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Abstract: This article utilizes improved adaptive progressively Type-II censored data to estimate the
entropy of the inverse Weibull distribution. Rényi, q, and Shannon entropy measurements are used to
define entropy to achieve this objective. Both point and interval estimations of the entropy quantities
are investigated through the maximum likelihood and maximum product of spacing methods. Two
parametric bootstrap confidence intervals based on the two estimation techniques are also considered
for the various entropy measures. A Monte Carlo simulation study is conducted to investigate how
estimates behave at various sample sizes and different censoring schemes based on some statistical
measurements. The simulations demonstrate that, as anticipated, when the sample size grows, the
estimation accuracy also grows. Furthermore, they show that the estimated entropy measures get
closer to the actual entropy values when the censoring level decreases. For purposes of explanation,
two applications to actual datasets are taken into consideration. The results verified that the adaptive
or improved adaptive progressive censoring schemes give more information about data than the
conventional progressive censoring scheme in terms of minimum entropy measures.

Keywords: inverse Weibull distribution; Rényi entropy; Shannon entropy; maximum likelihood
estimation; maximum product of spacing estimation
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1. Introduction

Entropy is one of the most often used metrics for assessing the degree of uncertainty
regarding a random variable. It was first applied in physics, particularly in the context
of the second law of thermodynamics. Measuring entropy is crucial in many fields of
science, including statistics, physics, chemistry, economics, insurance, financial analysis,
and biological phenomena. Less information in a sample is referred to as possessing higher
entropy. Entropy was defined by Shannon [1] as a measure of information that provides
a quantifiable measure of uncertainty using the methods of probability and statistics.
This idea was strengthened by additional entropy measurements from various real-world
applications; for a comprehensive survey, see Amigó et al. [2]. Three of the most used
entropy metrics are the subject of this paper, namely, Rényi entropy (RE) by Rényi [3], the
q-entropy (QE) by Tsallis [4], and Shannon entropy (SE) by [1].

Suppose that X is a random variable with probability density function (PDF) g(y, Φ),
where Φ is the vector of the unknown parameters. Following that, the RE, QE, and SE of X
are defined, respectively, as:

Rp =
1

1− p
log
( ∫ ∞

−∞
[g(y; Φ)]pdy

)
, p ≥ 0, p 6= 1, (1)
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Qq =
1

q− 1

[
1−

∫ ∞

−∞
[g(y; Φ)]qdy

]
. q ≥ 0 q 6= 1, (2)

and

S = −
∫ ∞

−∞
g(y; Φ) log[g(y; Φ)]dy. (3)

In reality, both the entropy and Φ are unknown. Due to this, the estimation of the
parameters and entropy has received the most attention several research papers, including,
but not limited to, Wong and Chen [5], Baratpour et al. [6], Morabbi and Razmkhah [7], Abo-
Eleneen [8], Cramer and Bagh [9], Cho et al. [10], Hassan and Zaky [11], Bantan et al. [12],
and Okasha and Nassar [13]. In the next two subsections, some detailed descriptions of
preliminary concepts used in this study are presented.

1.1. Inverse Weibull Distribution and Its Entropy Indices

The first and foremost step that researchers must consider before thinking about
dealing with the unknown entropy and Φ is to assume a suitable probability (lifetime)
distribution and accordingly define the underlying PDF g(y, Φ) and the corresponding
cumulative distribution function (CDF). This study considers the inverse Weibull (IW)
distribution, which is a handy probability distribution to model various types of data,
including reliability and actuarial sciences data, because its hazard rate can be decreasing
or unimodal depending on the value of the shape parameter. The IW distribution was
considered by Keller [14] to model failures of mechanical components subject to degrada-
tion. Afterward, many researchers studied the IW distribution, including, but not limited
to, Calabria and Pulcini [15], Jiang et al. [16], Mahmoud et al. [17], Sultan [18], Kundu
and Howlader [19], Hassan et al. [20], Kumar and Kumar [21], and Al-Duais [22]. The
random variable Y follows the two-parameter IW distribution, denoted by IW(θ, λ), if the
corresponding PDF and CDF, are given by:

g(y; θ, λ) = λθy−(θ+1)e−λy−θ
, y ≥ 0, θ, λ > 0, (4)

and
G(y; θ, λ) = e−λy−θ

, y ≥ 0, θ, λ > 0, (5)

respectively, where θ > 0 is the shape parameter and λ > 0 is the rate parameter. From (1)
and (4), the RE of the random variable Y can be expressed as follows:

Rp = log
(

1
θ

)
+

log(pλ)

θ
− p log(p)

1− p
+

log
[
Γ
(

p−1
θ + p

)]
1− p

, (6)

with p ≥ 0, p 6= 1, and p ≥ 1
1+θ . Similarly, from (2), (3), and (4) the QE and SE of the

random variable Y can be written, respectively, as:

Qq =
1

q− 1

[
1−

θq−1Γ
(

q−1
θ + q

)
λ

q−1
θ q

q−1
θ +q

]
, (7)

with q ≥ 0, q 6= 1 and q ≥ 1
1+θ and

S = 1 + log
(

1
λθ

)
+

(θ + 1)[γ + log(λ)]
θ

, (8)

where γ is the Euler constant.
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1.2. Progressive Censoring Scheme and Some of Its Modifications

Typically, researchers conduct life-testing experiments on a random sample of n objects
of interest to obtain data from which they can estimate Φ and accordingly estimate the
entropy. However, waiting for the whole sample to fail is costly and time-consuming.
Therefore, researchers obtain an incomplete dataset by a censoring scheme. Censoring is a
widespread technique in life-testing experiments. In simple terms, data censoring means
reducing cost and saving time, but at the same time, losing some information that might be
important. The most common censoring schemes are the conventional Type-I and Type-II
censoring schemes. While Type-I censoring ends the experiment at a predetermined time,
Type-II censoring ends the experiment whenever a predetermined number of failures are
attained. Because technology is developing rapidly, researchers frequently want to reduce
expenses and test time. As a result, the progressive Type-II censoring (PT-IIC) scheme
can be used as a generalized censoring technique. The PT-IIC sample can be described
as follows: suppose a life-testing experiment involving n units is conducted according to
a prefixed progressive censoring scheme (R1, R2, . . . , Rm). Here, the number of observed
failure times, say m, where m < n is predetermined. When the first failure occurs, R1 items
are removed from the remaining n− 1 experimental units. Then, at the time of the second
failure, R2 units are removed from the n− 2− R1 remaining units. The process is repeated
until the experiment reaches the mth failure, and at this point, all the remaining units are
removed; afterward, the experiment is terminated. It is important to emphasize that the
progressive censoring plan (R1, R2, . . . , Rm) must satisfy ∑m

i=1 Ri = n−m. Estimating the
parameters of some lifetime distributions based on the PT-IIC scheme has been the subject of
several studies during the past two decades, see for example Rastogi et al. [23], Ahmed [24],
and Dey et al. [25]. For more comprehensive details, see, for example, Balakrishnan and
Aggarwala [26], Balakrishnan and Cramer [27], Dey et al. [28], and Kumar et al. [29].

Practically, the conventional PT-IIC scheme might take a while to reach the required
failure times for the tested units; therefore, Ng et al. [30] proposed the adaptive progressive
type-II censoring (APT-IIC) scheme as an alternative. For additional details about the
latter censoring scheme, see, for example, Ye et al. [31], Sobhi and Soliman [32], and EL-
Sagheer et al. [33]. Since the APT-TIIC scheme might not solve the problem of consuming
experimental time, especially when the experimental units are highly reliable, Yan et al. [34]
recently proposed the improved adaptive progressive Type-II censoring (IAPT-IIC) scheme.
The process of the IAP-TIIC scheme can be defined as follows: assume an independent and
identically distributed random sample of n units are set on a life test, the required number
of failures m ≤ n is prefixed and (R1, R2, . . . , Rm) are also predetermined; however, some
values of Ri may adjust during the experimentation. Let T1, T2 ∈ (0, ∞), where T1 < T2,
be two thresholds specified based on the dependability information on the product of
interest. Let D1 and D2 be the number of failures occur before times T1 and T2, respectively,
where D1 < D2. At the time of the first failure Y1:m:n, R1 units are randomly withdrawn
from n− 1 live items. Likewise, at the time of the second failure Y2:m:n, R2 of n− R1 − 2
items are randomly withdrawn from the experiment, and so on. If Ym:m:n occurs first
before time T1, i.e., Ym:m:n < T1 (Case-I: PT-IIC scheme), the experiment stops at Ym:m:n
with censoring scheme (R1, R2, . . . , Rm). If YD1 :m:n < T1 < YD1+1:m:n (Case-II: APT-IIC
scheme), where D1 > 0 and D1 + 1 < m, the experiment stops at Ym:m:n with censoring
scheme (R1, R2, . . . , RD1 , 0, . . . , 0, R∗), where R∗ = n−m−∑D1

i=1 Ri, then no live units will
be withdrawn from the test by placing Ri = 0 for i = D1 + 1, . . . , m− 1 and at the time
of the m− th failure all staying units are extracted. Finally, if Ym:m:n is not failed before
time T2, i.e., T2 < Ym:m:n (Case-III: IAPT-IIC scheme), the test stops at T2 with censoring
scheme Ri = 0 for i = D1 + 1, . . . , D2, and at T2 all the remaining items are withdrawn, i.e.,
R∗ = n−D2−∑D1

i=1 Ri. An experiment considering the IAPT-IIC scheme has three outputs,
as shown in Table 1.
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Table 1. Cases of the IAPT-IIC scheme.

Timeline Termination Time Scheme

y1:m:n < . . . < ym:m:n < T1 < T2 ym:m:n PT-IIC
y1:m:n < . . . < yD1 :m:n < T1 < yD1+1:m:n < . . . < ym:m:n < T2 ym:m:n APT-IIC
y1:m:n < . . . < yD1 :m:n < T1 < yD1+1:m:n < . . . < yD2 :m:n < T2 T2 IAPT-IIC

Due to the facts that IW distribution is flexible in modeling real datasets, and the
IAP-TIIC scheme’s efficiency in data acquisition, mainly when the experimental units
are of a high degree of reliability, this study concentrates on estimating the entropy of
the IW distribution utilizing samples obtained via IAP-TIIC plans. The main idea that
motivated this study is comparing the samples acquired based on the PT-IIC, APT-IIC, and
IAPT-IIC schemes based on the amount of information they provided. This comparison
interests many researchers in selecting the appropriate censoring scheme when collecting
the required data. Another motivation for this work is to compare the efficiency of two clas-
sical estimation methods, namely maximum likelihood and maximum product of spacing
(MPS), and four confidence interval estimation methods, to see which estimation method is
suitable for estimating the considered entropy measures assuming IW lifetimes. The main
objectives of this work are: (1) To investigate point and interval estimations of the three
entropy indices, namely RE, QE, and SE, using maximum likelihood and MPS techniques.
(2) To compare the approximate confidence intervals (ACIs) with two parametric bootstrap
confidence intervals of the entropy measures. (3) To examine the effectiveness of the various
approaches using a variety of scenarios of sample sizes, progressive censoring techniques,
and thresholds using simulation research. (4) To make clear the usage of the outlined
methodologies by analyzing a pair of real datasets. It is crucial to note that the two selected
datasets were utilized for the practical investigation when the parent distribution is the
IW model, which does not necessarily suggest that additional datasets of this sort have the
same connection.

The remainder of this paper is organized as follows. Section 2 explores the maximum
likelihood estimators (MLEs) and ACIs for RE, WE, and SE. The MPS estimators (MPSEs)
and ACIs of the entropy measure are acquired in Section 3. Section 4 covers two parametric
bootstrap confidence intervals for the entropy measures. Section 5 reports the outcomes
of Monte Carlo simulations, while Section 6 provides the outcomes of the analyses for
two actual datasets. In Section 7, the paper is concluded with a discussion and future
research directions.

2. Maximum Likelihood Estimation

This section employs the maximum likelihood method to get the point and the interval
estimates of the entropy measure based on the IAPT-IIC data.

2.1. Point Estimation

Let y = (y1:m:n, . . . , yD1 :m:n, . . . , yD2 :m:n) be an IAP-TIIC sample of size D2 from the IW
distribution with PDF and CDF given by (4) and (5), respectively, with progressive censor-
ing scheme

(
R1, . . . , RD1 , 0, . . . , 0, R∗

)
. Then, we can write the joint likelihood function of

the observed data in the following form:

L(Φ|y) = A
D2

∏
i=1

g(yi:m:n)
D1

∏
i=1

[1− G(yi:m:n)]
Ri [1− G(τ)]R

∗
, (9)

where Φ = (θ, λ)>, A is a normalizing constant which does not depend on the parameters,
τ = T2 for simplicity, and R∗ is the number of remaining items at time τ. Ignoring
the normalized constant and from (4), (5), and (9), we can write the likelihood function
as follows:
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L(Φ|y) = λD2 θD2 exp

[
−(θ + 1)

D2

∑
i=1

log(yi)− λ
D2

∑
i=1

y−θ
i

](
1− e−λτ−θ

)R∗ D1

∏
i=1

(
1− e−λy−θ

i

)Ri
, (10)

where yi = yi:m:n for simplicity. The natural logarithm of (10) can be expressed as:

`(Φ|y) = D2 log(λ) + D2 log(θ)− (θ + 1)
D2

∑
i=1

log(yi)− λ
D2

∑
i=1

y−θ
i +

D1

∑
i=1

Riwi + R∗wτ , (11)

where wi = log
(

1− e−λy−θ
i

)
and wτ = log

(
1− e−λτ−θ

)
. To get the MLEs of θ and λ, we

need to obtain first partial derivatives of (11) with respect to θ and λ as:

∂`(Φ|y)
∂θ

=
D2

θ
−

D2

∑
i=1

log(yi) + λ
D2

∑
i=1

y−θ
i log(yi) +

D1

∑
i=1

Riẃi + R∗ẃτ , (12)

and

∂`(Φ|y)
∂λ

=
D2

λ
−

D2

∑
i=1

y−θ
i +

D1

∑
i=1

Riẇi + R∗ẇτ , (13)

where ẃi = −λy−θ
i log(yi)e−λy−θ

i

(
1− eλy−θ

i

)−1
and ẃτ = −λτ−θ log(τ)e−λτ−θ(

1− eλτ−θ
)−1

, while ẇi = y−θ
i e−λy−θ

i

(
1− eλy−θ

i

)−1
and ẇτ = τ−θe−λτ−θ

(
1− eλτ−θ

)−1
.

The MLEs of θ and λ denoted by θ̂ and λ̂ can be obtained by equating (12) and (13)
to zero and solve the two equations simultaneously. It is noted that there are no closed
forms for the MLEs in this case. Hence, numerical techniques can be utilized to calculate θ̂
and λ̂. When the MLEs of θ and λ are acquired, one can utilize the invariance property of
the MLEs to obtain the MLEs of entropy measures by replacing θ and λ in (6)–(8) by the
corresponding MLEs θ̂ and λ̂. In this case, the MLEs of the entropies Rp, Qq, and S for the
IW distribution can be obtained, respectively, as follows:

R̂p = log
(

1
θ̂

)
+

log
(

pλ̂
)

θ̂
− p log(p)

1− p
+

log
[
Γ
(

p−1
θ̂

+ p
)]

1− p
, (14)

with p ≥ 0, p 6= 1, and p ≥ 1
1+θ̂

,

Q̂q =
1

q− 1

[
1−

θ̂q−1Γ
(

q−1
θ̂

+ q
)

λ̂
q−1

θ̂ q
q−1

θ̂
+q

]
, (15)

with q ≥ 0, q 6= 1, and q ≥ 1
1+θ̂

and

Ŝ = 1 + log
(

1
λ̂θ̂

)
+

(θ̂ + 1)[γ + log(λ̂)]
θ̂

. (16)

2.2. Interval Estimation

It is also interesting to acquire the confidence intervals for the entropy indices in
addition to the point estimates. Here, we develop the ACIs of the unknown entropy
measures using the asymptotic aspects of the MLEs. Here, the ACIs of Rp, Qq, and S are
obtained by approximating the variances of their estimators through the well-known delta
method. First, we acquire the inverse of the observed Fisher information matrix as the
approximate asymptotic variance-covariance matrix:
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I(Φ̂) =

 − ∂2`(Φ|y)
∂θ2 − ∂2`(Φ|y)

∂θ∂λ

− ∂2`(Φ|y)
∂λ∂θ − ∂2`(Φ|y)

∂λ2

−1

(θ,λ)=(θ̂,λ̂)

, (17)

where Φ̂ = (θ̂, λ̂)> and

∂2`(Φ|y)
∂θ2 = −D2

θ2 − λ
D2

∑
i=1

y−θ
i log2(yi)−

D1

∑
i=1

Ri ´́wi − R∗ ´́wτ

∂2`(Φ|y)
∂λ2 = −D2

λ2 −
D1

∑
i=1

Ri ˙̇wi − R∗ ˙̇wτ

and

∂2`(Φ|y)
∂θ∂λ

=
D2

∑
i=1

y−θ
i log(yi)−

D1

∑
i=1

Ri ˙́wi − R∗ ˙́wτ

where ´́wi = −ẃi

{
ẃi − log(yi)

[
λy−θ

i − 1
]}

, ´́wτ = −ẃτ

{
ẃτ − log(τ)

[
λτ−θ − 1

]}
,

˙̇wi = y−θ
i − ẇ2

i , ˙̇wτ = τ−θ − ẇ2
τ , ˙́wi = −ẇi

{
ẃi − log(yi)

[
λy−θ

i − 1
]}

and
˙́wτ = −ẇτ

{
ẃτ − log(τ)

[
λτ−θ − 1

]}
.

To approximate the variances for the estimators of entropy measures Rp, Qq and
S using the delta method, let ∆R = (∂Rp/∂θ, ∂Rp/∂λ), ∆Q = (∂Qq/∂θ, ∂Qq/∂λ) and
∆S = (∂S/∂θ, ∂S/∂λ), with the following elements:

∂∆R
∂θ

=
ψ
(

p−1
θ + p

)
− log(λp)

θ2 − 1
θ

,
∂∆R
∂λ

=
1

λθ
, (18)

∂∆Q

∂θ
= −

θq−3Γ
(

q−1
θ + q

)
λ

q−1
θ q

q−1
θ +q

[
θ + log(q) + log(λ) + ψ

(
p− 1

θ
+ p

)]
,

∂∆Q

∂λ
=

θq−2Γ
(

q−1
θ + q

)
λ1+ q−1

θ q
q−1

θ +q
(19)

and
∂∆S
∂θ

= − θ + λ + γ

θ2 ,
∂∆S
∂λ

=
1
λ

, (20)

where ψ(.) = Γ́(.)/Γ(.) is the digamma function and Γ́(.) is the first derivative of Γ(.). Now,
the approximate estimates for the variances of Rp, Qq and S can be acquired, respectively,
as:

v̂ar(R̂p) ≈ [∆R I(Φ̂)∆>R ]|(θ,λ)=(θ̂,λ̂),

v̂ar(Q̂q) ≈ [∆Q I(Φ̂)∆>Q ]|(θ,λ)=(θ̂,λ̂)

and
v̂ar(Ŝ) ≈ [∆S I(Φ̂)∆>S ]|(θ,λ)=(θ̂,λ̂),

where I(Φ̂) is given by (17). Then, the two-sided ACIs of Rp, Qq and S at confidence level
100(1− α), are given, respectively, by:

R̂p ± z α
2

√
v̂ar(R̂p), Q̂q ± z α

2

√
v̂ar(Q̂q) and Ŝ± z α

2

√
v̂ar(Ŝ),

where z α
2

is the 100(1− α/2) standard normal percentile.
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3. Maximum Product of Spacing Estimation

Lately, the method of MPS has earned additional awareness from numerous re-
searchers to estimate the parameters of probability distributions as a potential alternative
estimation method to the classical maximum likelihood method. Rather than employing
the parameter values that maximize the likelihood function, the MPSEs are performed
by picking the parameter values that maximize the product of the spacing between cu-
mulative distribution function values at adjacent ordered points. Cheng and Amin [35]
presented the MPS method, and multiple researchers employed it because the MPSEs
keep most of the characteristics of the MLEs, including the invariance and asymptotic
properties; see Coolen and Newby [36] and Anatolyev and Kosenok [37]. The general
criterion for calculating the MPSEs is that the PDF f (y) > 0, ∀ y ∈ (a, b) and all the
items in the sample are independently and identically distributed. In our case, the sup-
port of Y ∼ IW(θ, λ) is (0, ∞), which provides a = 0 and b = ∞. Based on the IAP-
TIIC, we can define the partitions using the sample information in the interval [0, ∞) as
[0, y1], [y1, y2], . . . , [yD2−1, yD2 ], [yD2 , ∞). Utilizing these partitions, the spacings of the afore-
mentioned intervals can be defined as [G(yi)− G(yi−1)], i = 1, . . . , D2, where G(y0) = 0,
G(yD2+1) = 1 and ∑[G(yi)− G(yi−1)] = 1. Using these notation and based on an IAP-
TIIC sample, the MPSEs can be acquired by maximizing the following product of spacing
function (PSF) with respect to the unknown parameters:

P(Φ|y) = A
D2+1

∏
i=1

[G(yi)− G(yi−1)]
D1

∏
i=1

[1− G(yi)]
Ri [1− G(τ)]R

∗
. (21)

3.1. Point Estimation

Suppose that y = (y1:m:n, . . . , yD1 :m:n, . . . , yD2 :m:n) be an IAP-TIIC sample of size D2

from the IW distribution with progressive censoring scheme
(

R1, . . . , RD1 , 0, . . . , 0, R∗
)
.

Then, from (4), (5), and (21), the PSF can be written as:

P(Φ|y) =
D2+1

∏
i=1

(
e−λy−θ

i − e−λy−θ
i−1

) D1

∏
i=1

(
1− e−λy−θ

i

)Ri
(

1− e−λτ−θ
)R∗

(22)

The natural logarithm of the PSF in (22), denoted by p(Φ|y), can be expressed as:

p(Φ|y) =
D2+1

∑
i=1

log
(

e−λy−θ
i − e−λy−θ

i−1

)
+

D1

∑
i=1

Riwi + R∗wτ . (23)

Let θ̃ and λ̃ denote the MPSEs of θ and λ. Then, these estimators can be obtained by
maximizing (23) with respect to θ and λ. Alternatively, the MPSEs can be acquired by
solving the following normal equations simultaneously:

∂p(Φ|y)
∂θ

=
D2+1

∑
i=1

νi − νi−1

e−λy−θ
i − e−λy−θ

i−1
+

D1

∑
i=1

Riẃi + R∗ẃτ = 0 (24)

and

∂p(Φ|y)
∂λ

=
D2+1

∑
i=1

y−θ
i−1e−λy−θ

i−1 − y−θ
i e−λy−θ

i

e−λy−θ
i − e−λy−θ

i−1
+

D1

∑
i=1

Riẇi + R∗ẇτ = 0, (25)

where νi = λy−θ
i log(yi)e−λy−θ

i . It is observed that θ̃ and λ̃ cannot be obtained analyt-
ically from (24) and (25) because the complicated expressions of the normal equations.
Consequently, one can utilize numerical techniques to obtain them. Now, employing the
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invariance property of the MPSEs, we can obtain the MPSEs of Rp, Qq, and S for the IW
distribution from (6)–(8), respectively, as:

R̃p = log
(

1
θ̃

)
+

log
(

pλ̃
)

θ̃
− p log(p)

1− p
+

log
[
Γ
(

p−1
θ̃

+ p
)]

1− p
, (26)

with p ≥ 0, p 6= 1, and p ≥ 1
1+θ̃

,

Q̃q =
1

q− 1

[
1−

θ̃q−1Γ
(

q−1
θ̃

+ q
)

λ̃
q−1

θ̃ q
q−1

θ̃
+q

]
, (27)

with q ≥ 0, q 6= 1, and q ≥ 1
1+θ , and

S̃ = 1 + log
(

1
λ̃θ̃

)
+

(θ̃ + 1)[γ + log(λ̃)]
θ̃

. (28)

3.2. Interval Estimation

Here, by utilizing the asymptotic properties of the MPSEs, the ACIs of the entropy
measures are established. As in the MLEs case, to get the ACIs of Rp, Qq, and S, we first
compute the approximate asymptotic variance-covariance matrix based on the MPSEs as
follows:

I(Φ̃) =

 − ∂2 p(Φ|y)
∂θ2 − ∂2 p(Φ|y)

∂θ∂λ

− ∂2 p(Φ|y)
∂λ∂θ − ∂2 p(Φ|y)

∂λ2

−1

(θ,λ)=(θ̃,λ̃)

, (29)

where Φ̃ = (θ̃, λ̃)>. The elements of (29) are given by:

∂2 p(Φ|y)
∂θ2 =

D2+1

∑
i=1

ν́i − ν́i−1

e−λy−θ
i − e−λy−θ

i−1
−

D2+1

∑
i=1

(νi − νi−1)
2(

e−λy−θ
i − e−λy−θ

i−1

)2 −
D1

∑
i=1

Ri ´́wi − R∗ ´́wτ ,

∂2 p(Φ|y)
∂λ2 =

D2+1

∑
i=1

y−2θ
i e−λy−θ

i − y−2θ
i−1 e−λy−θ

i−1

e−λy−θ
i − e−λy−θ

i−1
−

D2+1

∑
i=1

(
y−θ

i−1e−λy−θ
i−1 − y−θ

i e−λy−θ
i

)2

(
e−λy−θ

i − e−λy−θ
i−1

)2 −
D1

∑
i=1

Ri ˙̇wi − R∗ ˙̇wτ

and

∂2 p(Φ|y)
∂θ∂λ

=
D2+1

∑
i=1

ν̇i − ν̇i−1

e−λy−θ
i − e−λy−θ

i−1
−

D2+1

∑
i=1

(νi − νi−1)
(

y−θ
i−1e−λy−θ

i−1 − y−θ
i e−λy−θ

i

)
(

e−λy−θ
i − e−λy−θ

i−1

)2 −
D1

∑
i=1

Ri ˙́wi − R∗ ˙́wτ ,

where ν́i = νi log(yi)(λy−θ
i − 1) and ν̇i = νi(1/λ− y−θ

i ). Then, we can obtain the approxi-
mate variances of Rp, Qq and S using the delta method as follows:

ṽar(R̃p) ≈ [∆R I(Φ̃)∆>R ]|(θ,λ)=(θ̃,λ̃),

ṽar(Q̃q) ≈ [∆Q I(Φ̃)∆>Q ]|(θ,λ)=(θ̃,λ̃)

and
ṽar(S̃) ≈ [∆S I(Φ̃)∆>S ]|(θ,λ)=(θ̃,λ̃),
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where the elements of ∆R, ∆Q, and ∆S are given by (18)–(20) and I(Φ̃) is given by (29).
Then, the two-sided ACIs of Rp, Qq, and S, are given, respectively, by:

R̃p ± z α
2

√
ṽar(R̃p), Q̃q ± z α

2

√
ṽar(Q̃q) and S̃± z α

2

√
ṽar(S̃).

4. Bootstrap Confidence Intervals

This section details two parametric bootstrap confidence intervals for the entropy
measures. The first one uses Efron’s concept of percentile bootstrap (PB) confidence
intervals; see Efron [38]. The second one is the studentized bootstrap (SB) confidence
intervals provided by Hall [39]. We establish these confidence intervals based on MLEs and
MPSEs. We use the following procedures to produce these bootstrap confidence intervals.
Henceforth, in this section, any quantity with superscript ∗ means that the quantity is
acquired via bootstrapping except for R∗, which refers to the number of removals at time
T2. Algorithm 1 describes the process of producing PB confidence intervals for θ and λ,
while Algorithm 2 provides the steps of acquiring SB confidence intervals for the same
parameters.

Algorithm 1 PB confidence interval method
Require: Number of bootstrapping samples B ≥ 1000
Require: IAP-TIIC sample y1:m:n, . . . , yD1 :m:n, . . . , yD2 :m:n
Require: Censoring scheme (R1, . . . , RD1 , 0, . . . , 0, R∗)

1: Acquire either MLEs or MPSEs for θ and λ, say, θ̂ and λ̂ using the IAP-TIIC sample
y1:m:n, . . . , yD1 :m:n, . . . , yD2 :m:n and the censoring scheme (R1, . . . , RD1 , 0, . . . , 0, R∗)

2: for i← 1 to B do
3: Generate y∗1:m:n, . . . , y∗D1 :m:n, . . . , y∗D2 :m:n assuming model parameters θ̂ and λ̂

4: Obtain θ̂∗i and λ̂∗i using y∗1:m:n, . . . , y∗D1 :m:n, . . . , y∗D2 :m:n, the censoring scheme
(R1, . . . , RD1 , 0, . . . , 0, R∗), and the considered estimation method

5: Use θ̂∗i and λ̂∗i to calculate R̂∗(i)p , Q̂∗(i)q , and Ŝ∗(i)

6: end for

7: Arrange R̂∗(1)p , . . . R̂∗(B)
p in ascending order to get R̂∗[1]p , . . . , R̂∗[B]p , then compute the two-sided

100(1− α) confidence intervals of Rp as:[
R̂∗[B(α/2)]

p , R̂∗[B(1−α/2)]
p

]
8: Arrange Q̂∗(1)q , . . . Q̂∗(B)

q in ascending order to get Q̂∗[1]q , . . . , Q̂∗[B]q , then compute the two-sided
100(1− α) confidence intervals of Qq as:[

Q̂∗[B(α/2)]
q , Q̂∗[B(1−α/2)]

q

]
9: Arrange Ŝ∗(1), . . . Ŝ∗(B) in ascending order to get Ŝ∗[1], . . . , Ŝ∗[B], then compute the two-sided

100(1− α) confidence intervals of S as:[
Ŝ∗[(α/2)], Ŝ∗[B(1−α/2)]

]
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Algorithm 2 SB confidence interval method
Require: Number of bootstrapping samples B ≥ 1000
Require: IAP-TIIC sample y1:m:n, . . . , yD1 :m:n, . . . , yD2 :m:n
Require: Censoring scheme (R1, . . . , RD1 , 0, . . . , 0, R∗)

1: Acquire either MLEs or MPSEs for θ and λ, say, θ̂ and λ̂ using the IAP-TIIC sample
y1:m:n, . . . , yD1 :m:n, . . . , yD2 :m:n and the censoring scheme (R1, . . . , RD1 , 0, . . . , 0, R∗)

2: Use θ̂ and λ̂ to calculate R̂p, Q̂q, Ŝ, v̂ar(R̂p), v̂ar(Q̂q), and v̂ar(Ŝ)
3: for i← 1 to B do
4: Generate y∗1:m:n, . . . , y∗D1 :m:n, . . . , y∗D2 :m:n assuming model parameters θ̂ and λ̂

5: Obtain θ̂∗i and λ̂∗i using y∗1:m:n, . . . , y∗D1 :m:n, . . . , y∗D2 :m:n, the censoring scheme
(R1, . . . , RD1 , 0, . . . , 0, R∗), and the considered estimation method

6: Use θ̂∗i and λ̂∗i to calculate R̂∗(i)p , Q̂∗(i)q , and Ŝ∗(i)

7: Compute T∗(i)R =
R̂∗(i)p −R̂p√
v̂ar(R̂∗(i)p )

8: Compute T∗(i)Q =
Q̂∗(i)q −Q̂q√
v̂ar(Q̂∗(i)q )

9: Compute T∗(i)S = Ŝ∗(i)−Ŝ√
v̂ar(Ŝ∗(i))

10: end for

11: Arrange T∗(1)R , . . . , T∗(B)
R in ascending order to get T∗[1]R , . . . , T∗[B]R , then compute the two-sided

100(1− α) confidence intervals of Rp as:[
R̂p + T∗[Bα/2]

R

√
v̂ar(R̂p), R̂p + T∗[B(1−α/2)]

R

√
v̂ar(R̂p)

]

12: Arrange T∗(1)Q , . . . , T∗(B)
Q in ascending order to get T∗[1]Q , . . . , T∗[B]Q , then compute the two-sided

100(1− α) confidence intervals of Qq as:[
Q̂q + T∗[Bα/2]

Q

√
v̂ar(Q̂q), Q̂q + T∗[B(1−α/2)]

Q

√
v̂ar(Q̂q)

]

13: Arrange T∗(1)S , . . . , T∗(B)
S in ascending order to get T∗[1]S , . . . , T∗[B]S , then compute the two-sided

100(1− α) confidence intervals of S as:[
Ŝ + T∗[Bα/2]

S

√
v̂ar(Ŝ), Ŝ + T∗[B(1−α/2)]

S

√
v̂ar(Ŝ)

]

5. Monte Carlo Simulation Outcomes

Examining estimation efficiency numerically for the estimators of Rp, Qq, S is an
important aspect of this research. Therefore, extensive Monte Carlo simulations are per-
formed. Using different simulation settings as shown in Table 2, 1000 IAPT-IIC data are
obtained assuming that the true model parameters are either λ = 2.5 and θ = 2.5 or λ = 4.5
and θ = 4.5, without loss of generality (For the sake of brevity, all simulation outcomes
are reported for λ = 2.5, θ = 2.5 only. Outcomes for the case of λ = 4.5, θ = 4.5 can be
provided, upon request, from the corresponding author.). Furthermore, Table 3 shows the
actual value of S, Rp and Qq assuming different values of p, q, λ, and θ. It is important to
mention that three progressive censoring schemes are considered in this study, and they
are as follows:

Scheme 1: PT-IIC scheme with T1 = T2 = ∞, and Ri = n/m− 1 for all i,
Scheme 2: APT-IIC scheme with T1 as displayed in Table 2 and Ri = n/m− 1 for all i,
Scheme 3: IAPT-IIC scheme with T1 and T2 as displayed in Table 2 and Ri = n/m− 1 for

all i.

Moreover, the steps of an approach used to simulate IAPT-IIC data for given values of
n, m, T1, T2, and R1, R2, . . . , Rm are as follows:
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1. Generate the conventional PT-IIC sample Y1:m:n, Y2:m:n, . . . , Ym:m:n with censoring
scheme R1, R2, . . . , Rm according to the method proposed by Balakrishnan and
Sandhu [40].

2. Find D1 such that YD1 :m:n < T1 < YD1+1:m:n and discard the progressive order statistics
YD1+2:m:n, YD1+3:m:n, . . . , Ym:m:n.

3. Generate the first m−D1− 1 order statistics from the truncated distribution g(y; θ, λ)/
[1− g(y; θ, λ)] based on (4) and (5) with sample size n−∑D1

i=1 Ri −D1− 1 as YD1+2:m:n,
YD1+3:m:n, . . . , Ym:m:n.

4. Find D2 such that YD2 :m:n < T2; accordingly, discard YD2+1:m:n, YD2+2:m:n, . . . , Ym:m:n
to obtain the required IAPT-IIC sample.

Table 2. Simulation settings of n, m, T1, and T2 assuming different values of p, q, λ, and θ.

n 40 40 60 60 60 60 80 80 80 80

m 20 20 20 20 30 30 20 20 40 40

T1 1 1.2 1 1.2 1 1.2 1 1.2 1 1.2

T2 1.5 1.7 1.5 1.7 1.5 1.7 1.5 1.7 1.5 1.7

Table 3. Actual values of S, Rp, and Qq assuming different values of p, q, λ and θ.

Parameters S R0.6 R0.8 Q0.6 Q0.8

λ = 2.5, θ = 2.5 1.258327 1.761439 1.438668 2.55747 1.66701
λ = 4.5, θ = 4.5 0.5356478 0.860006 0.659586 1.026455 0.705069

For each simulation setting, the bias and the root mean square errors (RMSEs) for
each estimation of entropy measures are computed as shown in Figures 1 and 2. The
confidence interval lengths (CILs) and the coverage probabilities (CPs) of the various
interval estimations are illustrated in Figures 3–8. The CIL and CP for any entropy measure,
say φ, are obtained, respectively, by:

CIL(φ) =
1

1000 ∑1000
j=1

(
Uj −Lj

)
and

CP(φ) =
1

1000 ∑1000
j=1 1(Lj ;Uj)

(φ),

where 1(·) is the indicator function and Lj and Uj denote the interval lower and upper
bounds of sample j, respectively. This approach is used to obtain the CILs and CPs of the
different interval estimation methods, including the bootstrap confidence intervals. The
evaluation of CPs is based on the assumption that the nominal confidence level is 95%.
Heatmaps are used to display the simulation results in this study. For example, Figure 1
depicts the bias of several entropy measurements for λ = 2.5 and θ = 2.5. Each heatmap in
Figure 1 ranges in color from yellow to red. The yellow color represents a low bias value,
but the red color shows an increase in the bias value. It is to be noted that all numerical
computations are implemented via R statistical programming language software [41] (The
R source code for reproducing the Monte Carlo simulation outcomes is not reported here;
nevertheless, it may be requested from the corresponding author.). From the obtained
figures of the conducted simulation study, one can note the following observations:

• Overall, as n (or m/n) increases, the estimation efficiency improves, i.e., biases and
RMSEs tend to 0, while the CILs decrease for all investigated interval estimates, and
their CPs increase as expected.

• As θ and λ increase, both biases and RMSEs of the considered point estimators
decrease.
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• Estimation based on MLEs underestimates S, Rp and Qq noticeably, while estimation
based on MPSEs overestimates these entropy measurements.

• In most cases, the estimators of the considered entropy measurements based on MLEs
outperform their counterparts based on MPSEs in terms of biases and RMSEs. This
observation was remarked by [13] when they performed a similar study but based on
conventional PT-IIC data.

• Regarding CILs, all considered confidence intervals based on MLEs, are either shorter
than their counterparts based on MPSEs or similar.

• Assuming a nominal level of 95%, the least simulated CP among all confidence
intervals and simulation settings was 75%. It is observed that confidence intervals
based on MPSEs outperformed their counterparts based on MLEs in terms of CPs and
sometimes achieved the nominal level. This observation is noticed in all considered
simulation settings except for the PBs intervals in the case of Scheme 3 (i.e., IAPT-IIC).
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Figure 1. Average biases of the estimators of S, Rp and Qq for λ = 2.5, θ = 2.5.
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Figure 2. Average log(RMSEs) of the estimators of S, Rp and Qq for λ = 2.5, θ = 2.5.
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Figure 3. The simulated CILs of ACIs for S, Rp and Qq when λ = 2.5, θ = 2.5.
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Figure 4. The simulated CPs of ACIs for S, Rp and Qq when λ = 2.5, θ = 2.5.
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Figure 5. The simulated CILs of PBs for S, Rp and Qq when λ = 2.5, θ = 2.5.
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Figure 6. The simulated CPs of PBs for S, Rp and Qq when λ = 2.5, θ = 2.5.
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Figure 7. The simulated CILs of SBs for S, Rp and Qq when λ = 2.5, θ = 2.5.
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Figure 8. The simulated CPs of SBs for S, Rp and Qq when λ = 2.5, θ = 2.5.

6. Illustrative Examples

In this section, two numerical applications are reported to illustrate the applications of
the proposed methodologies to natural phenomena. The first dataset (Data No. 1) consists
of the vinyl chloride data (in mg/L) obtained from clean-up-gradient monitoring wells.
Several researchers analyzed the data; see Bhaumik et al. [42], Vishwakarma et al. [43],
and Okasha and Nassar [13]. The second dataset (referred to as Data No. 2) contains the
times (in min) to breakdown of an insulating fluid between 19 electrodes recorded at 34 kV,
see Lawless [44]. See Dey and Nassar [45], Elshahhat and Rastogi [46], and Okasha and
Nassar [13] for recent applications using these data. Okasha and Nassar [13] checked the fit
of the IW distribution to this dataset via the Kolmogorov–Smirnov and Cramér-von Mises
goodness-of-fit tests. They concluded that the IW distribution is a suitable for the given
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two datasets. Tables 4 and 5 show a PT-IIC sample, an APT-IIC sample, and an IAPT-IIC
sample generated from the original datasets, respectively.

Table 4. Generated samples from Data No. 1.

Scheme n m, D1, D2 T1 T2 R Data

PT-IIC 34 17, -, - ∞ ∞ (1 ∗ 17) 0.4, 0.4, 0.5, 0.5, 0.6, 0.6, 0.9, 0.9, 1.2,
1.3, 2.0, 2.4, 2.5, 2.7, 3.2, 4.0, 6.8

APT-IIC 34 17, 8, - 1 ∞ (1 ∗ 8, 0 ∗ 8, 9) 0.4, 0.4, 0.4, 0.5, 0.6, 0.6, 0.9, 1.0, 1.1,
1.2, 1.2, 1.3, 1.8, 2.0, 2.0, 2.3, 2.4

IAPT-IIC 34 17, 8, 15 1 2 (1 ∗ 8, 0 ∗ 6, 11) 0.4, 0.4, 0.4, 0.5, 0.6, 0.6, 0.9, 1.0, 1.1,
1.2, 1.2, 1.3, 1.8, 2.0, 2.0

Table 5. Generated samples from Data No. 2.

Scheme n m, D1, D2 T1 T2 R Data

PT-IIC 19 9, -, - ∞ ∞ (1 ∗ 8, 2) 2.78, 3.16, 4.15, 4.67, 7.35,
8.01, 12.06, 32.52, 33.91

APT-IIC 19 9, 4, - 30 ∞ (1 ∗ 4, 0 ∗ 4, 6) 2.78, 3.16, 4.67, 7.35, 31.75,
32.52, 33.91, 36.71, 72.89

IAPT-IIC 19 9, 4, 7 30 35 (1 ∗ 4, 0 ∗ 2, 8) 2.78, 3.16, 4.67, 7.35,
31.75, 32.52, 33.91

The MLEs and MPSEs of the entropy measures and the corresponding standard errors
(SEs) are computed and displayed in Table 6 for the two real datasets. The standard errors
are obtained using B = 1000 parametric bootstrap samples. The latter table indicates that if
the APT-IIC scheme is considered, then the MLEs should be used to estimate the model
parameters. Alternatively, if the IAPT-IIC scheme is utilized, then the MPSEs should be
considered when estimating the model parameters. Furthermore, one can conclude that
the APT-IIC or IAPT-IIC schemes provide more information for Data No. 1, based on MLEs
and MPSEs, respectively. On the contrary, it is seen that the PT-IIC scheme and IAPT-IIC
schemes provide more information regarding Data No. 2, using the MLEs and MPSEs,
respectively. This analysis shows that the APT-IIC and IAPT-IIC provide more information
than the traditional PT-IIC for some progressive censoring plans. Alongside the calculated
estimators and corresponding SEs for both datasets, the parametric bootstrap samples are
used to calculate the observed lengths of confidence intervals (CIs) for ACIs, PB, and SB
confidence intervals of the different entropy measures using 90%, 95%, and 99% confidence
levels, as shown in Tables 7 and 8 for Data No. 1 and No. 2, respectively. The following
remarks are observed from the latter tables:

• As the confidence level increases, the lengths of the CIs increase as expected.
• The CIs obtained based on APT-IIC and IAPT-IIC have fewer lengths than those

obtained using the PT-IIC scheme.
• The bootstrap-based confidence intervals based on MPSEs have fewer lengths than

those obtained using their counterparts established based on the MLEs.

Combining the above results, we suggest using the APT-IIC or IAPT-IIC schemes to
study the IW distribution characteristics. Furthermore, one can decide which scheme to use
based on the MLEs or MPSEs using the smallest SEs calculated from bootstrap samples.
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Table 6. The various estimates of entropies (with their SEs in parentheses) for the real data.

MLE

Data Entropy PT-IIC APT-IIC IAPT-IIC

1 SE 2.597 (0.452) 2.213 (0.409) 2.253 (0.441)
RE (0.6) 4.765 (1.369) 3.823 (0.970) 3.924 (1.082)
QE (0.6) 14.315 (6.678) 9.034 (4.083) 9.512 (4.636)
RE (0.9) 2.822 (0.505) 2.400 (0.450) 2.445 (0.487)
QE (0.9) 3.261 (0.618) 2.713 (0.559) 2.770 (0.604)

2 SE 4.664 (0.661) 6.419 (0.900) 6.425 (1.030)
RE (0.7) 5.881 (1.207) 10.096 (3.655) 10.123 (4.236)
QE (0.7) 16.126 (1.769) 65.581 (10.360) 66.137 (12.071)
RE (0.9) 4.913 (0.746) 6.951 (1.103) 6.959 (1.270)
QE (0.9) 6.344 (0.769) 10.039 (1.140) 10.055 (1.312)

MPSE

Data Entropy PT-IIC APT-IIC IAPT-IIC

1 SE 3.194 (0.581) 2.278 (0.491) 1.462 (0.466)
RE (0.6) 6.704 (3.108) 3.827 (1.143) 2.427 (0.816)
QE (0.6) 34.021 (22.934) 9.056 (4.501) 4.100 (3.167)
RE (0.9) 3.483 (0.666) 2.461 (0.540) 1.593 (0.500)
QE (0.9) 4.166 (0.795) 2.791 (0.664) 1.727 (0.645)

2 SE 4.738 (0.729) 5.967 (0.899) 4.143 (0.784)
RE (0.7) 6.201 (1.503) 9.185 (3.286) 5.358 (1.474)
QE (0.7) 18.085 (2.513) 49.104 (8.633) 13.298 (2.474)
RE (0.9) 5.025 (0.840) 6.460 (1.100) 4.392 (0.889)
QE (0.9) 6.528 (0.886) 9.080 (1.156) 5.515 (0.959)

Table 7. The observed lengths of CIs for the Data No. 1.

PT-IIC Scheme

Method Entropy 90% PB 95% PB 99% PB 90% SB 95% SB 99% SB 90% ACI 95% ACI 99% ACI

MLE SE 1.518 1.769 2.338 1.630 1.944 2.554 1.488 1.774 2.331
RE (0.7) 4.663 5.915 8.752 5.029 6.133 8.866 4.503 5.366 7.052
QE (0.7) 42.955 67.353 186.000 33.999 42.096 55.371 21.968 26.177 34.402
RE (0.9) 1.746 2.033 2.742 1.914 2.201 2.944 1.661 1.980 2.602
QE (0.9) 2.301 2.686 3.633 2.504 2.887 3.803 2.033 2.423 3.184

MPSE SE 1.528 1.823 2.400 1.751 2.094 2.892 1.911 2.277 2.993
RE (0.7) 8.587 10.095 13.911 9.655 12.035 17.533 10.224 12.183 16.011
QE (0.7) 359.823 617.294 2256.764 162.740 212.909 327.560 75.445 89.898 118.146
RE (0.9) 2.026 2.393 3.170 2.098 2.443 3.523 2.190 2.609 3.429
QE (0.9) 2.952 3.488 4.658 3.025 3.542 5.128 2.615 3.116 4.095

APT-IIC Scheme

Method Entropy 90% PB 95% PB 99% PB 90% SB 95% SB 99% SB 90% ACI 95% ACI 99% ACI

MLE SE 1.326 1.607 2.051 1.438 1.730 2.280 1.345 1.602 2.106
RE (0.7) 3.363 4.255 5.827 3.451 4.180 5.470 3.192 3.803 4.998
QE (0.7) 18.232 26.308 49.949 15.298 18.480 24.171 13.431 16.004 21.033
RE (0.9) 1.439 1.739 2.342 1.575 1.893 2.597 1.479 1.762 2.316
QE (0.9) 1.818 2.194 2.969 1.980 2.372 3.250 1.837 2.189 2.877

MPSE SE 1.238 1.471 1.937 1.681 1.984 2.708 1.616 1.925 2.530
RE (0.7) 2.930 3.563 4.838 4.488 5.424 6.873 3.759 4.479 5.886
QE (0.7) 13.732 18.080 29.583 19.883 23.782 30.958 14.808 17.645 23.189
RE (0.9) 1.377 1.616 2.197 1.882 2.226 3.120 1.777 2.117 2.782
QE (0.9) 1.721 2.021 2.741 2.275 2.780 3.851 2.183 2.602 3.419
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Table 7. Cont.

IAPT-IIC Scheme

Method Entropy 90% PB 95% PB 99% PB 90% SB 95% SB 99% SB 90% ACI 95% ACI 99% ACI

MLE SE 1.988 2.280 2.825 2.237 2.603 3.176 1.452 1.730 2.273
RE (0.7) 4.174 5.408 7.830 5.755 6.677 8.889 3.558 4.240 5.572
QE (0.7) 21.877 35.278 83.559 22.208 26.256 34.681 15.251 18.173 23.883
RE (0.9) 2.247 2.595 3.179 2.617 3.023 3.546 1.602 1.908 2.508
QE (0.9) 2.793 3.224 3.999 3.096 3.535 4.094 1.988 2.369 3.113

MPSE SE 1.177 1.401 1.826 1.789 2.118 2.849 1.532 1.826 2.400
RE (0.7) 1.847 2.162 2.869 3.553 4.209 5.597 2.685 3.200 4.205
QE (0.7) 3.903 4.581 6.339 6.514 7.389 8.990 10.419 12.415 16.316
RE (0.9) 1.236 1.490 1.925 1.937 2.313 3.143 1.644 1.960 2.575
QE (0.9) 1.384 1.665 2.140 1.999 2.404 3.117 2.123 2.530 3.325

Table 8. The observed lengths of CIs for the Data No. 2.

PT-IIC Scheme

Method Entropy 90% PB 95% PB 99% PB 90% SB 95% SB 99% SB 90% ACI 95% ACI 99% ACI

MLE SE 2.155 2.591 3.640 2.548 3.268 4.760 2.174 2.591 3.405
RE(0.7) 3.892 4.538 6.173 4.933 6.297 9.497 3.970 4.731 6.218
QE(0.7) 24.058 29.552 44.329 35.504 55.800 109.868 5.821 6.936 9.116
RE(0.9) 2.399 3.010 4.194 2.951 3.899 5.457 2.454 2.924 3.843
QE(0.9) 3.857 4.842 6.707 5.068 6.822 9.784 2.530 3.015 3.963

MPSE SE 2.331 2.796 3.645 2.454 3.026 3.977 2.397 2.856 3.753
RE(0.7) 5.706 7.061 14.586 4.990 6.168 8.271 4.945 5.892 7.744
QE(0.7) 53.727 77.886 746.232 32.066 43.943 66.353 8.266 9.850 12.945
RE(0.9) 2.733 3.281 4.404 2.816 3.503 4.843 2.763 3.292 4.327
QE(0.9) 4.564 5.512 7.535 4.714 6.183 9.169 2.915 3.474 4.565

APT-IIC Scheme

Method Entropy 90% PB 95% PB 99% PB 90% SB 95% SB 99% SB 90% ACI 95% ACI 99% ACI

MLE SE 2.804 3.349 4.313 3.440 4.137 6.141 2.960 3.527 4.636
RE(0.7) 8.978 11.326 14.857 16.522 22.075 37.542 12.024 14.327 18.829
QE(0.7) 266.041 477.384 1085.660 475.609 664.807 1561.745 34.080 40.609 53.369
RE(0.9) 3.683 4.304 5.727 4.529 5.315 7.657 3.628 4.323 5.681
QE(0.9) 7.333 8.663 11.661 9.071 10.922 16.283 3.749 4.467 5.870

MPSE SE 2.604 3.175 4.099 3.493 4.322 5.968 2.958 3.525 4.632
RE(0.7) 8.232 10.790 14.285 17.378 22.106 29.118 10.809 12.880 16.927
QE(0.7) 154.209 311.100 725.601 358.010 449.731 903.188 28.400 33.841 44.474
RE(0.9) 3.144 4.009 5.012 4.358 5.395 7.132 3.619 4.313 5.668
QE(0.9) 5.667 7.374 9.291 8.243 10.021 13.872 3.803 4.531 5.955

IAPT-IIC Scheme

Method Entropy 90% PB 95% PB 99% PB 90% SB 95% SB 99% SB 90% ACI 95% ACI 99% ACI

MLE SE 4.192 4.904 6.868 4.615 5.490 7.508 3.389 4.039 5.308
RE(0.7) 9.067 11.251 16.179 25.806 33.358 43.823 13.935 16.605 21.822
QE(0.7) 212.786 372.576 1351.513 782.050 1174.103 1973.134 39.711 47.319 62.187
RE(0.9) 6.442 7.626 11.217 5.965 6.927 9.608 4.177 4.978 6.542
QE(0.9) 14.273 17.609 29.263 12.933 14.969 22.750 4.316 5.143 6.759

MPSE SE 2.212 2.667 3.516 3.534 4.216 5.726 2.579 3.073 4.039
RE(0.7) 3.723 4.654 5.935 8.070 9.603 11.600 4.848 5.776 7.591
QE(0.7) 14.064 19.150 27.711 47.129 60.478 114.477 8.139 9.698 12.746
RE(0.9) 2.409 2.872 3.977 4.144 4.973 7.261 2.924 3.484 4.579
QE(0.9) 3.375 4.052 5.524 6.495 8.420 12.419 3.156 3.760 4.942

7. Conclusions

This paper has considered two estimation methods for Rényi, q, and Shannon en-
tropies for inverse Weibull distribution based on improved adaptive progressively Type-II
censored data. The estimation procedures of interest are the methods of maximum likeli-
hood and maximum product of spacing. The point estimators are obtained through the
invariance property. Moreover, the asymptotic confidence intervals and bootstrapped-
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based confidence intervals are also computed. Monte Carlo simulations have been carried
out to examine estimation efficiency for the considered inferential procedures. Furthermore,
two illustrative examples have been analyzed for the same purpose. The numerical study
demonstrates that the maximum likelihood method yields reasonable point estimates for
the three entropy measurements. On the other hand, numerical outcomes suggest that the
maximum product of the spacing method is preferred when obtaining confidence intervals
for these measurements. The data analysis demonstrated that the samples obtained using
improved adaptive progressive Type-II or adaptive progressive Type-II censoring schemes
provided more information than those gathered based on the traditional progressive Type-II
censoring scheme based on the used progressive censoring plans.

Two research directions are being considered in the future. One research direction is to
compare the performance of the considered conventional estimation methods to other non-
conventional counterparts, such as those established on the least squares theory. Another
research direction that needs to be addressed is comparing estimation efficiency between
improved adaptive progressively Type-II censored data and generalized progressively
hybrid censored data.
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