Functional Connectivity and MRI Radiomics Biomarkers of Cognitive and Brain Reserve in Post-Stroke Cognitive Impairment Prediction—A Study Protocol
Abstract
:1. Introduction
- To assess the predictive role of functional connectivity patterns in PSCI occurrence six months and one year after AIS;
- To assess the predictive role of MRI radiomics features in PSCI occurrence six months and one year after AIS;
- To develop efficient predictive models of PSCI occurrence one year after AIS based on functional connectivity and MRI radiomics.
2. Materials and Methods
- Patients ≥ 18 years with symptomatic supratentorial AIS confirmed by brain MRI;
- Patients with no significant pre-stroke functional disability (a modified Rankin Scale (mRS) score of 0 or 1);
- Patients without a history of CI or dementia (an IQCODE score of ≤3.4).
- Patients with a prior symptomatic ischemic stroke or intracranial hemorrhage;
- Patients with CI or dementia due to a strategic index stroke;
- Patients with a history of chronic neurological disease;
- Patients with a history of chronic psychiatric illness;
- Patients with a history of harmful alcohol or drug use;
- Patients with pre-existing medical conditions such as cardiac, pulmonary, gastrointestinal, renal, or oncological diseases with a life expectancy of ≤one year;
- Patients with severe aphasia with a Goodglass and Kaplan score < 2 or a score on item 9 of the National Institute of Health Stroke Scale (NIHSS) ≥ 2;
- Patients with brain MRI or EEG contraindications.
2.1. Neuroimaging Assessment
2.2. Electrophysiological Assessment
2.3. Primary and Secondary Outcomes
2.4. Statistical Analysis
3. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pendlebury, S.T.; Rothwell, P.M. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: A systematic review and meta-analysis. Lancet Neurol. 2009, 8, 1006–1018. [Google Scholar] [CrossRef]
- Barker-Collo, S.; Feigin, V.L.; Parag, V.; Lawes, C.M.M.; Senior, H. Auckland Stroke Outcomes Study. Part 2: Cognition and functional outcomes 5 years poststroke. Neurology 2010, 75, 1608–1616. [Google Scholar] [CrossRef] [PubMed]
- Nys, G.M.S.; van Zandvoort, M.J.E.; van der Worp, H.B.; de Haan, E.H.F.; de Kort, P.L.M.; Jansen, B.P.W.; Kappelle, L.J. Early cognitive impairment predicts long-term depressive symptoms and quality of life after stroke. J. Neurol. Sci. 2006, 247, 149–156. [Google Scholar] [CrossRef]
- Melkas, S.; Jokinen, H.; Hietanen, M.; Erkinjuntti, T. Poststroke cognitive impairment and dementia: Prevalence, diagnosis, and treatment. Degener. Neurol. Neuromuscul. Dis. 2014, 4, 21–27. [Google Scholar] [CrossRef]
- Rosenich, E.; Hordacre, B.; Paquet, C.; Koblar, S.A.; Hillier, S.L. Cognitive Reserve as an Emerging Concept in Stroke Recovery. Neurorehabil. Neural Repair. 2020, 34, 187–199. [Google Scholar] [CrossRef]
- Wollenweber, F.A.; Zietemann, V.; Rominger, A.; Opherk, C.; Bayer-Karpinska, A.; Gschwendtner, A.; Coloma Andrews, L.; Bürger, K.; Duering, M.; Dichgans, M. The Determinants of Dementia After Stroke (DEDEMAS) Study: Protocol and pilot data. Int. J. Stroke 2014, 9, 387–392. [Google Scholar] [CrossRef]
- Ben Assayag, E.; Korczyn, A.D.; Giladi, N.; Goldbourt, U.; Berliner, A.S.; Shenhar-Tsarfaty, S.; Kliper, E.; Hallevi, H.; Shopin, L.; Hendler, T.; et al. Predictors for Poststroke Outcomes: The Tel Aviv Brain Acute Stroke Cohort (TABASCO) Study Protocol. Int. J. Stroke 2012, 7, 341–347. [Google Scholar] [CrossRef]
- Lo, J.W.; Crawford, J.D.; Desmond, D.W.; Godefroy, O.; Jokinen, H.; Mahinrad, S.; Bae, H.-J.; Lim, J.-S.; Köhler, S.; Douven, E.; et al. Profile of and risk factors for poststroke cognitive impairment in diverse ethnoregional groups. Neurology 2019, 93, e2257–e2271. [Google Scholar] [CrossRef]
- Iluţ, S.; Vesa, Ş.C.; Văcăraș, V.; Mureșanu, D.-F. Predictors of Short-Term Mortality in Patients with Ischemic Stroke. Med. Kaunas. 2023, 59, 1142. [Google Scholar] [CrossRef] [PubMed]
- Militaru, M.; Lighezan, D.F.; Tudoran, C.; Militaru, A.G. Connections between Cognitive Impairment and Atrial Fibrillation in Patients with Diabetes Mellitus Type 2. Biomedicines 2024, 12, 672. [Google Scholar] [CrossRef]
- Stern, Y. What is cognitive reserve? Theory and research application of the reserve concept. J. Int. Neuropsychol. Soc. 2002, 8, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Medaglia, J.D.; Pasqualetti, F.; Hamilton, R.H.; Thompson-Schill, S.L.; Bassett, D.S. Brain and Cognitive Reserve: Translation via Network Control Theory. Neurosci. Biobehav. Rev. 2017, 75, 53–64. [Google Scholar] [CrossRef]
- Stern, Y.; Arenaza-Urquijo, E.M.; Bartrés-Faz, D.; Belleville, S.; Cantilon, M.; Chetelat, G.; Ewers, M.; Franzmeier, N.; Kempermann, G.; Kremen, W.S.; et al. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement. 2020, 16, 1305–1311. [Google Scholar] [CrossRef] [PubMed]
- Cavedo, E.; Galluzzi, S.; Pievani, M.; Boccardi, M.; Frisoni, G.B. Norms for Imaging Markers of Brain Reserve. J. Alzheimers Dis. 2012, 31, 623–633. [Google Scholar] [CrossRef]
- Dickie, D.A.; Gardner, K.; Wagener, A.; Wyss, A.; Arba, F.; Wardlaw, J.M.; Dawson, J.; on behalf of the VISTA-Prevention Collaborators**. Cortical thickness, white matter hyperintensities, and cognition after stroke. Int. J. Stroke 2020, 15, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Jokinen, H.; Kalska, H.; Mantyla, R.; Ylikoski, R.; Hietanen, M.; Pohjasvaara, T.; Kaste, M.; Erkinjuntti, T. White matter hyperintensities as a predictor of neuropsychological deficits post-stroke. J. Neurol. Neurosurg. Psychiatry 2005, 76, 1229–1233. [Google Scholar] [CrossRef]
- Betrouni, N.; Jiang, J.; Duering, M.; Georgakis, M.K.; Oestreich, L.; Sachdev, P.S.; O’Sullivan, M.; Wright, P.; Lo, J.W.; Bordet, R.; et al. Texture Features of Magnetic Resonance Images Predict Poststroke Cognitive Impairment: Validation in a Multicenter Study. Stroke 2022, 53, 11. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lin, J.; Zheng, L.; Zhao, J.; Song, B.; Dai, Y. Texture analysis based on ADC maps and T2-FLAIR images for the assessment of the severity and prognosis of ischaemic stroke. Clin. Imaging 2020, 67, 152–159. [Google Scholar] [CrossRef]
- Bretzner, M.; Bonkhoff, A.K.; Schirmer, M.D.; Hong, S.; Dalca, A.; Donahue, K.; Giese, A.-K.; Etherton, M.R.; Rist, P.M.; Nardin, M.; et al. Radiomics-Derived Brain Age Predicts Functional Outcome After Acute Ischemic Stroke. Neurology 2023, 100, e822–e833. [Google Scholar] [CrossRef] [PubMed]
- Dragoș, H.M.; Stan, A.; Pintican, R.; Feier, D.; Lebovici, A.; Panaitescu, P.-Ș.; Dina, C.; Strilciuc, S.; Muresanu, D.F. MRI Radiomics and Predictive Models in Assessing Ischemic Stroke Outcome-A Systematic Review. Diagnostics 2023, 13, 857. [Google Scholar] [CrossRef]
- Iluț, S.; Vesa, Ş.C.; Văcăraș, V.; Brăiță, L.; Dăscălescu, V.-C.; Fantu, I.; Mureșanu, D.-F. Biological Risk Factors Influencing Vascular Cognitive Impairments: A Review of the Evidence. Brain Sci. 2023, 13, 1094. [Google Scholar] [CrossRef] [PubMed]
- Szcześniak, D.; Lenart-Bugla, M.; Misiak, B.; Zimny, A.; Sąsiadek, M.; Połtyn-Zaradna, K.; Zatońska, K.; Zatoński, T.; Szuba, A.; Smith, E.E.; et al. Unraveling the Protective Effects of Cognitive Reserve on Cognition and Brain: A Cross-Sectional Study. Int. J. Environ. Res. Public. Health 2022, 19, 12228. [Google Scholar] [CrossRef]
- Bozzali, M.; Dowling, C.; Serra, L.; Spanò, B.; Torso, M.; Marra, C.; Castelli, D.; Dowell, N.G.; Koch, G.; Caltagirone, C.; et al. The Impact of Cognitive Reserve on Brain Functional Connectivity in Alzheimer’s Disease. J. Alzheimers Dis. 2015, 44, 243–250. [Google Scholar] [CrossRef]
- Park, H.-J.; Friston, K. Structural and functional brain networks: From connections to cognition. Science 2013, 342, 1238411. [Google Scholar] [CrossRef] [PubMed]
- Lang, E.W.; Tomé, A.M.; Keck, I.R.; Górriz-Sáez, J.M.; Puntonet, C.G. Brain Connectivity Analysis: A Short Survey. Comput. Intell. Neurosci. 2012, 2012, 412512. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J. Functional and effective connectivity: A review. Brain Connect. 2011, 1, 13–36. [Google Scholar] [CrossRef]
- Vecchio, F.; Miraglia, F.; Maria Rossini, P. Connectome: Graph theory application in functional brain network architecture. Clin. Neurophysiol. Pract. 2017, 2, 206–213. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, S.; Ng, K.K.; Wang, J. Applications of Resting-State Functional Connectivity to Neurodegenerative Disease. Neuroimaging Clin. N. Am. 2017, 27, 663–683. [Google Scholar] [CrossRef] [PubMed]
- Finnigan, S.; van Putten, M.J.A.M. EEG in ischaemic stroke: Quantitative EEG can uniquely inform (sub-)acute prognoses and clinical management. Clin. Neurophysiol. 2013, 124, 10–19. [Google Scholar] [CrossRef]
- Schleiger, E.; Sheikh, N.; Rowland, T.; Wong, A.; Read, S.; Finnigan, S. Frontal EEG delta/alpha ratio and screening for post-stroke cognitive deficits: The power of four electrodes. Int. J. Psychophysiol. 2014, 94, 19–24. [Google Scholar] [CrossRef]
- Li, F.; Kong, X.; Zhu, H.; Xu, H.; Wu, B.; Cao, Y.; Li, J. The moderating effect of cognitive reserve on cognitive function in patients with Acute Ischemic Stroke. Front. Aging Neurosci. 2022, 14, 1011510. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, A.H.; Sharip, S.; Rahman, A.H.A.; Bakar, L. Cognitive reserve in stroke patients. PsyCh J. 2021, 10, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Umarova, R.M.; Schumacher, L.V.; Schmidt, C.S.M.; Martin, M.; Egger, K.; Urbach, H.; Hennig, J.; Klöppel, S.; Kaller, C.P. Interaction between cognitive reserve and age moderates effect of lesion load on stroke outcome. Sci. Rep. 2021, 11, 4478. [Google Scholar] [CrossRef]
- Sexton, E.; McLoughlin, A.; Williams, D.J.; Merriman, N.A.; Donnelly, N.; Rohde, D.; Hickey, A.; Wren, M.-A.; Bennett, K. Systematic review and meta-analysis of the prevalence of cognitive impairment no dementia in the first year post-stroke. Eur. Stroke J. 2019, 4, 160–171. [Google Scholar] [CrossRef]
- Thingstad, P.; Askim, T.; Beyer, M.K.; Bråthen, G.; Ellekjær, H.; Ihle-Hansen, H.; Knapskog, A.B.; Lydersen, S.; Munthe-Kaas, R.; Næss, H.; et al. The Norwegian Cognitive impairment after stroke study (Nor-COAST): Study protocol of a multicentre, prospective cohort study. BMC Neurol. 2018, 18, 193. [Google Scholar] [CrossRef]
- Baraka, A.; Meda, J.; Nyundo, A. Predictors of post-stroke cognitive impairment at three-month following first episode of stroke among patients attended at tertiary hospitals in Dodoma, central Tanzania: A protocol of a prospective longitudinal observational study metadata. PLoS ONE 2023, 18, e0273200. [Google Scholar] [CrossRef]
- Charan, J.; Biswas, T. How to Calculate Sample Size for Different Study Designs in Medical Research? Indian J. Psychol. Med. 2013, 35, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. 2018 Guidelines for the Early Management of Patients with Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2018, 49, e46–e110. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [CrossRef] [PubMed]
- Jorm, A.F. A short form of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): Development and cross-validation. Psychol. Med. 1994, 24, 145–153. [Google Scholar] [CrossRef]
- Harrison, J.K.; Fearon, P.; Noel-Storr, A.H.; McShane, R.; Stott, D.J.; Quinn, T.J. Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) for the diagnosis of dementia within a secondary care setting. Cochrane Database Syst. Rev. 2015, 3, CD010772. Available online: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD010772.pub2/full (accessed on 1 October 2024). [CrossRef] [PubMed]
- Jorm, A.F. The Informant Questionnaire on cognitive decline in the elderly (IQCODE): A review. Int. Psychogeriatr. 2004, 16, 275–293. [Google Scholar] [CrossRef]
- Leys, D.; Hénon, H.; Mackowiak-Cordoliani, M.-A.; Pasquier, F. Poststroke dementia. Lancet Neurol. 2005, 4, 752–759. [Google Scholar] [CrossRef]
- Benson, D.F.; Cummings, J.L.; Tsai, S.Y. Angular Gyrus Syndrome Simulating Alzheimer’s Disease. Arch. Neurol. 1982, 39, 616–620. [Google Scholar] [CrossRef]
- Ott, B.R.; Saver, J.L. Unilateral amnesic stroke. Six new cases and a review of the literature. Stroke 1993, 24, 1033–1042. [Google Scholar] [CrossRef]
- Weaver, N.A.; Kancheva, A.K.; Lim, J.-S.; Biesbroek, J.M.; Wajer, I.M.H.; Kang, Y.; Kim, B.J.; Kuijf, H.J.; Lee, B.-C.; Lee, K.-J.; et al. Post-stroke cognitive impairment on the Mini-Mental State Examination primarily relates to left middle cerebral artery infarcts. Int. J. Stroke 2021, 16, 981–989. [Google Scholar] [CrossRef]
- Mijajlović, M.D.; Pavlović, A.; Brainin, M.; Heiss, W.-D.; Quinn, T.J.; Ihle-Hansen, H.B.; Hermann, D.M.; Assayag, E.B.; Richard, E.; Thiel, A.; et al. Post-stroke dementia—A comprehensive review. BMC Med. 2017, 15, 11. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Foschi, M.; Pavolucci, L.; Rondelli, F.; Amore, G.; Spinardi, L.; Rinaldi, R.; Favaretto, E.; Favero, L.; Russo, M.; Pensato, U.; et al. Clinicoradiological Profile and Functional Outcome of Acute Cerebral Venous Thrombosis: A Hospital-Based Cohort Study. Cureus 2021, 13, e17898. Available online: https://www.cureus.com/articles/69718-clinicoradiological-profile-and-functional-outcome-of-acute-cerebral-venous-thrombosis-a-hospital-based-cohort-study (accessed on 1 October 2024). [CrossRef]
- Hachinski, V.; Iadecola, C.; Petersen, R.C.; Breteler, M.M.; Nyenhuis, D.L.; Black, S.E.; Powers, W.J.; DeCarli, C.; Merino, J.G.; Kalaria, R.N.; et al. National Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke 2006, 37, 2220–2241. [Google Scholar] [CrossRef]
- Ciolek, C.H.; Lee, S.Y. Chapter 19—Cognitive Issues in the Older Adult. In Guccione’s Geriatric Physical Therapy, 4th ed.; Avers, D., Wong, R.A., Eds.; Mosby: St. Louis, MO, USA, 2020; pp. 425–452. Available online: https://www.sciencedirect.com/science/article/pii/B9780323609128000191 (accessed on 1 October 2024).
- Shao, Z.; Janse, E.; Visser, K.; Meyer, A.S. What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults. Front. Psychol. 2014, 5, 772. Available online: https://www.frontiersin.org/articles/10.3389/fpsyg.2014.00772 (accessed on 1 October 2024). [CrossRef] [PubMed]
- Jaeger, J. Digit Symbol Substitution Test. J. Clin. Psychopharmacol. 2018, 38, 513–519. [Google Scholar] [CrossRef]
- Scarpina, F.; Tagini, S. The Stroop Color and Word Test. Front. Psychol. 2017, 8, 557. [Google Scholar] [CrossRef]
- Hilbert, S.; Nakagawa, T.T.; Puci, P.; Zech, A.; Bühner, M. The Digit Span Backwards Task: Verbal and Visual Cognitive Strategies in Working Memory Assessment. Eur. J. Psychol. Assess. 2015, 31, 174–180. [Google Scholar] [CrossRef]
- Schoenberg, M.R.; Dawson, K.A.; Duff, K.; Patton, D.; Scott, J.G.; Adams, R.L. Test performance and classification statistics for the Rey Auditory Verbal Learning Test in selected clinical samples. Arch. Clin. Neuropsychol. 2006, 21, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Hambridge, J.; White, J.; Carter, G.; Clover, K.; Nelson, L.; Hackett, M. Depression Screening in Stroke: A Comparison of Alternative Measures with the Structured Diagnostic Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (Major Depressive Episode) as Criterion Standard. Stroke 2012, 43, 1000–1005. [Google Scholar] [CrossRef]
- Golicki, D.; Niewada, M.; Buczek, J.; Karlińska, A.; Kobayashi, A.; Janssen, M.F.; Pickard, A.S. Validity of EQ-5D-5L in stroke. Qual. Life Res. 2015, 24, 845–850. [Google Scholar] [CrossRef]
- Gil-Pagés, M.; Sánchez-Carrión, R.; Tormos, J.M.; Enseñat-Cantallops, A.; García-Molina, A. A Positive Relationship between Cognitive Reserve and Cognitive Function after Stroke: Dynamic Proxies Correlate Better than Static Proxies. J. Int. Neuropsychol. Soc. JINS 2019, 25, 910–921. [Google Scholar] [CrossRef]
- Farooque, U.; Lohano, A.K.; Kumar, A.; Karimi, S.; Yasmin, F.; Bollampally, V.C.; Ranpariya, M.R. Validity of National Institutes of Health Stroke Scale for Severity of Stroke to Predict Mortality Among Patients Presenting with Symptoms of Stroke. Cureus 2020, 12, e10255. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R.; Fanjiang, G. Mini-Mental State Examination: MMSE User’s Guide; Psychology Assessment Resources: Odessa, FL, USA, 2000. [Google Scholar]
- Lincoln, N.; Kneebone, I.; Macniven, J.; Morris, R. Neuropsychological Assessment after Stroke. In Psychological Management of Stroke; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 130–159. [Google Scholar]
- Wardlaw, J.M.; Smith, E.E.; Biessels, G.J.; Cordonnier, C.; Fazekas, F.; Frayne, R.; Lindley, R.I.; O’Brien, J.T.; Barkhof, F.; Benavente, O.R.; et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013, 12, 822–838. [Google Scholar] [CrossRef]
- Fazekas, F.; Kleinert, R.; Offenbacher, H.; Schmidt, R.; Kleinert, G.; Payer, F.; Radner, H.; Lechner, H. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 1993, 43, 1683–1689. [Google Scholar] [CrossRef] [PubMed]
- Wahlund, L.O.; Barkhof, F.; Fazekas, F.; Bronge, L.; Augustin, M.; Sjögren, M.; Wallin, A.; Ader, H.; Leys, D.; Pantoni, L.; et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 2001, 32, 1318–1322. [Google Scholar] [CrossRef]
- Greenberg, S.M.; Vernooij, M.W.; Cordonnier, C.; Viswanathan, A.; Al-Shahi Salman, R.; Warach, S.; Launer, L.J.; Van Buchem, M.A.; Breteler, M.M. Microbleed Study Group Cerebral microbleeds: A guide to detection and interpretation. Lancet Neurol. 2009, 8, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Doubal, F.N.; MacLullich, A.M.J.; Ferguson, K.J.; Dennis, M.S.; Wardlaw, J.M. Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke 2010, 41, 450–454. [Google Scholar] [CrossRef]
- Tahedl, M. Towards individualized cortical thickness assessment for clinical routine. J. Transl. Med. 2020, 18, 151. [Google Scholar] [CrossRef] [PubMed]
- Fischl, B. FreeSurfer. NeuroImage 2012, 62, 774–781. [Google Scholar] [CrossRef]
- Chen, Q.; Xia, T.; Zhang, M.; Xia, N.; Liu, J.; Yang, Y. Radiomics in Stroke Neuroimaging: Techniques, Applications, and Challenges. Aging Dis. 2021, 12, 143–154. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Popa, L.L.; Iancu, M.; Livint, G.; Balea, M.; Dina, C.; Vacaras, V.; Vladescu, C.; Balanescu, L.; Buzoianu, A.D.; Strilciuc, S.; et al. N-Pep-12 supplementation after ischemic stroke positively impacts frequency domain QEEG. Neurol. Sci. 2022, 43, 1115–1125. [Google Scholar] [CrossRef]
- Muresanu, D.F.; Alvarez, X.A.; Moessler, H.; Novak, P.H.; Stan, A.; Buzoianu, A.; Bajenaru, O.; Popescu, B.O. Persistence of the effects of Cerebrolysin on cognition and qEEG slowing in vascular dementia patients: Results of a 3-month extension study. J. Neurol. Sci. 2010, 299, 179–183. [Google Scholar] [CrossRef]
- Schleiger, E.; Wong, A.; Read, S.; Rowland, T.; Finnigan, S. Poststroke QEEG informs early prognostication of cognitive impairment. Psychophysiology 2017, 54, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Yuasa, T.; Maeda, A.; Higuchi, S.; Motohashi, Y. Quantitative EEG data and comprehensive ADL (Activities of Daily Living) evaluation of stroke survivors residing in the community. J. Physiol. Anthropol. Appl. Human Sci. 2001, 20, 37–41. [Google Scholar] [CrossRef]
- Chiarion, G.; Sparacino, L.; Antonacci, Y.; Faes, L.; Mesin, L. Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends. Bioengineering 2023, 10, 372. [Google Scholar] [CrossRef] [PubMed]
- Finnigan, S.; Robertson, I.H. Resting EEG theta power correlates with cognitive performance in healthy older adults. Psychophysiology 2011, 48, 1083–1087. [Google Scholar] [CrossRef] [PubMed]
- Bowyer, S.M. Coherence a measure of the brain networks: Past and present. Neuropsychiatr. Electrophysiol. 2016, 2, 1–12. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5TM, 5th ed.; American Psychiatric Publishing, Inc.: Arlington, VA, USA, 2013; p. xliv, 947. [Google Scholar]
- Goerdten, J.; Carrière, I.; Muniz-Terrera, G. Comparison of Cox proportional hazards regression and generalized Cox regression models applied in dementia risk prediction. Alzheimers Dement. 2020, 6, e12041. [Google Scholar] [CrossRef]
- Molad, J.; Hallevi, H.; Korczyn, A.D.; Kliper, E.; Auriel, E.; Bornstein, N.M.; Ben Assayag, E. Vascular and Neurodegenerative Markers for the Prediction of Post-Stroke Cognitive Impairment: Results from the TABASCO Study. J. Alzheimers Dis. 2019, 70, 889–898. [Google Scholar] [CrossRef]
- Delattre, C.; Bournonville, C.; Auger, F.; Lopes, R.; Delmaire, C.; Henon, H.; Mendyk, A.M.; Bombois, S.; Devedjian, J.C.; Leys, D.; et al. Hippocampal Deformations and Entorhinal Cortex Atrophy as an Anatomical Signature of Long-Term Cognitive Impairment: From the MCAO Rat Model to the Stroke Patient. Transl. Stroke Res. 2018, 9, 294–305. [Google Scholar] [CrossRef]
- Bournonville, C.; Hénon, H.; Dondaine, T.; Delmaire, C.; Bombois, S.; Mendyk, A.-M.; Cordonnier, C.; Moulin, S.; Leclerc, X.; Bordet, R.; et al. Identification of a specific functional network altered in poststroke cognitive impairment. Neurology 2018, 90, e1879–e1888. [Google Scholar] [CrossRef]
- Tang, E.Y.H.; Price, C.I.; Robinson, L.; Exley, C.; Desmond, D.W.; Köhler, S.; Staals, J.; Yin Ka Lam, B.; Wong, A.; Mok, V.; et al. Assessing the Predictive Validity of Simple Dementia Risk Models in Harmonized Stroke Cohorts. Stroke 2020, 51, 2095–2102. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, Z.; Jiao, H.; Wang, B.; Yin, H.; Chen, L.; Shi, H.; Yin, Y.; Qin, D. Machine learning in the prediction of post-stroke cognitive impairment: A systematic review and meta-analysis. Front. Neurol. 2023, 14, 1211733. Available online: https://www.frontiersin.org/articles/10.3389/fneur.2023.1211733 (accessed on 1 October 2024). [CrossRef] [PubMed]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef]
- Mouridsen, K.; Thurner, P.; Zaharchuk, G. Artificial Intelligence Applications in Stroke. Stroke 2020, 51, 2573–2579. [Google Scholar] [CrossRef]
- Battineni, G.; Chintalapudi, N.; Amenta, F. Machine learning in medicine: Performance calculation of dementia prediction by support vector machines (SVM). Inform. Med. Unlocked 2019, 16, 100200. [Google Scholar] [CrossRef]
- Martin, S.A.; Townend, F.J.; Barkhof, F.; Cole, J.H. Interpretable machine learning for dementia: A systematic review. Alzheimers Dement. 2023, 19, 2135–2149. [Google Scholar] [CrossRef]
- Rost, N.S.; Brodtmann, A.; Pase, M.P.; van Veluw, S.J.; Biffi, A.; Duering, M.; Hinman, J.D.; Dichgans, M. Post-Stroke Cognitive Impairment and Dementia. Circ. Res. 2022, 130, 1252–1271. [Google Scholar] [CrossRef] [PubMed]
- Sibolt, G.; Curtze, S.; Jokinen, H.; Pohjasvaara, T.; Kaste, M.; Karhunen, P.J.; Erkinjuntti, T.; Melkas, S.; Oksala, N.K.J. Post-stroke dementia and permanent institutionalization. J. Neurol. Sci. 2021, 421, 117307. [Google Scholar] [CrossRef]
Visit 1 | Visit 2 | Visit 3 | Visit 4 | |
Demographic data | X | |||
Patient medical history | X | |||
Cognitive Reserve Index questionnaire | X | |||
Index AIS data: vascular territory, etiology | X | |||
National Institute of Health Stroke Scale (NIHSS) | X | X | X | X |
Modified Rankin Scale (mRS) | X | X | X | |
IQCODE | X | |||
Goodglass and Kaplan Scale | X | |||
Global cognitive function assessment: The Mini-Mental State Examination (MMSE) [47,48,49] Montreal Cognitive Assessment (MoCA) [47,50] | X | X | X | |
Executive function assessment: Trial Making Test-A (TMT-A) [51] Verbal Fluency Test-Controlled Oral Word Association Test-CFL Version (VFT-CFL) [52] Digit Symbol Processing Speed Index, Wechsler Adult Intelligence Scale, 4th edition (DS-WPSI) [53] | X | X | X | |
Attention and visuospatial orientation: Stroop Color–Word Test (Stroop) [54] | X | X | X | |
Memory and learning: Digit Span Backward, Wechsler Adult Intelligence Scale, 4th edition (DS-BW) [55] Rey Auditory Verbal Learning Test (RAVLT) [56] | X | X | X | |
Hospital Anxiety and Depression Scale (HADS) [57] | X | X | X | |
5-level EQ-5D quality of life scale (5Q-5D-5L) [58] | X | X | X | |
EEG + QEEG protocol | X | |||
Brain MRI + radiomics protocol | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragoș, H.M.; Stan, A.; Popa, L.L.; Pintican, R.; Feier, D.; Drăghici, N.C.; Jianu, D.-C.; Chira, D.; Strilciuc, Ș.; Mureșanu, D.F. Functional Connectivity and MRI Radiomics Biomarkers of Cognitive and Brain Reserve in Post-Stroke Cognitive Impairment Prediction—A Study Protocol. Life 2025, 15, 131. https://doi.org/10.3390/life15010131
Dragoș HM, Stan A, Popa LL, Pintican R, Feier D, Drăghici NC, Jianu D-C, Chira D, Strilciuc Ș, Mureșanu DF. Functional Connectivity and MRI Radiomics Biomarkers of Cognitive and Brain Reserve in Post-Stroke Cognitive Impairment Prediction—A Study Protocol. Life. 2025; 15(1):131. https://doi.org/10.3390/life15010131
Chicago/Turabian StyleDragoș, Hanna Maria, Adina Stan, Livia Livinț Popa, Roxana Pintican, Diana Feier, Nicu Cătălin Drăghici, Dragoș-Cătălin Jianu, Diana Chira, Ștefan Strilciuc, and Dafin F. Mureșanu. 2025. "Functional Connectivity and MRI Radiomics Biomarkers of Cognitive and Brain Reserve in Post-Stroke Cognitive Impairment Prediction—A Study Protocol" Life 15, no. 1: 131. https://doi.org/10.3390/life15010131
APA StyleDragoș, H. M., Stan, A., Popa, L. L., Pintican, R., Feier, D., Drăghici, N. C., Jianu, D.-C., Chira, D., Strilciuc, Ș., & Mureșanu, D. F. (2025). Functional Connectivity and MRI Radiomics Biomarkers of Cognitive and Brain Reserve in Post-Stroke Cognitive Impairment Prediction—A Study Protocol. Life, 15(1), 131. https://doi.org/10.3390/life15010131