Design and Performance of a Novel Tapered Wing Tiltrotor UAV for Hover and Cruise Missions
<p>UAV mission proposal over different areas.</p> "> Figure 2
<p>Flight phases for convertible UAV.</p> "> Figure 3
<p>Proposal of the convertible UAV.</p> "> Figure 4
<p>FEM mesh definition.</p> "> Figure 5
<p>Forces definition for hover case.</p> "> Figure 6
<p>Structure deformation for hover condition.</p> "> Figure 7
<p>Forces definition for cruise case.</p> "> Figure 8
<p>Structure deformation for cruise condition.</p> "> Figure 9
<p>General CFD mesh.</p> "> Figure 10
<p>Detailed CFD mesh with the airfoil.</p> "> Figure 11
<p>Airflow distribution.</p> "> Figure 12
<p>Pressure distribution at cruise flight.</p> "> Figure 13
<p>Tilting mechanism for rotor direction.</p> "> Figure 14
<p>Diagram of tilting mechanism at low speed flight.</p> "> Figure 15
<p>Tilting mechanism frame.</p> "> Figure 16
<p>Hybrid mission.</p> "> Figure 17
<p>Internal 3D-printed wing structure.</p> "> Figure 18
<p>Multiple techniques used for wings.</p> "> Figure 19
<p>Flight envelope.</p> "> Figure 20
<p>Performance surface for variation of the payload for each state.</p> "> Figure 21
<p>References frames of the CUAV.</p> "> Figure 22
<p>References frame for angular rotation.</p> "> Figure 23
<p>Aerodynamic forces of the CUAV.</p> "> Figure 24
<p>Guidance, navigation and control scheme for the CUAV.</p> "> Figure 25
<p>Tracking system.</p> "> Figure 26
<p>CUAV interface in the ground station.</p> "> Figure 27
<p>Flight computer scheme.</p> "> Figure 28
<p>Real-time flight of the CUAV.</p> "> Figure 29
<p>XYZ trajectory tracking, real vs. ideal.</p> "> Figure 30
<p>Pitch angle, real vs. ideal (low pitch).</p> "> Figure 31
<p>XYZ trajectory tracking, real vs. ideal.</p> "> Figure 32
<p>Control signals on infinite trajectories.</p> "> Figure 33
<p>XYZ trajectory tracking, real vs. ideal.</p> "> Figure 34
<p>U velocity develop at ramp.</p> "> Figure 35
<p>Lift behavior on global rotor forces.</p> "> Figure 36
<p>XYZ trajectory tracking, real vs. ideal.</p> "> Figure 37
<p>U velocity developed at the line.</p> "> Figure 38
<p>Servos transition phase.</p> ">
Abstract
:1. Introduction
- Development of a novel tapered wing tiltrotor UAV for hover and cruise missions.
- A scheme of guidance, navigation, and control based on the special Euclidean group SE(3) for the convertible UAV.
- The proposed convertible UAV is tested to obtain the performance in real-time flights.
2. Design Proposal
2.1. UAV Configuration
2.2. Physical Parameters
2.3. UAV Actuation
2.3.1. Hover Flight
2.3.2. Cruise Flight
2.4. Manufacturing
2.5. Performance
3. Modeling and Stabilization
3.1. Equations of Motion
3.2. Guidance, Navigation and Control Algorithm
- The control normal vector is defined as a function of the position and velocity errors.
- The control forward vector is defined as a unit vector in the plane and is orthogonal to such as with . Then
- The control binormal vector is defined as
- ;
- is a well-defined unit vector;
- is a well-defined unit vector;
- is orthonormal and the matrix .
4. Real-Time Validation
4.1. Circle
4.2. Infinite
4.3. Tilting Ramp
4.4. Fast Line—Transition Mode
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mccormick, B.W. Aerodynamics of V/STOL Flight; Courier Corporation: North Chelmsford, MA, USA, 1999. [Google Scholar]
- Semotiuk, L.; Józwik, J.; Kukiełka, K.; Dziedzic, K. Design and FEM Analysis of an Unmanned Aerial Vehicle Wing. In Proceedings of the 2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Naples, Italy, 23–25 June 2021; pp. 365–370. [Google Scholar]
- Phung, D.K.; Morin, P. Modeling and Energy Evaluation of Small Convertible UAVs. IFAC Proc. Vol. 2013, 46, 212–219. [Google Scholar] [CrossRef]
- Greenwood, W.W.; Lynch, J.P.; Zekkos, D. Applications of UAVs in Civil Infrastructure. J. Infrastruct. Syst. 2019, 25, 04019002. [Google Scholar] [CrossRef]
- Lozano, R. Unmanned Aerial Vehicles Embedded Control, 1st ed.; John Wiley-ISTE Ltd.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Aláez, D.; Olaz, X.; Prieto, M.; Villadangos, J.; Astrain, J. VTOL UAV digital twin for take-off, hovering and landing in different wind conditions. Simul. Model. Pract. Theory 2023, 123, 102703. [Google Scholar] [CrossRef]
- Lu, K.; Liu, C.; Li, C.; Chen, R. Flight Dynamics Modeling and Dynamic Stability Analysis of Tilt-Rotor Aircraft. Int. J. Aerosp. Eng. 2019, 2019, 5737212. [Google Scholar] [CrossRef]
- Liu, N.; Wang, Y.; Zhao, J.; Cheng, X.; He, X.; Wu, K. A new inclining flight mode and oblique takeoff technique for a tiltrotor aircraft. Aerosp. Sci. Technol. 2023, 139, 108370. [Google Scholar] [CrossRef]
- Bautista, J.A.; Osorio, A.; Lozano, R. Modeling and Analysis of a Tricopter/Flying-Wing Convertible UAV with Tilt-Rotors. In Proceedings of the International Conference on Unmanned Aircraft Systems, Miami, FL, USA, 13–16 June 2017. [Google Scholar]
- Chamola, V.; Kotesh, P.; Agarwal, A.; Naren; Gupta, N.; Guizani, M. A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques. Ad Hoc Netw. 2021, 111, 102324. [Google Scholar] [CrossRef] [PubMed]
- Ducard, G.J.; Allenspach, M. Review of designs and flight control techniques of hybrid and convertible VTOL UAVs. Aerosp. Sci. Technol. 2021, 118, 107035. [Google Scholar] [CrossRef]
- Flores, G.; Escareno, J.; Lozano, R.; Salazar, S. Quad-Tilting Rotor Convertible MAV: Modeling and Real-time Hover Flight Control. J. Intell. Robot. Syst. 2012, 65, 457–471. [Google Scholar] [CrossRef]
- De Oliveira, T.L.; Anglade, A.; Hamel, T.; Samson, C. Control of convertible UAV with vectorized thrust. IFAC-PapersOnLine 2023, 56, 9288–9293. [Google Scholar] [CrossRef]
- Bronz, M.; Smeur, E.J.; de Marina, H.G.; Hattenberger, G. Development of A Fixed-Wing mini UAV with Transitioning Flight Capability; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2017. [Google Scholar]
- Goh, G.; Agarwala, S.; Goh, G.; Dikshit, V.; Sing, S.; Yeong, W. Additive manufacturing in unmanned aerial vehicles (UAVs): Challenges and potential. Aerosp. Sci. Technol. 2017, 63, 140–151. [Google Scholar] [CrossRef]
- Moon, S.K.; Tan, Y.E.; Hwang, J.; Yoon, Y.J. Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures. Int. J. Precis. Eng. Manuf.-Green Technol. 2014, 1, 223–228. [Google Scholar] [CrossRef]
- Yanguo, S.; Huanjin, W. Design of Flight Control System for a Small Unmanned Tilt Rotor Aircraft. Chin. J. Aeronaut. 2009, 22, 250–256. [Google Scholar] [CrossRef]
- Hassanalian, M.; Salazar, R.; Abdelkefi, A. Conceptual design and optimization of a tilt-rotor micro air vehicle. Chin. J. Aeronaut. 2019, 32, 369–381. [Google Scholar] [CrossRef]
- He, C.; Chen, G.; Sun, X.; Li, S.; Li, Y. Geometrically compatible integrated design method for conformal rotor and nacelle of distributed propulsion tilt-wing UAV. Chin. J. Aeronaut. 2023, 36, 229–245. [Google Scholar] [CrossRef]
- Sanchez, A.; Escareño, J.; Garcia, O.; Lozano, R. Autonomous Hovering of a Noncyclic Tiltrotor UAV: Modeling, Control and Implementation. IFAC Proc. Vol. 2008, 41, 803–808. [Google Scholar] [CrossRef]
- D’Amato, E.; Di Francesco, G.; Notaro, I.; Tartaglione, G.; Mattei, M. Nonlinear Dynamic Inversion and Neural Networks for a Tilt Tri-Rotor UAV. IFAC-PapersOnLine 2015, 48, 162–167. [Google Scholar] [CrossRef]
- Campos, J.M.; Cardoso, D.N.; Raffo, G.V. Robust Adaptive Control with Reduced Conservatism for a Convertible UAV. IFAC-PapersOnLine 2023, 56, 4520–4526. [Google Scholar] [CrossRef]
- Bauersfeld, L.; Spannagl, L.; Ducard, G.J.J.; Onder, C.H. MPC Flight Control for a Tilt-Rotor VTOL Aircraft. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 2395–2409. [Google Scholar] [CrossRef]
- Wang, H.; Sun, W.; Zhao, C.; Zhang, S.; Han, J. Dynamic Modeling and Control for Tilt-Rotor UAV Based on 3D Flow Field Transient CFD. Drones 2022, 6, 338. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, B.; Shen, Y.; Zhang, Y.; Li, N.; Gao, Z. Development of Multimode Flight Transition Strategy for Tilt-Rotor VTOL UAVs. Drones 2023, 7, 580. [Google Scholar] [CrossRef]
- Fayez, K.; Leng, Y.; Jardin, T.; Bronz, M.; Moschetta, J.M. Conceptual Design for Long-Endurance Convertible Unmanned Aerial System; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2021. [Google Scholar]
- Carlson, S. A Hybrid Tricopter/Flying-Wing VTOL UAV. In Proceedings of the 52nd Aerospace Sciences Meeting, National Harbor, MD, USA, 13–17 January 2014. [Google Scholar]
- Prach, A.; Kayacan, E. An MPC-based position controller for a tilt-rotor tricopter VTOL UAV. Optim. Control. Appl. Methods 2018, 39, 343–356. [Google Scholar] [CrossRef]
- Valavanis, K.; Vachtsevanos, G. Handbook of Unmanned Aerial Vehicles, 1st ed.; Springer: Atlanta, GA, USA, 2015. [Google Scholar]
- Rozvany, G. The SIMP method in topology optimization—Theoretical background, advantages and new applications. In Proceedings of the 8th Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA, USA, 6–8 September 2000. [Google Scholar]
- Telli, K.; Kraa, O.; Himeur, Y.; Ouamane, A.; Boumehraz, M.; Atalla, S.; Mansoor, W. A Comprehensive Review of Recent Research Trends on Unmanned Aerial Vehicles (UAVs). Systems 2023, 11, 400. [Google Scholar] [CrossRef]
- Stengel, R. Flight Dynamics, 1st ed.; Princeton University Press: Princeton, NJ, USA, 2004. [Google Scholar]
- Garcia Salazar, O.; Rojo Rodriguez, E.G.; Sanchez-Orta, A.; Saucedo Gonzalez, D.; Muñoz-Vázquez, A. Robust Geometric Navigation of a Quadrotor UAV on SE(3). Robotica 2019, 38, 1019–1040. [Google Scholar] [CrossRef]
- Ollervides-Vazquez, E.J.; Rojo-Rodriguez, E.G.; Rojo-Rodriguez, E.U.; Cabriales-Ramirez, L.E.; Garcia-Salazar, O. Two-layer saturated PID controller for the trajectory tracking of a quadrotor UAV. In Proceedings of the 2020 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE), Cuernavaca, Mexico, 16–21 November 2020; pp. 85–91. [Google Scholar]
- Garcia, O.; Sanchez, A.; Escareño, J.; Lozano, R. Tail-sitter UAV having one tilting rotor: Modeling, Control and Real-Time Experiments. IFAC Proc. Vol. 2008, 41, 809–814. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Span | 0.04 m |
Wing Root | 0.024 m |
Wing Tip | 0.012 m |
Wing Surface | 0.075 m2 |
Frontal Arms Length | 0.025 m |
C.G. to frontal | 0.018 m |
C.G. to bottom | 0.016 m |
Airfoil | FX-63 |
Incidence Angle | 3° |
Weight | 420 g |
Part | Material |
---|---|
Wing Surface | ABS |
Structural Frontal Arm (Left and Right) | Fiber Glass tube |
Rotor Adapter | PETG |
Tilt Mechanism | HIPS |
Design Point | Angle of Attack | Airspeed (m/s) | Lift (N) | Drag (N) |
---|---|---|---|---|
DP 0 | 0 | 10 | 1.4831801 | 0.18688435 |
DP 1 | 0 | 5 | 0.33591906 | 0.049558448 |
DP 2 | 0 | 14 | 3.0199035 | 0.35773087 |
DP 3 | 0 | 20 | 6.3607885 | 0.71587954 |
DP 4 | 1 | 10 | 1.7161523 | 0.21013449 |
DP 5 | 2 | 10 | 1.9474965 | 0.23701694 |
DP 6 | 3 | 10 | 2.1824285 | 0.26784294 |
DP 7 | 10 | 10 | 3.8275471 | 0.59171158 |
DP 8 | 15 | 10 | 4.9289569 | 0.9282643 |
DP 9 | 3 | 14 | 4.3934829 | 0.52030514 |
DP 10 | 20 | 14 | 8.181392 | 2.3159387 |
DP 11 | 30 | 14 | 8.2654707 | 4.2134698 |
DP 12 | 45 | 14 | 7.5462137 | 7.0732765 |
DP 13 | −10 | 14 | −1.1898977 | 0.73946404 |
Experiment | Description |
---|---|
Circle | Circle pattern with tangent tracking, fixed Z, and multiple experiments development for dependence on velocity |
Infinite | Complex pattern for whole system test; combined capabilities are tested |
Tilting ramp | Tilting rotor test for control test, which required an input similar to a forward flight with a process of stopping at the end of the path |
Fast line | Test for max linear velocity in controlled environment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojo-Rodriguez, E.U.; Rojo-Rodriguez, E.G.; Araujo-Estrada, S.A.; Garcia-Salazar, O. Design and Performance of a Novel Tapered Wing Tiltrotor UAV for Hover and Cruise Missions. Machines 2024, 12, 653. https://doi.org/10.3390/machines12090653
Rojo-Rodriguez EU, Rojo-Rodriguez EG, Araujo-Estrada SA, Garcia-Salazar O. Design and Performance of a Novel Tapered Wing Tiltrotor UAV for Hover and Cruise Missions. Machines. 2024; 12(9):653. https://doi.org/10.3390/machines12090653
Chicago/Turabian StyleRojo-Rodriguez, Edgar Ulises, Erik Gilberto Rojo-Rodriguez, Sergio A. Araujo-Estrada, and Octavio Garcia-Salazar. 2024. "Design and Performance of a Novel Tapered Wing Tiltrotor UAV for Hover and Cruise Missions" Machines 12, no. 9: 653. https://doi.org/10.3390/machines12090653
APA StyleRojo-Rodriguez, E. U., Rojo-Rodriguez, E. G., Araujo-Estrada, S. A., & Garcia-Salazar, O. (2024). Design and Performance of a Novel Tapered Wing Tiltrotor UAV for Hover and Cruise Missions. Machines, 12(9), 653. https://doi.org/10.3390/machines12090653