Calcium Chloride vs. Mechanical Preparation of Fibrinogen-Depleted Human Platelet Lysate: Implications for Umbilical Cord Mesenchymal Stem Cell Culture
<p>Concentration of fibrinogen measured from FD-HPL prepared using chemical and mechanical methods. Both methods yielded similar fibrinogen levels. Values are expressed as the mean ± SEM (n = 3).</p> "> Figure 2
<p>Concentrations of VEGF, BDNF, IGF, and KGF in FD-HPL prepared using calcium salt and mechanical methods. The bar graphs illustrate significant differences in growth factor concentrations between the two preparation methods. Values are expressed as the mean ± SEM (n = 3). Statistical significance is indicated as ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 3
<p>The morphology of UC-MSCs after exposure to FD-HPL prepared using chemical and mechanical methods. Panel (<b>A</b>) (Day 1): UC-MSCs exposed to mechanically prepared HPL show an initial sparse state with branched, elongated cells and large empty spaces, typical of freshly seeded cultures. Panel (<b>B</b>) (Day 5): UC-MSCs exposed to mechanically prepared HPL demonstrate increased cell density and proliferation, forming a more interconnected network while maintaining their elongated shape. Panel (<b>C</b>) (Day 1): UC-MSCs exposed to chemically prepared HPL exhibit a more fibroblastic morphology. Panel (<b>D</b>) (Day 5): UC-MSCs exposed to chemically prepared HPL display high cell density, indicating a fully confluent state with tightly packed, interconnected cells. Cells were viewed under 40× magnification.</p> "> Figure 4
<p>Flow cytometry analysis of UC-MSC surface markers. The UC-MSC population shows positive expression for MSC-specific markers CD73, CD90, and CD105, confirming the MSC identity of the cultured cells. Negative expression of CD34 and CD3 indicates the absence of hematopoietic and lymphoid cells, supporting the purity of the UC-MSC culture.</p> "> Figure 5
<p>Analysis of UC-MSC cell size cultured in various FD-HPL supplements revealed a significant difference in cell size between the two groups (<b>A</b>). While the widths of UC-MSCs under the same conditions were assessed, no significant differences were observed (<b>B</b>). In contrast, the lengths of UC-MSCs cultured in different FD-HPL supplements showed a significant difference, with mechanically prepared FD-HPL exhibiting a decrease in cell length compared to chemically prepared FD-HPL (<b>C</b>). Values are presented as mean ± SEM (n = 3). Statistical significance is indicated as * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01. ns: not significant.</p> "> Figure 6
<p>There were no statistically significant differences between chemical and mechanical treatments across all measured parameters, suggesting comparable efficacy of both methods in maintaining cell number (<b>A</b>), viability (<b>B</b>), and growth rate (<b>C</b>). Data are presented as mean ± SEM (n = 3). ns: not significant.</p> "> Figure 7
<p>The cell survival rates of UC-MSCs were similar for both preparation methods. This indicates high cell viability and comparable efficacy in maintaining viable cell populations. Data are presented as mean ± SEM (n = 3). ns: not significant.</p> "> Figure 8
<p>Fold change in expression of IDO, TGF-β, and PGHS-2 under chemical and mechanical methods. The findings demonstrate the relative expression levels of three markers across two experimental conditions. Under chemical conditions, TGF-β shows the highest expression, followed by PGHS-2 and IDO with the lowest expression. Under mechanical conditions, TGF-β remains the most expressed marker, although slightly lower, with PGHS-2 and IDO showing similar trends. Values are presented as mean ± SEM (n = 3). Statistical significance is indicated as * <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of HPL
2.2. Preparation of FD-HPL Through Calcium Salt Method
2.3. Preparation of FD-HPL Through Mechanical Method
2.4. Measurement of Fibrinogen
2.5. Measurement of Growth Factors
2.6. Culture of UC-MSCs
2.7. MSC Characterization
2.8. Cell Morphology, Viability, and Proliferation
2.9. Cell Survival Rate
2.10. Quantitative Gene Expression Analysis by Real-Time PCR
2.11. Statistical Analysis
3. Results
3.1. Concentration of Fibrinogen
3.2. Concentration of Growth Factors
3.3. Morphology of UC-MSCs
3.4. Characterisation of UC-MSCs
3.5. Morphological Properties of Cells
3.6. The Cell Viability, Yield, and Proliferation
3.7. Cell Survival Rate
3.8. Expression of Immunomodulatory Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, D.Y.; Lee, S.Y.; Yun, S.H.; Jeong, J.W.; Kim, J.H.; Kim, H.W.; Choi, J.S.; Kim, G.D.; Joo, S.T.; Choi, I.; et al. Review of the Current Research on Fetal Bovine Serum and the Development of Cultured Meat. Food Sci. Anim. Resour. 2022, 42, 775–799. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yang, W.; Li, Y.; Sun, C. Fetal bovine serum, an important factor affecting the reproducibility of cell experiments. Sci. Rep. 2023, 13, 1942. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Yun, S.H.; Lee, S.Y.; Lee, J.; Mariano, E., Jr.; Joo, S.T.; Choi, I.; Choi, J.S.; Kim, G.D.; Lee, J.; et al. Analysis of commercial fetal bovine serum (FBS) and its substitutes in the development of cultured meat. Food Res. Int. 2023, 174 Pt 1, 113617. [Google Scholar] [CrossRef]
- Pilgrim, C.R.; McCahill, K.A.; Rops, J.G.; Dufour, J.M.; Russell, K.A.; Koch, T.G. A Review of Fetal Bovine Serum in the Culture of Mesenchymal Stromal Cells and Potential Alternatives for Veterinary Medicine. Front. Vet. Sci. 2022, 9, 859025. [Google Scholar] [CrossRef]
- Subbiahanadar Chelladurai, K.; Selvan Christyraj, J.D.; Rajagopalan, K.; Yesudhason, B.V.; Venkatachalam, S.; Mohan, M.; Chellathurai Vasantha, N.; Selvan Christyraj, J.R.S. Alternative to FBS in animal cell culture—An overview and future perspective. Heliyon 2021, 7, e07686. [Google Scholar] [CrossRef]
- Piletz, J.E.; Drivon, J.; Eisenga, J.; Buck, W.; Yen, S.; McLin, M.; Meruvia, W.; Amaral, C.; Brue, K. Human Cells Grown with or without Substitutes for Fetal Bovine Serum. Cell Med. 2018, 10, 2155179018755140. [Google Scholar] [CrossRef] [PubMed]
- Guiotto, M.; Raffoul, W.; Hart, A.M.; Riehle, M.O.; di Summa, P.G. Human platelet lysate to substitute fetal bovine serum in hMSC expansion for translational applications: A systematic review. J. Transl. Med. 2020, 18, 351. [Google Scholar] [CrossRef]
- Seidelmann, N.; Duarte Campos, D.F.; Rohde, M.; Johnen, S.; Salla, S.; Yam, G.H.; Mehta, J.S.; Walter, P.; Fuest, M. Human platelet lysate as a replacement for fetal bovine serum in human corneal stromal keratocyte and fibroblast culture. J. Cell. Mol. Med. 2021, 25, 9647–9659. [Google Scholar] [CrossRef]
- Oeller, M.; Laner-Plamberger, S.; Krisch, L.; Rohde, E.; Strunk, D.; Schallmoser, K. Human Platelet Lysate for Good Manufacturing Practice-Compliant Cell Production. Int. J. Mol. Sci. 2021, 22, 5178. [Google Scholar] [CrossRef]
- Palombella, S.; Perucca Orfei, C.; Castellini, G.; Gianola, S.; Lopa, S.; Mastrogiacomo, M.; Moretti, M.; de Girolamo, L. Systematic review and meta-analysis on the use of human platelet lysate for mesenchymal stem cell cultures: Comparison with fetal bovine serum and considerations on the production protocol. Stem Cell Res. Ther. 2022, 13, 142. [Google Scholar] [CrossRef]
- Kee, L.T.; Lee, Y.T.; Ng, C.Y.; Hassan, M.N.F.; Ng, M.H.; Mahmood, Z.; Abdul Aziz, S.; Law, J.X. Preparation of Fibrinogen-Depleted Human Platelet Lysate to Support Heparin-Free Expansion of Umbilical Cord-Derived Mesenchymal Stem Cells. Biology 2023, 12, 1085. [Google Scholar] [CrossRef] [PubMed]
- Mareschi, K.; Castiglia, S.; Adamini, A.; Rustichelli, D.; Marini, E.; Banche Niclot, A.G.S.; Bergallo, M.; Labanca, L.; Ferrero, I.; Fagioli, F. Inactivated Platelet Lysate Supports the Proliferation and Immunomodulant Characteristics of Mesenchymal Stromal Cells in GMP Culture Conditions. Biomedicines 2020, 8, 220. [Google Scholar] [CrossRef] [PubMed]
- Kandoi, S.; Kumar, P.; Patra, B.; Vidyasekar, P.; Sivanesan, D.; Verma, R.S. Evaluation of platelet lysate as a substitute for FBS in explant and enzymatic isolation methods of human umbilical cord MSCs. Sci. Rep. 2018, 8, 12439. [Google Scholar] [CrossRef] [PubMed]
- Mouloud, Y.; Staubach, S.; Stambouli, O.; Mokhtari, S.; Kutzner, T.J.; Zwanziger, D.; Hemeda, H.; Giebel, B. Calcium chloride declotted human platelet lysate promotes the expansion of mesenchymal stromal cells and allows manufacturing of immunomodulatory active extracellular vesicle products. Cytotherapy 2024, 26, 988–998. [Google Scholar] [CrossRef]
- Naskou, M.C.; Sumner, S.; Berezny, A.; Copland, I.B.; Peroni, J.F. Fibrinogen-Depleted Equine Platelet Lysate Affects the Characteristics and Functionality of Mesenchymal Stem Cells. Stem Cells Dev. 2019, 28, 1572–1580. [Google Scholar] [CrossRef]
- Naskou, M.C.; Sumner, S.M.; Chocallo, A.; Kemelmakher, H.; Thoresen, M.; Copland, I.; Galipeau, J.; Peroni, J.F. Platelet lysate as a novel serum-free media supplement for the culture of equine bone marrow-derived mesenchymal stem cells. Stem Cell Res. Ther. 2018, 9, 75. [Google Scholar] [CrossRef]
- Cañas-Arboleda, M.; Beltrán, K.; Medina, C.; Camacho, B.; Salguero, G. Human Platelet Lysate Supports Efficient Expansion and Stability of Wharton’s Jelly Mesenchymal Stromal Cells via Active Uptake and Release of Soluble Regenerative Factors. Int. J. Mol. Sci. 2020, 21, 6284. [Google Scholar] [CrossRef]
- Li, Z.; Liu, L.; Wang, L.; Song, D. The effects and potential applications of concentrated growth factor in dentin-pulp complex regeneration. Stem Cell Res. Ther. 2021, 12, 357. [Google Scholar] [CrossRef]
- Kazemnejad, S.; Allameh, A.; Gharehbaghian, A.; Soleimani, M.; Amirizadeh, N.; Jazayeri, M. Efficient replacing of fetal bovine serum with human platelet releasate during propagation and differentiation of human bone-marrow-derived mesenchymal stem cells to functional hepatocyte-like cells. Vox Sang. 2008, 95, 149–158. [Google Scholar] [CrossRef]
- Aldahmash, A.; Haack-Sørensen, M.; Al-Nbaheen, M.; Harkness, L.; Abdallah, B.M.; Kassem, M. Human serum is as efficient as fetal bovine serum in supporting proliferation and differentiation of human multipotent stromal (mesenchymal) stem cells in vitro and in vivo. Stem Cell Rev. Rep. 2011, 7, 860–868. [Google Scholar] [CrossRef]
- Laner-Plamberger, S.; Lener, T.; Schmid, D.; Streif, D.A.; Salzer, T.; Öller, M.; Hauser-Kronberger, C.; Fischer, T.; Jacobs, V.R.; Schallmoser, K.; et al. Mechanical fibrinogen-depletion supports heparin-free mesenchymal stem cell propagation in human platelet lysate. J. Transl. Med. 2015, 13, 354. [Google Scholar] [CrossRef] [PubMed]
- Yeh, W.T.; Yu, E.Y.; Lu, Y.H.; Livkisa, D.; Burnouf, T.; Lundy, D.J. Bioprocessing of human platelet concentrates to generate lysates and extracellular vesicles for therapeutic applications. MethodsX 2024, 13, 102822. [Google Scholar] [CrossRef] [PubMed]
- Duarte Rojas, J.M.; Restrepo Múnera, L.M.; Estrada Mira, S. Comparison between Platelet Lysate, Platelet Lysate Serum, and Fetal Bovine Serum as Supplements for Cell Culture, Expansion, and Cryopreservation. Biomedicines 2024, 12, 140. [Google Scholar] [CrossRef]
- Almeria, C.; Kreß, S.; Weber, V.; Egger, D.; Kasper, C. Heterogeneity of mesenchymal stem cell-derived extracellular vesicles is highly impacted by the tissue/cell source and culture conditions. Cell Biosci. 2022, 12, 51. [Google Scholar] [CrossRef]
- Sugar, A.; Hussain, M.; Chamberlain, W.; Dana, R.; Kelly, D.P.; Ta, C.; Irvine, J.; Daluvoy, M.; Perez, V.; Olson, J.; et al. Cambium Dry Eye Study Group A Randomized Trial of Topical Fibrinogen-Depleted Human Platelet Lysate Treatment of Dry Eye Secondary to Chronic Graft-versus-Host Disease. Ophthalmol. Sci. 2022, 2, 100176. [Google Scholar] [CrossRef]
- Palombella, S.; Guiotto, M.; Higgins, G.C.; Applegate, L.L.; Raffoul, W.; Cherubino, M.; Hart, A.; Riehle, M.O.; di Summa, P.G. Human platelet lysate as a potential clinical-translatable supplement to support the neurotrophic properties of human adipose-derived stem cells. Stem Cell Res. Ther. 2020, 11, 432. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhou, L.; Yan, B.; Zhang, L.; Du, W.; Liu, F.; Yuan, Q.; Tong, P.; Shan, L.; Efferth, T. Growth factors-based beneficial effects of platelet lysate on umbilical cord-derived stem cells and their synergistic use in osteoarthritis treatment. Cell Death Dis. 2020, 11, 857. [Google Scholar] [CrossRef] [PubMed]
- Mastrullo, V.; Cathery, W.; Velliou, E.; Madeddu, P.; Campagnolo, P. Angiogenesis in Tissue Engineering: As Nature Intended? Front. Bioeng. Biotechnol. 2020, 8, 188. [Google Scholar] [CrossRef] [PubMed]
- Azman, K.F.; Zakaria, R. Recent Advances on the Role of Brain-Derived Neurotrophic Factor (BDNF) in Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 6827. [Google Scholar] [CrossRef]
- Youssef, A.; Aboalola, D.; Han, V.K. The Roles of Insulin-Like Growth Factors in Mesenchymal Stem Cell Niche. Stem Cells Int. 2017, 2017, 9453108. [Google Scholar] [CrossRef]
- Pierce, G.F.; Yanagihara, D.; Klopchin, K.; Danilenko, D.M.; Hsu, E.; Kenney, W.C.; Morris, C.F. Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor. J. Exp. Med. 1994, 179, 831–840. [Google Scholar] [CrossRef]
- Burnouf, T.; Strunk, D.; Koh, M.B.; Schallmoser, K. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials 2016, 76, 371–387. [Google Scholar] [CrossRef] [PubMed]
- Hoang, V.T.; Le, D.S.; Hoang, D.M.; Phan, T.T.K.; Ngo, L.A.T.; Nguyen, T.K.; Bui, V.A.; Nguyen Thanh, L. Impact of tissue factor expression and administration routes on thrombosis development induced by mesenchymal stem/stromal cell infusions: Re-evaluating the dogma. Stem Cell Res. Ther. 2024, 15, 56. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Santos, M.E.; Garcia-Arranz, M.; Andreu, E.J.; García-Hernández, A.M.; López-Parra, M.; Villarón, E.; Sepúlveda, P.; Fernández-Avilés, F.; García-Olmo, D.; Prosper, F.; et al. Optimization of Mesenchymal Stromal Cell (MSC) Manufacturing Processes for a Better Therapeutic Outcome. Front. Immunol. 2022, 13, 918565. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.S.; Xin, Z.C.; Dai, J.; Lue, T.F. Commonly used mesenchymal stem cell markers and tracking labels: Limitations and challenges. Histol. Histopathol. 2013, 28, 1109–1116. [Google Scholar] [PubMed]
- Bucar, S.; Branco, A.D.M.; Mata, M.F.; Milhano, J.C.; Caramalho, Í.; Cabral, J.M.S.; Fernandes-Platzgummer, A.; da Silva, C.L. Influence of the mesenchymal stromal cell source on the hematopoietic supportive capacity of umbilical cord blood-derived CD34+-enriched cells. Stem Cell Res. Ther. 2021, 12, 399. [Google Scholar] [CrossRef]
- Zhou, T.; Yuan, Z.; Weng, J.; Pei, D.; Du, X.; He, C.; Lai, P. Challenges and advances in clinical applications of mesenchymal stromal cells. J. Hematol. Oncol. 2021, 14, 24. [Google Scholar] [CrossRef]
- Hefka Blahnova, V.; Dankova, J.; Rampichova, M.; Filova, E. Combinations of growth factors for human mesenchymal stem cell proliferation and osteogenic differentiation. Bone Jt. Res. 2020, 9, 412–420. [Google Scholar] [CrossRef]
- Wang, S.; Yu, L.; Sun, M.; Mu, S.; Wang, C.; Wang, D.; Yao, Y. The therapeutic potential of umbilical cord mesenchymal stem cells in mice premature ovarian failure. BioMed Res. Int. 2013, 2013, 690491. [Google Scholar] [CrossRef]
- Ross, A.M.; Jiang, Z.; Bastmeyer, M.; Lahann, J. Physical aspects of cell culture substrates: Topography, roughness, and elasticity. Small 2012, 8, 336–355. [Google Scholar] [CrossRef]
- Sarsenova, M.; Kim, Y.; Raziyeva, K.; Kazybay, B.; Ogay, V.; Saparov, A. Recent advances to enhance the immunomodulatory potential of mesenchymal stem cells. Front. Immunol. 2022, 13, 1010399. [Google Scholar] [CrossRef] [PubMed]
- Bagno, L.L.; Salerno, A.G.; Balkan, W.; Hare, J.M. Mechanism of Action of Mesenchymal Stem Cells (MSCs): Impact of delivery method. Expert Opin. Biol. Ther. 2022, 22, 449–463. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, Y.T.; Barathan, M.; Tan, Y.L.; Lee, Y.T.; Law, J.X. Calcium Chloride vs. Mechanical Preparation of Fibrinogen-Depleted Human Platelet Lysate: Implications for Umbilical Cord Mesenchymal Stem Cell Culture. Life 2025, 15, 12. https://doi.org/10.3390/life15010012
Lim YT, Barathan M, Tan YL, Lee YT, Law JX. Calcium Chloride vs. Mechanical Preparation of Fibrinogen-Depleted Human Platelet Lysate: Implications for Umbilical Cord Mesenchymal Stem Cell Culture. Life. 2025; 15(1):12. https://doi.org/10.3390/life15010012
Chicago/Turabian StyleLim, Yen Theng, Muttiah Barathan, Yu Ling Tan, Yi Ting Lee, and Jia Xian Law. 2025. "Calcium Chloride vs. Mechanical Preparation of Fibrinogen-Depleted Human Platelet Lysate: Implications for Umbilical Cord Mesenchymal Stem Cell Culture" Life 15, no. 1: 12. https://doi.org/10.3390/life15010012
APA StyleLim, Y. T., Barathan, M., Tan, Y. L., Lee, Y. T., & Law, J. X. (2025). Calcium Chloride vs. Mechanical Preparation of Fibrinogen-Depleted Human Platelet Lysate: Implications for Umbilical Cord Mesenchymal Stem Cell Culture. Life, 15(1), 12. https://doi.org/10.3390/life15010012