 | Dodecane, 2,6,10-trimethyl- | |
6 | 14.060 | 7.86 | 4.64 | Decane, 2,3,5,8-tetramethyl- | |
7 | 15.196 | 2.58 | 4.83 | Cholest-5-en-3-ol, (3alpha.)-, TMS derivative | |
8 | 15.806 | 5.71 | 6.95 | Cyclopropanecarboxylic acid, 1-hydroxy-, (2,6-di-t-butyl-4-methylphenyl) ester | |
9 | 15.880 | 5.63 | 3.48 | alpha-Farnesene | |
10 | 16.830 | 2.34 | 1.95 | Propanoic acid, 2-methyl-, 2-ethyl-1-propyl-1,3-propanediyl ester | |
11 | 16.989 | 16.20 | 11.92 | Diethyl Phthalate | |
12 | 17.080 | 2.20 | 5.25 | Corticosterone, 2-methylpropionate | |
13 | 17.170 | 3.57 | 3.57 | Hentriacontan-13-ol, O-TMS | |
14 | 19.335 | 2.54 | 3.66 | Phthalic acid, 2,4-dimethylpent-3-yl dodecyl ester | |
15 | 19.631 | 8.34 | 4.32 | Hexasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11-dodecamethyl- | |
16 | 20.619 | 2.62 | 2.57 | Acetic acid, 4-t-butyl-4-hydroxy-1,5-dimethyl-hex-2-ynyl ester | |
17 | 23.535 | 5.02 | 5.36 | Octadecane, 2-methyl- | |
18 | 25.218 | 8.63 | 8.69 | Octacosane, 1-iodo- | |
19 | 26.581 | 5.78 | 7.84 | Onacosane | |
20 | 28.120 | 2.95 | 5.14 | Eicosyl isopropyl ether |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poyil, M.M.; Alsharif, M.H.K.; El-Bidawy, M.H.; Bin Dayel, S.; Khan, M.S.; Omar, Z.M.M.; Mohamed, A.A.; Fayyad, R.M.; Alarabi, T.G.M.; Khairy, H.A.; et al. Anti-Inflammatory Potential and Synergic Activities of Eclipta prostrata (L.) L. Leaf-Derived Ointment Formulation in Combination with the Non-Steroidal Anti-Inflammatory Drug Diclofenac in Suppressing Atopic Dermatitis (AD). Life 2025, 15, 35. https://doi.org/10.3390/life15010035
Poyil MM, Alsharif MHK, El-Bidawy MH, Bin Dayel S, Khan MS, Omar ZMM, Mohamed AA, Fayyad RM, Alarabi TGM, Khairy HA, et al. Anti-Inflammatory Potential and Synergic Activities of Eclipta prostrata (L.) L. Leaf-Derived Ointment Formulation in Combination with the Non-Steroidal Anti-Inflammatory Drug Diclofenac in Suppressing Atopic Dermatitis (AD). Life. 2025; 15(1):35. https://doi.org/10.3390/life15010035
Chicago/Turabian StylePoyil, Muhammad M., Mohammed H. Karrar Alsharif, Mahmoud H. El-Bidawy, Salman Bin Dayel, Mohammed Sarosh Khan, Zainab Mohammed M. Omar, Alaaeldin Ahmed Mohamed, Reda M. Fayyad, Tarig Gasim Mohamed Alarabi, Hesham A. Khairy, and et al. 2025. "Anti-Inflammatory Potential and Synergic Activities of Eclipta prostrata (L.) L. Leaf-Derived Ointment Formulation in Combination with the Non-Steroidal Anti-Inflammatory Drug Diclofenac in Suppressing Atopic Dermatitis (AD)" Life 15, no. 1: 35. https://doi.org/10.3390/life15010035
APA StylePoyil, M. M., Alsharif, M. H. K., El-Bidawy, M. H., Bin Dayel, S., Khan, M. S., Omar, Z. M. M., Mohamed, A. A., Fayyad, R. M., Alarabi, T. G. M., Khairy, H. A., Bahakim, N. O., Samhan, M. A., & El-Lateef, A. E. -L. S. A. (2025). Anti-Inflammatory Potential and Synergic Activities of Eclipta prostrata (L.) L. Leaf-Derived Ointment Formulation in Combination with the Non-Steroidal Anti-Inflammatory Drug Diclofenac in Suppressing Atopic Dermatitis (AD). Life, 15(1), 35. https://doi.org/10.3390/life15010035