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Abstract: This research focuses on biological systems with sexual reproduction in which female and
male individuals coexist together, forming female–male couples with the purpose of procreation. The
couples can originate new females and males according to a certain probability law. Consequently,
in this type of biological systems, two biological phases are involved: a mating phase in which the
couples are formed, and a reproduction phase in which the couples, independently of the others,
originate new offspring of both sexes. Due to several environmental factors of a random nature, these
phases usually develop over time in a non-predictable (random) environment, frequently influenced
by the numbers of females and males in the population and by the number of couples participating in
the reproduction phase. In order to investigate the probabilistic evolution of these biological systems,
in previous papers, by using a methodology based on branching processes, we had introduced
a new class of two-sex mathematical models. Some probabilistic properties and limiting results
were then established. Additionally, under a non-parametric statistical framework, namely, not
assuming to have known the functional form of the offspring law, estimates for the main parameters
affecting the reproduction phase were determined. We now continue this research line focusing the
attention on the estimation of such reproductive parameters under a parametric statistical setting.
In fact, we consider offspring probability laws belonging to the family of bivariate power series
distributions. This general family includes the main probability distributions used to describe the
offspring dynamic in biological populations with sexual reproduction. Under this parametric context,
we propose accurate estimates for the parameters involved in the reproduction phase. With the aim of
assessing the quality of the proposed estimates, we also determined optimal credibility intervals. For
these purposes, we apply the Bayesian estimation methodology. As an illustration of the methodology
developed, we present a simulated study about the demographic dynamics of Labord’s chameleon
populations, where a sensitivity analysis on the prior density is included.

Keywords: mathematical modeling; dynamical systems; branching processes; two-sex processes;
parametric inference; bivariate power series distribution family; Bayesian estimation methodology

MSC: 60J80; 60J85; 62M20

1. Introduction

An issue that has aroused great interest in the scientific literature has been the math-
ematical modeling of dynamical systems formed by individuals of the same nature that
coexist together. Usually, such systems evolve over time in a non-predictable environ-
ment. Hence, deterministic mathematical models are not appropriated to describe their
demographic dynamics. Some methodologies for the modeling of dynamical systems, such
as procedures based on population viability analysis, are used in conservation biology
(see, e.g., refs. [1,2]) or procedures concerning compartmental modeling, applied in epi-
demiology, physiology, pharmacology, and related sciences (see, e.g., refs. [3,4]) require
information about mortality rates, growth rates, environmental variables, etc. In prac-
tice, such information is difficult to obtain. Consequently, these methodologies are not
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usually feasible to apply. Models based on other mathematical methods have not been
sufficiently developed.

We have considered the mathematical approximation provided by the branching
process theory. This theory investigates stochastic models to describe the evolution over
time of systems whose components, after a certain life period, reproduce and die in such
a way that transitions from one state to another of the system are made according to
probability laws. Branching processes are simple to analyze and have wide applicability as
mathematical models for a great variety of phenomena. They particularly play a crucial role
in studies of the dynamics of biological systems. For theoretical concepts, methodological
results, and interesting applications concerning branching processes, we refer the reader to
some classical monographs; see, e.g., refs. [5–7].

In particular, multi-type branching processes are mathematical models describing
the dynamics of populations where several types of individuals coexist together; see, e.g.,
ref. [8]. Migratory phenomena in multi-type branching processes were first considered
in ref. [9]. From then on, these special processes have been treated by various authors in
very different frameworks. In fact, branching processes with immigration as models of
two-type cell populations in vivo were investigated in refs. [10,11]. In a genetic setting,
see, e.g., refs. [12,13]; the spacial dispersion of a neutral allele has been described through
multi-type branching processes in which the corresponding types represent colonies among
which individuals can migrate. By considering two-type branching processes in random
environments, optimal population growth was studied when migrations between habitats
occurred in ref. [14] and related papers [15,16]. Multi-type branching processes with
immigration in a random environment were applied as models for a class of polling
systems in ref. [17]. See also the contributions, based on branching processes, provided in
refs. [18,19] in nuclear physics and complex contagion adoption dynamics, respectively,
the survey [20] and the references cited therein.

In this work, let us focus our attention on two-sex biological systems with sexual
reproduction in which females and males co-exist with the purpose of procreation. In this
type of systems, two important biological phases must be considered: a mating phase in
which female–male couples are formed and a reproduction phase in which each couple,
independently of the others, produces new female and male individuals. It should be noted
that the inclusion of the mating phase introduces a mathematical complexity not previously
considered in modeling through multi-type branching processes. With the intention of
providing solutions to this added mathematical complexity, several two-sex branching
processes have been introduced; see, for details, the surveys [21,22]. Usually, due to environ-
mental factors of a random nature, mating and reproduction take place in a non-predictable
environment. In fact, we will assume that both phases develop over time in a variable
environment affected by the number of couples formed in the population. In a previous
paper (see ref. [23]), in order to describe the evolution of this type of biological systems,
a class of discrete-time two-sex branching processes was introduced and some probabilistic
results were then established. Furthermore, in ref. [24], under a non-parametric statistical
context, estimates were proposed for the main reproductive parameters involved in the
mathematical model. The motivation behind the present work is to continue this research
line focusing the interest on statistical inference under a parametric framework. More
specifically, we will consider offspring probability laws belonging to the family of bivari-
ate power series distributions. This family of distributions includes the most important
offspring probability laws usually considered in the modeling of biological populations
with sexual reproduction (bivariate Poisson, bivariate geometric, trinomial, or negative
trinomial distributions). As innovative scientific contributions, by considering a Bayesian
perspective, we determine estimators for the main probabilistic parameters involved in
offspring laws belonging to the aforementioned family of probability distributions, and we
also study their accuracy. These parameters play a crucial role in the reproductive phase of
the biological species with sexual reproduction, and consequently, they have transcendental
importance in their demographic dynamics. In particular, the results obtained will be of
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interest in modeling the population dynamics of semelparous biological species, namely,
species characterized by a single reproductive episode before death.

This work is organized as follows: In Section 2, we mathematically describe and
intuitively interpret the two-sex probability model in a random environment considered.
Section 3 is devoted to presenting the parametric estimation methodology developed with
the aim of approximating the main reproductive parameters involved in the probability
model. For this purpose, the necessary information regarding the bivariate power series
distribution family is provided. By using the Bayesian estimation methodology, we deter-
mine estimates for such parameters and also the corresponding 95% optimal credibility
intervals. To illustrate the proposed statistical methodology, a simulated study about
the demographic dynamic of Labord’s chameleon populations is presented in Section 4.
Concluding remarks and some directions for research are given in Section 5.

2. Probability Model

Let us consider two-sex biological systems (populations) where mating and reproduc-
tion are developed in a non-predictable environment influenced by the number of couples
formed in the population. With the aim of describing the probabilistic evolution over time
of this type of biological systems, in ref. [23] was introduced a class of discrete-time two-sex
branching processes defined through the stochastic sequences {Zn}∞

n=0 and {(Fn, Mn)}∞
n=1,

where Zn, Fn, and Mn are random variables representing, respectively, the numbers of
couples, females, and males, in the population at time (generation) n.

Initially, we assume a positive number of couples in the population, Z0 = k0 > 0.
The two-sex probability model is then defined as follows:

(Fn+1, Mn+1) :=
ϕn,Zn

∑
i=1

(
Fϕn,Zn

n,i , Mϕn,Zn
n,i

)
, Zn+1 := LZn(Fn+1, Mn+1), n ∈ N (1)

where the empty sum is assumed to be (0, 0) and N denotes the non-negative integers.
In this stochastic model, given that at the n-th generation Zn = k, the functions Lk and the
random variables ϕn,k are involved,

1. Lk is a deterministic function, defined on N2 and taking values in N, referred to as
mating function. Its role is to determine the number of female–male couples formed.
It is a function assumed to be non-decreasing in its two arguments such that

Lk(0, m) = Lk( f , 0) = 0, f , m ∈ N.

2. ϕn,k is a non-negative integer-valued random variable. Its role is to determine the
number of couples that will participate in the reproduction phase (called progenitor
couples) at the n-th generation. For each k ≥ 1 fixed, the variables ϕn,k, n ∈ N, are
assumed to be independent and identically distributed (i.i.d.). For each n ∈ N, it is
also considered that P(ϕn,0 = 0) = 1 and P(ϕn,k = 0) < 1, k ≥ 1.
Assume that ϕn,k = j; then independently of n(Fj

n,i, Mj
n,i) are i.i.d. random vectors,

with Fj
n,i and Mj

n,i representing, respectively, the numbers of female and male individu-
als descending from the i-th progenitor couple at generation n. Simply, the probability
law of (Fj

n,i, Mj
n,i) will be denoted as {pj

f ,m}( f ,m)∈Sj
, Sj ⊂ N2, where

pj
f ,m := P

(
Fj

0,1 = f , Mj
0,1 = m

)
It is referred to as the offspring distribution when j progenitor couples take part in
the reproductive phase. Clearly, p0

0,0 = 1.

Remark 1. Sequence {(Fn, Mn)}∞
n=1, defined in (1), is a stochastic process representing the

evolution of the numbers of females and males in the population in an environment that changes,
randomly in time, influenced by the number of couples formed in the population. Indeed, if at time n,



Axioms 2024, 13, 883 4 of 17

we have k couples formed in the population, then the mating function and the offspring distribution
governing the mating and reproduction phases are given by Lk and {pϕn,k

f ,m}( f ,m)∈Sϕn,k
, respectively.

Furthermore, in this two-sex model, the immigration/emigration of couples in the population is also
considered. In fact, when ϕn,k > k, then ϕn,k − k immigrant couples come to the population from
external populations and they take part in the reproduction phase. When ϕn,k < k, then k − ϕn,k
couples leave the population and they do not take part in the reproductive phase.

Remark 2. In addition to its theoretical interest, model (1) includes as particular cases the math-
ematical models investigated in refs. [25–28]. This class of two-sex processes has also interesting
applications. In fact, as mentioned in the previous section, it can be applied as a mathematical
model to describe the probabilistic evolution of semelparous species. Semelparity, sometimes called
big-bang reproduction, occurs in very diverse biological species, including amphibians (e.g., Hyla
frogs), arachnids (e.g., Pardosa lycosidae spider, Australian redback spider, desert spider, or black
widow spider), fish (e.g., Pacific salmon, or sockeye salmon), insects (e.g., some butterflies, cicadas,
or mayflies), mammals (e.g., some didelphids or dasyurid marsupials), mollusks (some squids or
octopuses), reptiles (e.g., Labord’s chameleon, or some lizards), etc. See ref. [29].

3. Estimation of Parameters

Let us consider the stochastic model described in (1). Clearly, the offspring laws
will play a crucial role in the dynamics of this class of two-sex systems. Hence, it is of
great methodological and practical importance to determine close approximations for
the main parameters involved in such offspring laws. In ref. [24], with no assumption
about the functional form of the offspring law (non-parametric setting), estimates for such
parameters were determined. Now, in this Section, with the purpose of obtaining more
accurate estimates, we will investigate this issue from a parametric point of view. Simply,
we will consider a positive number r > 1 of offspring distributions as follows:

Pt := {pt
f ,m}( f ,m)∈St

, t = 1, . . . , r (2)

In fact, let C1, . . . , Cr be a partition of N+ (set of positive integers), namely,

r⋃
t=1

Ct = N+, Ct ∩ Ct′ = ∅, t, t′ ∈ {1, . . . , r}, t ̸= t′

Given that at time n, Zn = k ≥ 1, the corresponding offspring distribution is then
determined by considering the following expression:

r

∑
t=1

Pt · ICt(ϕn,k)

where ICt(ϕn,k) = 1 if ϕn,k ∈ Ct and 0 otherwise.
From now on, we will assume that Pt, t = 1, . . . , r, belongs to the bivariate power

series distribution family. This well-known parametric family of distributions includes,
as particular cases, the most usual probability laws considered in biological reproductive
phenomena. The section is organized as follows: First, in Section 3.1, we provide general
information about such a family of probability distributions. Then, in Section 3.2, by using
the Bayesian estimation methodology, we determine accurate approximations for the
main parameters involved in the reproductive phase. Finally, in Section 3.3, with the
purpose of evaluating the quality of the estimates, we derive optimal credibility sets for
such parameters.

3.1. Bivariate Power Series Distribution Family

Assume that the offspring distributions given in (2) belong to the bivariate power
series distribution family. Hence, pt

f ,m can be expressed in the following functional form:
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pt
f ,m = pt

f ,m
(
θt

1, θt
2
)
=
(

At
(
θt

1, θt
2
))−1at

f ,m
(
θt

1
) f (

θt
2
)m, (3)

At
(
θt

1, θt
2
)
= ∑

( f ,m)∈St

at
f ,m
(
θt

1
) f (

θt
2
)m,

(
θt

1, θt
2
)
∈ Θt ⊆ R2,

Θt =
{(

θt
1, θt

2
)

: at
f ,m
(
θt

1
) f (

θt
2
)m ≥ 0, At

(
θt

1, θt
2
)
< ∞

}
where, for t ∈ {1, . . . , r},

(
θt

1, θt
2
)

are vectors of unknown parameters and at
f ,m are functions

of f and m.
Let µt

1 := E
[

Ft
0,1

]
and µt

2 := E
[

Mt
0,1

]
be, respectively, the expected numbers of females

and males produced per couple when Pt is the offspring distribution, i.e., when the number
of progenitor couples belongs to Ct. Additionally, let

σt
11 := Var

[
Ft

0,1
]
, σt

22 := Var
[
Mt

0,1
]
, σt

12 = σt
21 := Cov

[
Ft

0,1, Mt
0,1
]
, t = 1, . . . , r

be the corresponding variances and covariance associated with Pt. From (3), it is easy to
check the following:

µt
i := µt

i
(
θt

1, θt
2
)
= θt

i
∂
[
log
(

At(θt
1, θt

2)
)]

∂θt
i

, i = 1, 2. (4)

σt
ik := σt

ik
(
θt

1, θt
2
)
= θt

i
∂
[
µt

k
(
θt

1, θt
2
)]

∂θt
i

, i, k = 1, 2. (5)

Remark 3. Interesting properties about this family of distributions can be checked in ref. [30].
In particular, it is verified that Pt is completely determined by the parameters given in (4) and (5).

3.2. Bayesian Estimation

Assume the observation, up to a certain generation where g > 1 is reached, of the
variables Zn, ϕn,Zn , and (Fn+1, Mn+1). Therefore, we will have available the following data
sample:

Sg := {kn, jn, ( fn+1, mn+1), n = 0, . . . , g}

where kn, jn, and ( fn+1, mn+1) denote, respectively, the observed values for Zn, ϕn,kn , and
(Fn+1, Mn+1), n = 0, . . . , g. From this sample information, we will determine estimates for
the parameters involved in the corresponding observed offspring distributions. We will
study this inferential question from the Bayesian perspective.

Suppose that jn ∈ Ctn , tn ∈ {1, . . . , r}. Taking into account that P(Z0 = k0) = 1,
we deduce the following:

P(Zn = kn, ϕn,kn = jn, (Fn+1, Mn+1) = ( fn+1, mn+1), n = 0, . . . , g) =

g

∏
n=0

P

(
jn

∑
i=1

(
Ftn

n,i, Mtn
n,i

)
= ( fn+1, mn+1)

)
(6)

where we remember that kn = Lkn−1( fn, mn), n = 1, . . . , g. Now, from (3),

P

(
jn

∑
i=1

(
Ftn

n,i, Mtn
n,i

)
= ( fn+1, mn+1)

)
∝
(

Atn(θ
tn
1 , θtn

2 )
)−jn

(θtn
1 ) fn+1(θtn

2 )mn+1 . (7)

Let us define the following:

n∗
t :=

g

∑
n=0

It(jn), t = 1, . . . , r
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with It(jn) = 1 if jn ∈ Ct and 0 otherwise. Thus, n∗
t represents the number of times that

Pt has intervened as offspring distribution in the reproduction process. Clearly, from the
sample Sg, it will only be possible to estimate vectors (θt

1, θt
2) provided that n∗

t ≥ 1. Let us
introduce the following set:

N(Sg) := {t ∈ {1, . . . , r} such that n∗
t ≥ 1}

If we denote by L the corresponding likelihood function, then from (6) and (7), we derive
the following:

L
(
θt

1, θt
2, t ∈ N(Sg) | Sg

)
∝ ∏

t∈N(Sg)

(
At(θ

t
1, θt

2)
)−j∗t (θt

1)
f ∗t (θt

2)
m∗

t (8)

where, for t ∈ N(Sg),

j∗t := ∑
{n∈{0,...,g}: tn=t}

jn, f ∗t := ∑
{n∈{0,...,g}: tn=t}

fn+1, m∗
t := ∑

{n∈{0,...,g}: tn=t}
mn+1

The Bayesian methodology requires, as a starting point, expressing the beliefs about
the population by using an appropriate prior density on the space Θ(Sg) := ∏

t∈N(Sg)
Θt.

Now, taking into account expression (8), an appropriate conjugate class of prior densities,
flexible enough to describe several prior beliefs (see ref. [6], page 140), is given by the
following:

π
(
θt

1, θt
2, t ∈ N(Sg)

)
= ∏

t∈N(Sg)

δ−1
α0t ,α1t ,α2t

(
At(θ

t
1, θt

2)
)−α0t (θt

1)
α1t (θt

2)
α2t (9)

where α0t, α1t, and α2t are real constants such that

δα0t ,α1t ,α2t =
∫

Θt

(
At(θ

t
1, θt

2)
)−α0t (θt

1)
α1t (θt

2)
α2t dθt

1 dθt
2 < ∞. (10)

From (8) and (9), we derive as posterior density on Θ(Sg) the following:

π
(
θt

1, θt
2, t ∈ N(Sg) | Sg

)
= ∏

t∈N(Sg)

δ−1
α∗0t ,α

∗
1t ,α

∗
2t

(
At(θ

t
1, θt

2)
)−α∗0t (θt

1)
α∗1t (θt

2)
α∗2t

α∗0t = α0t + j∗t , α∗1t = α1t + f ∗t , α∗2t = α2t + m∗
t .

Remark 4. Note that, given a certain parameter ξt := ξ(θt
1, θt

2), by considering a squared error
loss function and provided that n∗

t ≥ 1, we deduce the following Bayes estimator based on Sg:

ξ̂t =
∫

Θt
ξ(θt

1, θt
2)π(θt

1, θt
2 | Sg)dθt

1dθt
2 (11)

Taking into account Remark 4, in order to determine Bayes estimators for µt
i and

σt
ik, i, k = 1, 2, based on Sg, we will assume a squared error loss function and we will

consider the conjugate class of prior densities on Θ(Sg) given in (9). Therefore, by taking
in expression (11),

ξ(θt
1, θt

2) = µt
i(θ

t
1, θt

2) = ∑
(s1,s2)∈St

si
(

At
(
θt

1, θt
2
))−1at

s1,s2

(
θt

1
)s1(θt

2
)s2 , i = 1, 2

we will obtain the following expressions for the Bayes estimates about the expected numbers
of females and males per couple concerning the offspring distribution Pt:
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µ̂t
i = ∑

(s1,s2)∈St

siat
s1,s2

δ−1
α∗0t ,α

∗
1t ,α

∗
2t

∫
Θt

(
At(θ

t
1, θt

2)
)−(α∗0t+1)

(θt
1)

α∗1t+s1 (θt
2)

α∗2t+s2 dθt
1dθt

2

= ∑
(s1,s2)∈St

siat
s1,s2

δ−1
α∗0t ,α

∗
1t ,α

∗
2t

δα∗0t+1,α∗1t+s1,α∗2t+s2 , i = 1, 2

Analogously, for i, k = 1, 2, by taking in (11),

ξ(θt
1, θt

2) = σt
ik(θ

t
1, θt

2) = ∑
(s1,s2)∈St

sisk
(

At
(
θt

1, θt
2
))−1at

s1,s2

(
θt

1
)s1(θt

2
)s2 − µt

i(θ
t
1, θt

2)µ
t
k(θ

t
1, θt

2)

we will derive the Bayes estimates for the variances and covariance concerning the offspring
distribution Pt as follows:

σ̂t
ik = ∑

(s1,s2)∈St

siskat
s1,s2

δ−1
α∗0t ,α

∗
1t ,α

∗
2t

δα∗0t+1,α∗1t+s1,α∗2t+s2 − ∑
(r1,r2)∈St

sirk∆t
s1,s2;r1,r2

, i, k, t = 1, 2

∆t
s1,s2;r1,r2

:= at
s1,s2

at
r1,r2

δ−1
α∗0t ,α

∗
1t ,α

∗
2t

δα∗0t+2,α∗1t+s1+r1,α∗2tj+s2+r2.

Remark 5. With the purpose of explicitly determining the previous Bayes estimates, it will be
necessary to compute δα0t ,α1t ,α2t through the integral given in (10). Sometimes (see, e.g., the
illustrative study presented in the next section), it will be possible to analytically calculate that
integral. When an analytical solution is not possible, then the computation of this integral must be
performed by numerical or approximated methods. For this purpose, the so-called Laplace method
provides reasonable approximations; see ref. [31].

3.3. Optimal Credibility Sets

From the posterior distributions π(θt
1, θt

2 | Sg), t ∈ N(Sg), we can determine the
highest posterior density (HPD) credibility sets as follows:

It(c) = {(θt
1, θt

2) : π(θt
1, θt

2 | Sg) ≥ c}

where, given a credibility coefficient 1 − α, the constant c is chosen such that∫
It(c)

π(θt
1, θt

2 | Sg)dθt
1dθt

2 = 1 − α.

Hence, by using the posterior densities of µt
i and σt

ik, i, k = 1, 2, we can derive the
corresponding HPD credibility sets. It is not easy to obtain closed expressions for such
posterior densities. Next, we propose a procedure, based on the Monte Carlo method,
to obtain accurate approximations. The posterior densities π(µt

i | Sg), π(σt
ik | Sg), i, k = 1, 2,

and t ∈ N(Sg) can be approximated by using the following computational algorithm:

1. To generate a sufficiently large number of values for (θt
1, θt

2) from the posterior density
π(θt

1, θt
2 | Sg);

2. To compute, using Equations (4) and (5), the corresponding values of µt
i and σt

ik,
i, k = 1, 2;

3. To estimate the posterior densities of µt
i and σt

ik, i, k = 1, 2, with the data simulated in
step 2. To this end, Gaussian kernel estimation can be used; see e.g., [32].

Remark 6. The prior density is an element that could affect the results of the algorithm. In order to
check this possibility, it would be advisable to perform a sensitivity analysis.

4. Simulated Study

We now present an application of model (1) to the dynamics of Labord’s chameleon
populations. Labord’s chameleon (Furcifer labordi) is a native reptile of southwestern
Madagascar where it usually lives in dry deciduous forests. It is considered the shortest-
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lived tetrapod animal. In fact, it spends most of its life in the developing embryo phase
(8 to 9 months), and it experiences rapid growth. It has a short lifespan (4 to 5 months),
reaching its sexual maturity at an early age (2 months).

This species of chameleon constitutes a particular example of semelparous life (pro-
genitors die shortly after reproducing). Their mating and reproductive phases, highly
conditioned by the number of female–male couples in the habitat, must adapt to the tem-
poral limitations, existing an intense competition and fighting between males. It has been
deduced that they possess a wide range of different mating systems, generally polygamous
mating. Each male can mate with more than one female, and the females can mate with
different males during the same ovarian cycle (the male color change could affect the choice
of partner). The female lays a clutch of eggs, and the progenitor male and female die. Some
studies reported that females can lay between six and eight eggs. Due to various random
factors, mainly predators and environmental conditions, a high percentage of eggs will not
hatch. For more information about this interesting biological species, see, e.g., ref. [33].

There are no rigorous studies in the specialized scientific literature about their social
organization and also about their mating and reproduction strategies. The few studies
that have been carried out are based on monitoring experiments through radio telemetry;
see refs. [34,35]. From the information recorded, it has been detected that females exhibit
high habitat fidelity, moving small cumulative and linear distances with low dispersion
rates. Males move greater distances, in a less predictable manner, with higher dispersal
rates than females. In these experimental studies, some information on the occurrence of
reproductive events is given. However, no information is provided about the estimation of
the main parameters affecting the reproductive phase. The computation of such estimates
is crucial to understanding the demographic dynamics of these species. The application of
the estimation methodology considered in the previous section could provide reasonable
approximations for such parameters.

Unfortunately, there are no real data available on the demographic dynamics of
this reptile species. Next, taking into account the singular characteristics of this biological
species, a simulated study is presented where mating and reproduction phases are assumed
to be close to reality. In fact, let us consider a biological system formed by Labord’s
chameleons. Given that, at time n, we have Zn = k couples in the population, let us assume
the following population dynamics:

1. Mating phase.
We consider the sequence of mating functions {Lk}∞

k=0 where, for ( f , m) ∈ N2,

Lk( f , m) := min{ f , m}I[1,K1]
(k) + f min{1, m}I(K1,∞)(k)

with K1 representing an appropriate threshold for the number of couples formed in
the population.

2. Reproduction phase.
We consider the sequence of random variables {ϕ1,k}∞

k=0 where P(ϕ1,0 = 0) = 1 and

ϕ1,k := kI[K2,K3]
(k) + ϕI{(−∞,K2)∪(K3,∞)}(k), k ≥ 1

with K2 and K3 being positive integers (K2 < K3) and ϕ denoting a random variable
distributed according to a Poisson law with the mean λ := (K2 + K3)/2. Taking into
account the number of progenitor couples, determined by the random variable ϕ1,k,
involved in the reproduction r = 2, offspring distributions are considered as follows:

P1 · I[0,k](ϕ1,k) + P2 · I(k,∞)(ϕ1,k)

where, for t = 1, 2, Pt = {pt
f ,m}( f ,m)∈St

is the trinomial probability law as follows:

pt
f ,m :=

Nt!
f !m!(Nt − f − m)!

(pt
1)

f (pt
2)

m(1 − pt
1 − pt

2)
Nt− f−m (12)
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St := {( f , m) ∈ N2 : f + m ≤ Nt}, pt
1, pt

2 ∈ (0, 1), pt
1 + pt

2 < 1.

Remark 7. Thus, we are considering a biological population with sexual reproduction that develops
in an environment that, influenced by the number of couples formed in the population, changes
over time. In fact, if, in a certain generation, there have been formed k couples, then, if k ≤ K1, the
mating function is Lk( f , m) = min{ f , m} (mating with perfect fidelity), and if k > K1, then it is
Lk( f , m) = f min{1, m} (completely promiscuous mating). According to the first mating function,
the females and males practice fidelity (they are allowed to have at most one mate). According to
the second mating function, in each generation, a dominant male mates with each female (the other
males do not participate in the mating process). Moreover, the number of progenitor couples in such
a generation is randomly determined through the random variable ϕ1,k. Notice that if k < K2, then
using the fact that λ > k, the immigration of couples is promoted. On the contrary, if k > K3, then
using the fact that λ < k, the emigration of couples is promoted. The progenitor couples produce
new female and male individuals according to a trinomial probability distribution, whose parameters
Nt, pt

1, and pt
2 change depending on ϕ1,k ≤ k or ϕ1,k > k.

Note that that the expression for the offspring distribution given in (12) does not fit
the functional form given in (3) for the bivariate power series distribution family. Making
the following change in the parameters:

θt
i := pt

i(1 − pt
1 − pt

2)
−1, Θt := (0, ∞)2, i, t = 1, 2. (13)

it is easy to verify that the distribution given in (12), written in terms of the new parameters,
has the following expression:

pt
f ,m = pt

f ,m(θ
t
1, θt

2) =
Nt!

f !m!(Nt − f − m)!
(1 + θt

1 + θt
2)

−Nt(θt
1)

f (θt
2)

m

which is a particular case of (3) where

at
f ,m :=

Nt!
f !m!(Nt − f − m)!

, At(θ
t
1, θt

2) := (1 + θt
1 + θt

2)
Nt , t = 1, 2.

Hence, the prior density proposed in (9) will take the following form:

π
(

θ1
1 , θ1

2 , θ2
1 , θ2

2

)
=

2

∏
t=1

δ−1
α0t ,α1t ,α2t

(1 + θt
1 + θt

2)
−Ntα0t(θt

1)
α1t(θt

2)
α2t (14)

In this case, provided that α0t > N−1
t (α1t + α2t + 2), αit > −1, t, i = 1, 2, the constants

δα0t ,α1t ,α2t can be calculated analytically as follows:

δα0t ,α1t ,α2t =
∫ ∞

0

∫ ∞

0
(1 + θt

1 + θt
2)

−Ntα0t(θt
1)

α1t(θt
2)

α2t dθt
1dθt

2

=
Γ(α1t + 1)Γ(α2t + 1)Γ(Ntα0t − α1t − α2t − 2)

Γ(Ntα0t)

where, for z > 0, Γ(z) :=
∫ ∞

0 tz−1e−tdt denotes the classical Gamma function.
On the other hand, provided that n∗

t > 1, t = 1, 2, according to the methodology
developed in the previous section, the corresponding posterior density in terms of θt

1, θt
2,

and t = 1, 2 is given by the following:

π
(

θ1
1 , θ1

2 , θ2
1 , θ2

2 | Sg

)
=

2

∏
t=1

Γ(Ntα
∗
0t)(1 + θt

1 + θt
2)

−Ntα
∗
0t(θt

1)
α∗1t(θt

2)
α∗2t

Γ(α∗1t + 1)Γ(α∗2t + 1)Γ(Ntα∗0t − α∗1t − α∗2t − 2)
(15)
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where we remember that, for t ∈ {1, 2},

j∗t := ∑
{n∈{0,...,g}: tn=t}

jn, f ∗t := ∑
{n∈{0,...,g}: tn=t}

fn+1, m∗
t := ∑

{n∈{0,...,g}: tn=t}
mn+1.

and α∗0t = α0t + j∗t , α∗1t = α1t + f ∗t , α∗2t = α2t + m∗
t .

Clearly, (15) can be expressed in terms of the original parameters pt
1 and pt

2. To this
end, we have to undo the transformation (13). Now, in the Bayesian framework, the pa-
rameters are the random variables associated with the densities, so it will be necessary
to apply the well-known change of variable theorem. Taking into account that the Jacobian
of transformation (13) is equal to (1 − pt

1 − pt
2)

−3, we deduce that the posterior density,
in terms of pt

1, pt
2, and t = 1, 2, is given by the following:

π
(

p1
1, p1

2, p2
1, p2

2 | Sg

)
=

2

∏
t=1

Γ(Ntα
∗
0t)(1 − pt

1 − pt
2)

Ntα
∗
0t−α∗1t−α∗2t−3(pt

1)
α∗1t(pt

2)
α∗2t

Γ(α∗1t + 1)Γ(α∗2t + 1)Γ(Ntα∗0t − α∗1t − α∗2t − 2)

which is the product of density functions of two Dirichlet probability distributions with the
parameters α∗1t + 1, α∗2t + 1 and Ntα

∗
0t − α∗1t − α∗2t − 2, t = 1, 2.

Remark 8. Applying a similar reasoning to the prior density (14), we deduce that the prior density
expressed in terms of pt

1, pt
2, and t = 1, 2 is also a product of independent Dirichlet probability

distributions with the parameters α1t + 1, α2t + 1, and Ntα0t − α1t − α2t − 2, t = 1, 2. Though this
fact does not affect to the inference performed in this model, it does allow us to express our beliefs on
the behavior about the biological species under consideration in the values of the hyperparameters
α0t, α1t, and α2t, t = 1, 2.

On the basis of the moments of a Dirichlet distribution (see, e.g., ref. [36], page 488),
we then determine the following Bayes estimates for the means, variances, and covariance
of the reproductions laws:

µ̂t
i = (α∗0t)

−1(α∗it + 1), i = 1, 2,
σ̂t

ii = (α∗it + 1)(Ntα
∗
0t − α∗it − 1)(α∗0t(Ntα

∗
0t + 1))−1, i = 1, 2,

σ̂t
12 = −(α∗1t + 1)(α∗2t + 1)(α∗0t(Ntα

∗
0t + 1))−1.

Moreover, in order to compute optimal credibility sets (HPD intervals) for these pa-
rameters, we will use the posterior density of (pt

1, pt
2), that is, the Dirichlet distribution with

the parameters α∗1t + 1, α∗2t + 1, and Ntα
∗
0t − α∗1t − α∗2t − 2. Consequently, the corresponding

marginal distribution of pt
i , i = 1, 2 is a Beta law with the parameters α∗it + 1 and Ntα

∗
0t − α∗it.

Using this fact, and the algorithm described in Section 3.3, we can compute the HPD
intervals for µt

i , σt
ii, and σt

12, i, t = 1, 2.
Under these conditions, considering initially Z0 = 50 couples in the habitat, we have

performed a simulation for Labord’s chameleon population previously defined. As illus-
tration, we have taken the following values for the constants included in the mating and
reproduction phases considered in the two-sex model:

K1 = 50, K2 = 40, K3 = 60, N1 = N2 = 2, p1
1 = p1

2 = 0.45, p2
1 = p2

2 = 0.35

Consequently,

µ1
1 = µ1

2 = 0.9, σ1
11 = σ1

22 = 0.495, σ1
12 = −0.405,

µ2
1 = µ2

2 = 0.7, σ2
11 = σ2

22 = 0.455, σ2
12 = −0.245

Remark 9. The parameters used for the simulation have been chosen according to the information
provided in the above-mentioned studies on Labord’s chameleon (see refs. [34,35]). Though, in these
studies, no real data were collected in a systematic way, on the basis of such information, we can
deduce some suitable values that allow us to carry out the simulation.
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We have simulated g = 50 generations for such a two-sex Labord’s chameleon popula-
tion. The results obtained in the simulation carried out are presented in Table 1. In fact,

• In the initial generation, we have k0 = 50 couples.
• Since k0 = 50 ∈ [40, 60], we derive ϕ0,50 = 50 progenitor couples.
• Consequently, taking into account that ϕ0,50 ≤ 50, the underlying offspring distri-

bution will be P1, namely, the trinomial distribution with the parameters N1
1 = 2,

p1
1 = p1

2 = 0.45.
• From that trinomial distribution are originated F1 = 45 females and M1 = 45 males

(first generation).
• Then, because k0 = 50 ∈ [1, 50], according to the mating function L50(45, 45) =

min{45, 45} = 45, we deduce that Z1 = 45 couples are formed in the first generation.
• Since Z1 = 45 ∈ [40, 60], we derive ϕ1,45 = 45 progenitor couples.
• Thus, the underlying offspring distribution is again P1; from the trinomial with the

parameters N1
1 = 2, p1

1 = p1
2 = 0.45 are generated F2 = 47 females and M2 = 40 males

(second generation), and so on.

Table 1. Observed numbers of females (Fi), males (Mi), couples (Zi), progenitor couples (ϕi,Zi ),
and the offspring distribution (Pi) in the successive generations for a sample trajectory starting with
Z0 = 50 couples.

Generation Fi Mi Zi ϕi,Zi Pi

0 0 0 50 50 P1

1 45 45 45 45 P1

2 47 40 40 40 P1

3 31 42 31 51 P1

4 50 48 48 48 P2

5 31 29 29 59 P1

6 53 57 53 53 P2

7 39 28 39 57 P1

8 52 43 43 43 P2

.... ....... ....... ....... ..... ...
47 50 44 44 44 P2

48 27 30 27 48 P1

49 51 42 42 42 P2

50 38 26 26 55 P1

From such a simulation, we have the following:

• N(Sg) = {1, 2}.
• We obtain that n∗

1 = 18; i.e., in 18 generations, P1 has been the underlying offspring
distribution, namely, in the generations, as follows:

{0, 1–3, 5, 7, 9, 11, 17, 19, 25, 27, 29, 31, 33, 35, 46, 48}.

• We obtain that n∗
2 = 32; i.e., in 32 generations, P2 has been the underlying offspring

distribution, namely, in the generations, as follows:

{4, 6, 8, 10, 12–16, 18, 20–24, 26, 28, 30, 32, 34, 36–45, 47, 49}.

Figure 1 shows the evolution, over successive generations, concerning the number
of females and males (left plot) and about the number of couples and progenitor couples
(right plot).
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Figure 1. Evolution of the numbers of females (left plot, black line) and males (left plot, red line),
couples (right plot, black line), and progenitor couples (right plot, red line).

With the purpose of determining the Bayes estimates, two prior distributions of the
form (14) have been chosen. According to Remark 8, it is not difficult to associate the hyper-
parameters with different beliefs about the reproductive behaviors of Labord’s chameleon.

(a) Non-informative prior. The values chosen for the parameters are

α01 = α02 = 1.5 , α11 = α21 = α12 = α22 = 0.

With these values, (pt
1, pt

2), t = 1, 2 have prior distribution Dirichlet(1, 1, 1), that is, a
non-informative Dirichlet.

(b) Strong beliefs that underestimate the reproductive capacity. The values chosen for the
parameters are

α01 = α02 = 13.5 , α11 = α21 = α12 = α22 = 4.

With these values, (pt
1, pt

2), t = 1, 2 have prior distribution Dirichlet(5, 5, 15) with
marginal expected values of 0.2, i.e., smaller than the true values.

On the basis of these data, we have computed the estimations of the reproductive
parameters of our population. In Figure 2, we show the evolution of estimates and 95% HPD
intervals for the reproduction means of the two reproduction laws considered for Labord’s
chameleon, computed with both prior distributions. We can appreciate the accuracy of
estimations for both cases.

In order to numerically assess the accuracy of the proposed estimators for the pop-
ulation means, we include their true values jointly with their estimations and 95% HPD
intervals in Table 2. We have included the estimates and HPD intervals calculated in the
last generation where each reproduction law was observed.

Table 2. Estimations and 95% HPD intervals of µ1
1, µ1

2, µ2
1, and µ2

2 based on all the recorded data for
each one of the reproduction laws and for each prior distribution.

µ1
1 µ1

2 µ2
1 µ2

2

True values 0.9 0.9 0.7 0.7

Estimates (prior density (a)) 0.943 0.872 0.691 0.686

Estimates (prior density (b)) 0.935 0.865 0.689 0.683

95% HPD intervals (prior density (a)) 0.865 0.98 0.793 0.909 0.637 0.719 0.637 0.719

95% HPD intervals (prior density (b)) 0.867 0.97 0.794 0.905 0.638 0.715 0.633 0.717
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Figure 2. Evolution of estimations (solid lines with points) and 95% HPD intervals (dashed lines) of
µ1

1 (upper-left plot) and µ1
2 (upper-right plot) and µ2

1 (bottom-left plot) and µ2
2 (bottom-right plot).

Calculations made with prior (a) appear in black color, and those made with prior (b) appear in red
color. Horizontal black lines show the true values for the parameters.

Additionally, notice that

max
t=1,2

max
i=1,2

|µ̂t
i − µt

i | = 0.043 (prior density (a))

max
t=1,2

max
i=1,2

|µ̂t
i − µt

i | = 0.035 (prior density (b))

In Figure 3, we show the evolution of estimates and 95% HPD intervals for the repro-
duction variances and covariances of the two reproduction laws considered for Labord’s
chameleon, computed with both prior distributions. Notice again the acceptable accuracy
of the estimates for both prior distributions.

Again, in order to assess the accuracy of the proposed estimators for the population
variances and covariances, we include their actual values jointly with their estimations
and 95% HPD in Table 3. We have used the data until the last generation where each
reproduction law was observed.

In this case,

max
t=1,2

max
i=1,2

max
j=1,2

|σ̂t
ij − σt

ij| = 0.008 (prior density (a))

max
t=1,2

max
i=1,2

max
j=1,2

|σ̂t
ij − σt

ij| = 0.010 (prior density (b))
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Remark 10. The computing programs used to simulate data sets from the two-sex mathematical
model and to apply the proposed inferential methodology have been developed using the language
and environment for statistical computing and graphics R; see ref. [37].
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Figure 3. Evolution of estimations (solid lines with points) and 95% HPD intervals (dashed lines) of
σ1

11 (upper-left plot) and σ2
11 (upper-right plot), σ1

22 (middle-left plot) and σ2
22 (middle-right plot), and

σ1
12 (bottom-left plot) and σ2

12 (bottom-right plot). Calculations made with prior (a) appear in black
color, and those made with prior (b) appear in red color. Horizontal black lines show the true values
of the parameters.
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Table 3. Estimations and 95% HPD intervals of σt
ij, i, j, t = 1, 2 based on all the recorded data for each

one of the reproduction laws and for each prior distribution.

σ1
11 σ1

22 σ1
12

True values 0.495 0.495 −0.405

Estimates (prior density (a)) 0.498 0.492 −0.411

Estimates (prior density (b)) 0.498 0.491 −0.405

95% HPD intervals (prior density (a)) 0.493 0.500 0.482 0.496 −0.428 −0.399

95% HPD intervals (prior density (b)) 0.487 0.500 0.480 0.496 −0.424 −0.392

σ2
11 σ2

22 σ2
12

True values 0.455 0.455 −0.245

Estimates (prior density (a)) 0.452 0.450 −0.237

Estimates (prior density (b)) 0.451 0.450 −0.235

95% HPD intervals (prior density (a)) 0.433 0.461 0.432 0.459 −0.259 −0.228

95% HPD intervals (prior density (b)) 0.435 0.461 0.432 0.458 −0.250 −0.225

5. Conclusions

In this work, we have continued the research line, initiated in previous papers, about
the mathematical modeling of the probabilistic evolution over time experienced by two-sex
biological systems with sexual reproduction through branching processes. In this type
of two-sex systems, we must take into account two biological phases: a mating phase,
in which female–male couples are formed, and a reproduction phase, in which the couples
give rise to new female and male individuals. We have assumed the most realistic situation
in which both phases take place in a non-predictable environment. Specifically, mating and
reproduction take place in variable environments: the mating influenced by the number
of couples formed in the system and the reproduction affected by the number of couples
that participate in the reproductive parameters (progenitor couples). Actually, the number
of progenitor couples could be less or greater than the number of couples formed due,
respectively, to the emigration or immigration phenomena of couples. Additionally, it
could be equal to the number of couples due to situations in which there are no migratory
phenomena, or there are migratory phenomena but they do not affect the total number of
couples existing in the population. In the present work,

• By considering a parametric framework, we have focused the attention on statistical
inference about the main parameters affecting the reproduction phase. In fact, we have
assumed offspring probability distributions belonging to the power series distribution
family. This is a very general family of distributions, including, as particular cases,
the most frequently used offspring laws in the scientific literature concerning sexual
reproduction of biological species.

• We have considered the estimation of parameters under a Bayesian point of view,
determining reasonable approximations for the reproductive parameters.

• With the aim of evaluating the quality of the proposed estimates, we have also deter-
mined 95% HPD credibility intervals for the parameters under consideration. For this
purpose, we have proposed a computational algorithm, based on the Monte Carlo
method, to approximate the posterior densities.

• By using the language and environment for statistical computing and graphics R
(R-4.4.1.tar.gz), we have developed the necessary software for the simulation of the
two-sex probability model and for the practical application of the inferential method-
ology proposed throughout this work.

• By way of illustration, we have presented a simulated study contextualized in bio-
logical systems formed by Labord’s chameleons. Taking into account the singular
characteristics of this biological species, we have considered mating and reproduc-
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tion phases with a dynamic close to reality. In particular, the reproduction phase
has been modeled through trinomial probability distributions. Explicitly developing
the corresponding expressions for the posterior densities, we have obtained accurate
approximations for the reproductive parameters. We have also included a sensitivity
analysis about the prior density considered. This analysis has confirmed that the
proposed estimates do not experience any significant variation.

In brief, the research carried out provides, as a novel scientific contribution, the deter-
mination of reliable approximations from a Bayesian perspective for the main reproductive
parameters affecting the demographic evolution of species with sexual reproduction. This
issue, not sufficiently studied in the scientific literature, has been investigated in this work
by using a mathematical methodology based on the branching process theory. The results
derived have a potential impact and are of practical interest for mathematical modeling
about the dynamics of two-sex biological systems characterized by a single reproductive
episode before death (semelparous species).

Some possible directions for future research are to investigate methodological results
about the class of models considered in this research, for instance, results about the ex-
tinction probability, the time to extinction, or the asymptotic behavior of the system; to
determine inferential results for the parameters by using the moments, maximum likeli-
hood, or conditional least squared methods; or to investigate some possible extensions
of the two-sex probability model that make it applicable to iteroparous species. It is also
necessary to explore the applications of these models. Of special interest is the application
to the ecological problem concerning inhabiting or re-inhabiting habitats with biological
species in danger of extinction.
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