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Abstract

:

This paper provides a solution to the new fractional-order Lorenz–Stenflo model using the adaptive predictor–corrector approach and the  ρ -Laplace New Iterative Method (   L ρ  N I M  ), representing an extensive comparison between both techniques with RK4 related to accuracy and error analysis. The results show that the suggested approaches allow one to be more accurate in analyzing the dynamics of the system. These techniques also produce results that are comparable to the results of other approximate techniques. The techniques can, thus, be used on a wider class of systems in order to provide more accurate results. These techniques also appropriately identify chaotic attractors in the system. These techniques can be applied to solve various numerical problems arising in science and engineering in the future.
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1. Introduction


Work on a new chaotic system with multifold attractors by Lai et al. [1], the investigation of the fractional-order Chua system by Petras [2], and the research on FPGA-based sound encryption using fractional-order chaotic systems performed by Abd El-Maksoud et al. [3] provide further signs of the ability of fractional calculus to efficiently model real dynamic processes to discover their chaotic behavior.



Related works encompass investigations into fractional predator–prey chaos [4], innovative numerical techniques for fractional chaos [5], and fractional modeling of robotic manipulators [6]. The works mentioned above include ecological models, numerical methods, and robotics and fractional disease models [7], in addition to the foundational contributions of Oldham and Spanier about fractional calculus [8] and Gorenflo and Mainardi with respect to continuum mechanics [9], as well as those of Samko, Kilbas, and Marichev for fractional calculus [10], laying out a theoretical framework, as well as numerous applications in different disciplines of mathematics and sciences. An in-depth investigation of concealed attractors in dynamical systems was presented in [11]. The entropy-driven examination of analysis, signal encryption, and component estimates in novel circuits, along with various systems [12], extends fractional calculus to vast and diverse applications that are useful in scientific discovery and technological innovation.



The significance of the FDE is explained by the development of different methods for its solution in recent years, provided by modern trends in computational techniques [13,14,15,16], its ability to solve problems in physics and engineering, and its accounting for interdisciplinary intersections in areas such as economics, biology, and management [17,18,19,20,21,22,23,24].



The modeling of chaotic systems has become one of the most extensively explored fields, used universally throughout the natural and technical sciences [25]. Integrating chaotic systems into electrical circuits creates a complicated modeling process with a proper confrontation of real-life conditions; thus, it could be considered a rather challenging factor to predict. It uses phase portraits and advanced algorithms, searching for behaviors of chaotic systems to control the influence of model parameters, finding the Lyapunov, and tracking chaotic and even hyperchaotic behavior based on initial conditions [26,27,28]. Many analytical techniques have been combined with the Laplace transform to effectively solve differential equations [29,30,31,32].



The combination of the  ρ -Laplace method and the New Iterative Method (NIM) was first introduced in [33]. The advantages of the NIM [34,35,36] are that it does not need any perturbation parameters in the equation or any calculation of Adomian polynomials. The  ρ -Laplace method can work with generalized differential equations and is versatile when compared to the standard Laplace method that is explored in this paper.



This research area is concerned with analyzing fractional-order chaotic systems, acknowledging that systems of fractional order present solutions to complications that arise from derivatives of non-integer order [37]. This issue differentiates it from other forms that emphasize aspects different than Liouville and Caputo derivatives, Lyapunov analysis, and bifurcations [38,39,40,41,42,43]. Other works [44,45] move deeper into wide fractional chaotic and hyperchaotic systems, applying exact similar derivatives. Investigating amplitude control for dynamically symmetric systems also extends the scope and importance [46]. This research centers on new areas of fractional calculus applications, which may show the hidden properties of chaotic systems and open new possibilities for the development of fractional calculus and its application in numerous science fields. Further work on the other unexplored forms of derivatives and their relevance to chaotic dynamics may lead to important developments in the future.



The chaotic system proposed here is built upon the foundational Lorenz–Stenflo model previously introduced in [47,48,49]. The Lorenz–Stenflo model is a captivating chaos theory system used to understand the behavior of specific dynamic systems. The fractional modified Lorenz–Stenflo system is an extension of the renowned Lorenz system, initially formulated to study atmospheric convection [50]. This model is notable for its sensitivity to initial conditions, famously called the “butterfly effect”, where tiny changes in starting parameters lead to vastly different outcomes. This section introduces a novel fractional system utilizing a generalized Liouville–Caputo-type fractional derivative operator expressed through a system of five fractional-order differential equations:


      D 0  α , ρ    x 1   ( t )      = a  (  x 2  −  x 1  )  + r  x 4  + k  ( δ + β  x 5 2  )   x 2  ,        D 0  α , ρ    x 2   ( t )      = c  x 1  −  x 2  −  x 1   x 3  ,        D 0  α , ρ    x 3   ( t )      =  x 1   x 2  − b  x 3  ,        D 0  α , ρ    x 4   ( t )      = −  x 1  − a  x 4  ,        D 0  α , ρ    x 5   ( t )      =  x 2  ,     



(1)




where   a = 0.9  ,   r = 1.5  ,   k = 4  ,   c = 10  ,   δ = 20  ,   β = 0.02  , and   b = 3  , with initial conditions of    x 1   ( 0 )  = 0.1  ,    x 2   ( 0 )  = 0.1  ,    x 3   ( 0 )  = 0.1  ,    x 4   ( 0 )  = 0.1  , and    x 5   ( 0 )  = 0.1  .



This study aims to show numerical approaches, precisely the APC-G adaptive approach and the new iterative  ρ -Laplace method, to solve the fractional Lorenz–Stenflo model. The novelty of these methods is that they are much more accurate and efficient than the traditional methods, such as the RK4 method, in modeling the behavior of chaotic attractors. The successful implementation of these algorithms in this study will lead to future possibilities of enhancing numerical solutions to chaotic systems in diverse science and engineering fields. This study addresses the need for accurate and efficient methods to solve fractional-order chaotic systems, which traditional approaches struggle to handle. It bridges this gap by employing and comparing the APC-G and    L ρ  N I M   methods with RK4, focusing on accuracy and error analysis.



The remainder of this work is organized as follows: Section 2 provide some basic definitions used in our work. Section 3 illustrates the schema of the Adaptive Predictor–Corrector (APC-G) method. Section 4 presents the new iterative  ρ -Laplace method. Section 5 discusses the application of the new iterative  ρ -Laplace method. Section 6 discusses numerical method accuracy, and Section 7 concludes the study.




2. Mathematical Preliminaries


This section provides a brief overview of the operator derivatives, mainly focusing on fractional variants central to our analysis.



Definition 1.

The generalized fractional integral of function f,    I  a +   α , ρ   f  ( t )   ,   α > 0 , ρ > 0  , is given in [46].


    I  a +   α , ρ   f  ( t )  =    ρ  1 − α    Γ ( α )     ∫ a t   s  ρ − 1      t ρ  −  s ρ    α − 1   f  ( s )   d s ,  α > 0 ,  t > a .   



(2)









Definition 2.

Let   m − 1 < α < m  ,   ( m = ⌈ α ⌉ + 1 )  ,   ρ > 0  , and   f ∈  C m   [ a , b ]   . The generalized Riemann–Liouville (FD) of order α with dependence on a parameter (ρ) is defined as [51]


    D   a +    α , ρ    R  f  ( t )  =    t  1 − ρ     d  d t     m   I  a +   m − α , ρ   f  ( t )  =      t  1 − ρ    d  d t    m   Γ ( m − α )     ∫ a t        t ρ  −  s ρ   ρ     m − α − 1   f  ( s )   s  ρ − 1   d s ,  t > a ,   



(3)







In particular, if   0 < α < 1  ,   ρ > 0  , and   f ∈  C 1   [ a , b ]   , we have


    D   a +    α , ρ    R  f  ( t )  =   t  1 − ρ     d  d t      I  a +   1 − α , ρ   f  ( t )  =     t  1 − ρ    d  d t     Γ ( 1 − α )     ∫ a t        t ρ  −  s ρ   ρ     − α   f  ( s )   s  ρ − 1   d s ,  t > a ,   



(4)









Definition 3.

Let   α ≥ 0   and   m = ⌈ α ⌉ + 1   if   f ∈  C m   [ a , b ]   . We define the generalized Caputo (FD) of the function (f) of order α with a parameter of   ρ > 0   as follows [51]:


    D   a +    α , ρ    C  f  ( t )  =  D   a +    α , ρ    R   f  ( t )  −  ∑  k = 0   m − 1       f ρ  ( k )    ( a )    k !          t ρ  −  a ρ   ρ    k   ,   



(5)




where    f ρ  ( k )    ( t )  =    t  1 − ρ     d  d t     k  f  ( t )   . In the case of   0 < α < 1   and   f ∈  C 1   [ a , b ]   , we have


    D   a +    α , ρ    C  f  ( t )  =  D   a +    α , ρ    R   [ f  ( t )  − f  ( a )  ]  .   



(6)









Notice that if   α ∉  N 0   , f is an absolutely continuous function on [a,b]; then, the generalized Caputo (FD) is given by


   D   a +    α , ρ    C  f  ( t )  =   1  Γ ( 1 − α )     ∫ a t        t ρ  −  s ρ   ρ     − α       f ρ  ( 1 )    ( s )    s  1 − ρ      d s ,  t > a ,  










  =  I   a +    1 − α , ρ    f ρ  ( 1 )    ( t )  .  











Also, if   α ∈ N ,   D   a +    α , ρ    C  f  ( t )  =  f ρ  ( m )    ( t )   . Particularly,    D   a +    0 , ρ    C  f  ( t )  =  f ρ  ( 0 )    ( t )  = f  ( t )   



Definition 4.

The new generalized Caputo (FD) operator is given by


     D   a +    α , ρ   f   ( t )  =    ρ  α − m + 1    Γ ( m − α )     ∫ a t   s  ρ − 1      t ρ  −  s ρ    m − α − 1      s  1 − ρ     d  d s     m  f  ( s )  d s , t > a ≥ 0 ,   



(7)




where   m − 1 < α < m   and   m ∈ N   (see [52]).





Definition 5.

Given the function   f : [ 0 , ∞ ) → R  , the ρ-Laplace transform is defined by [53]


    L ρ   { f  ( t )  }  =  ∫ 0 ∞   e  − s    t ρ  ρ     f  ( t )     d t   t  ρ − 1     .   



(8)









The  ρ -Laplace transform of the generalized Caputo (FD) is defined by


   L ρ   {  D 0  α , ρ   y  ( t )  }  =  s α   L ρ   { y  ( t )  }  −  ∑  k = 0   n − 1    s  α − k − 1    (  x n  y )   ( 0 )   



(9)








   x =   t  1 − ρ     d  d t       










3. Algorithm of the Adaptive Predictor–Corrector (APC-G) Method


In this part, we present the numerical algorithm named the APC-G adaptive approach, which was developed to solve initial value problems (IVPs) involving a generalized Caputo (FD) easily and efficiently [51].


       D  a +   α , ρ   y  ( t )  = f  ( t , y  ( t )  )  ,  t ∈  [ 0 , T ]  ,        y  ( k )    ( a )  =  y 0 k  ,  k = 0 , 1 , … ,  ⌊ α ⌋  ,      



(10)




where   D  a +   α , ρ    is the generalized Caputo (FD). Then, for   m − 1 < α ≤ m  ,   α ≥ 0  ,   ρ > 0  , and   y ∈  C m   (  [ a , T ]  )   , and we obtain the following:


  y  ( t )  = u  ( t )  +    ρ  1 − α    Γ ( α )     ∫ a t   s  ρ − 1     (  t ρ  −  s ρ  )   α − 1   f  ( s , y  ( s )  )  d s ,  



(11)




where


  u  ( t )  =  ∑  n = 0   m − 1     1   ρ n  n !      (  t ρ  −  a ρ  )  n       x  1 − ρ     d  d x     n  y  ( x )    x = a   .  



(12)







The interval of   [ a , T ]   is partitioned into N unequal subintervals   (  [  t k  ,  t  k + 1   ]  , k = 0 , 1 , … ,    N − 1 )   Utilizing mesh points, we assume that function f has a unique solution on   [ a , T ]  .


     t 0     = a ,       t  k + 1      =    t k ρ  + h   1 / ρ   ,  k = 0 , 1 , … , N − 1 ,     



(13)







The equation   h =     T ρ  −  a ρ   N     is given. To obtain a numerical solution for the initial value problem (IVP), we construct a sequence of approximations denoted as   y k  ,   k = 0 , 1 , … , N  . Given the prior evaluations of   y (  t j  )   and    y j  ≈ y  (  t j  )    for   j = 1 , 2 , … , k > 0  , our objective is to employ the integral equation to derive the approximation of    y  k + 1   ≈ y  (  t  k + 1   )   .


  y  (  t  k + 1   )  = u  (  t  k + 1   )  +    ρ  1 − α    Γ ( α )     ∫  a   t  k + 1     s  ρ − 1     (  t  k + 1  ρ  −  s ρ  )   α − 1   f  ( s , y  ( s )  )  d s .  



(14)







By substituting


  z =  S ρ  ,  








we get


  y  (  t  k + 1   )  = u  (  t  k + 1   )  +    ρ  − α    Γ ( α )     ∫   a ρ    t  k + 1  ρ     (  t  k + 1  ρ  − z )   α − 1   f   z  1 / ρ   , y   z  1 / ρ     d z ,  



(15)




that is,


  y  (  t  k + 1   )  = u  (  t  k + 1   )  +    ρ  − α    Γ ( α )     ∑  j = 0  k   ∫     t j   ρ    t  j + 1  ρ     (  t  k + 1  ρ  − z )   α − 1   f   z  1 / ρ   , y  (  z  1 / ρ   )   d z .  



(16)







We use trapezoidal quadrature to approximate the integrals on the right-hand side of Equation (15), resulting in the corrector formula for   y (  t  k + 1   ) , k = 0 , 1 , … , N − 1  ,


  y  (  t  k + 1   )  ≈ u  (  t  k + 1   )  +     ρ  − α    h α    Γ ( α + 2 )     ∑  j = 0  k   a  j , k + 1   f   t j  , y  (  t j  )   +     ρ  − α    h α    Γ ( α + 2 )    f   t  k + 1   , y  (  t  k + 1   )    



(17)




where


   a  j , k + 1   =       k  α + 1   −  ( k − α )    ( k + 1 )  α      if  j = 0 ,         ( k − j + 2 )   α + 1   +   ( k − j )   α + 1   − 2   ( k − j + 1 )   α + 1       if  1 ≤ j < k .       



(18)







In the final step, we replace the predictor value (  y (  t  k + 1   )  ) produced by applying the one-step Adams–Bashforth approach to integral Equation (14) with the amount (   y p   (  t  k + 1   )   ) on the right side of the expression in Formula (16). This is accomplished by replacing the function expressed as   f   z  1 / ρ   , y  (  z  1 / ρ   )     with the quantity expressed as   f   t j  , y  (  t j  )     at each integral in Equation (16).


      y P   (  t  k + 1   )      ≈ u  (  t  k + 1   )  +    ρ  − α    Γ ( α )     ∑  j = 0  k   ∫   t j ρ    t  j + 1  ρ     (  t  k + 1  ρ  − z )   α − 1   f  (  t j  , y  (  t j  )  )   d z          = u  (  t  k + 1   )  +     ρ  − α    h α    Γ ( α + 1 )     ∑  j = 0  k     ( k + 1 − j )  α  −   ( k − j )  α   f  (  t j  , y  (  t j  )  )  .     



(19)







Hence, the formula completely illustrates our APC-G to decide the approximation of    y  k + 1   ≈ y  (  t  k + 1   )   ,


   y  k + 1   ≈ u  (  t  k + 1   )  +     ρ  − α    h α    Γ ( α + 2 )     ∑  j = 0  k   a  j , k + 1   f  (  t j  ,  y j  )  +     ρ  − α    h α    Γ ( α + 2 )    f  (  t  k + 1   ,  y  k + 1  p  )  ,  



(20)




where    y j  ≈ y  (  t j  )  , j = 0 , 1 , … , k  . We can use Equation (18) to find the expected value of   y  k + 1  p  , which should be less than or equal to    y p   (  t  k + 1   )   . The weights (  a  j , k + 1   ) are set up according to (18). To make the proposed adaptive APC-G method work, we need a grid that is not flat:   {  t  j + 1   =   (  t j ρ  + h )   1 / ρ   : j = 0 , 1 , … , N − 1 }  , where    t 0  = a   and   h =     T ρ  −  a ρ   N     and N is a real number [48]. It is important to note that the APC-G method cannot be used to solve IVPs described with the generalized Caputo (FD) if we use a uniform grid like the one in [54].



By applying this method to Equation (1), we obtain approximations of   x  1 , k + 1   ,   x  2 , k + 1   ,   x  3 , k + 1   ,   x  4 , k + 1   , and   x  5 , k + 1   . These approximations are defined for   N ∈ N  , representing the number of iterations, and for   T > 0  , indicating a positive time duration. The specific expressions for these approximations outlined are as follows:


     x  1  k + 1       ≈  x 10  + a     ρ  − α    h α    Γ ( α + 2 )     ∑  j = 0  k   a  j , k + 1    a   x  2 j   −  x  1 j    + r  x  4 j   + k  α + β  x   5 j   2    x  2 j            + a     ρ  − α    h α    Γ ( α + 2 )     a   x   2 k  + 1  P  −  x   1 k  + 1  P   + r  x   4 k  + 1  P  + k   α + β  x   5 k  + 1  P   2   x   2 k  + 1  P   ,       x  1  k + 1       ≈  x 10  + a     ρ  − α    h α    Γ ( α + 2 )     ∑  j = 0  k   a  j , k + 1    c  x  1 j   −  x  2 j   −  x  1 j    x  3 j            + a     ρ  − α    h α    Γ ( α + 2 )     c  x   1 k  + 1  P  −  x   2 k  + 1  P  −  x   1 k  + 1  P   x   3 k  + 1  P   ,       x  1  k + 1       ≈  x 10  + a     ρ  − α    h α    Γ ( α + 2 )     ∑  j = 0  k   a  j , k + 1     x  1 j    x  2 j   − b  x  3 j    + a     ρ  − α    h α    Γ ( α + 2 )      x   1 k  + 1  P   x   2 k  + 1  P  − b  x   3 k  + 1  P   ,       x  1  k + 1       ≈  x 10  + a     ρ  − α    h α    Γ ( α + 2 )     ∑  j = 0  k   a  j , k + 1    −  x  1 j   − a  x  4 j    + a     ρ  − α    h α    Γ ( α + 2 )     −  x   1 k  + 1  P  − a  x   4 k  + 1  P   ,       x  1  k + 1       ≈  x 10  + a     ρ  − α    h α    Γ ( α + 2 )     ∑  j = 0  k   a  j , k + 1     x  2 j    + a     ρ  − α    h α    Γ ( α + 2 )      x   2 k  + 1  P   .     



(21)




where   h =    T ρ  N     and


     x  1  k + 1       ≈  x 10  + a     ρ  − α    h α    Γ ( α + 2 )     ∑  j = 0  k     ( k + 1 − j )  α  −   ( k − j )  α    a  (  x  2 j   −  x  1 j   )  + r  x  4 j   + k  ( α + β  x   5 j   2  )   x  2 j            + a     ρ  − α    h α    Γ ( α + 2 )     a  (  x   2  k + 1    P  −  x   1  k + 1    P  )  + r  x   4  k + 1    P  + k   ( α + β  x   5  k + 1    P  )  2   ,       x  1  k + 1       ≈  x 10  + a     ρ  − α    h α    Γ ( α + 2 )     ∑  j = 0  k     ( k + 1 − j )  α  −   ( k − j )  α    c  x  1 j   −  x  2 j   −  x  1 j    x  3 j            + a     ρ  − α    h α    Γ ( α + 2 )     c  x   1  k + 1    P  −  x   2  k + 1    P  −  x   1  k + 1    P   x   3  k + 1    P   ,       x  1  k + 1       ≈  x 10  + a     ρ  − α    h α    Γ ( α + 2 )     ∑  j = 0  k     ( k + 1 − j )  α  −   ( k − j )  α     x  1 j    x  2 j   − b  x  3 j            + a     ρ  − α    h α    Γ ( α + 2 )      x   1  k + 1    P   x   2  k + 1    P  − b  x   3  k + 1    P   ,       x  1  k + 1       ≈  x 10  + a     ρ  − α    h α    Γ ( α + 2 )     ∑  j = 0  k     ( k + 1 − j )  α  −   ( k − j )  α    −  x  1 j   − a  x  4 j            + a     ρ  − α    h α    Γ ( α + 2 )     −  x   1  k + 1    P  − a  x   4  k + 1    P   ,       x  1  k + 1       ≈  x 10  + a     ρ  − α    h α    Γ ( α + 2 )     ∑  j = 0  k     ( k + 1 − j )  α  −   ( k − j )  α    x  2 j           + a     ρ  − α    h α    Γ ( α + 2 )     x   2  k + 1    P  .     



(22)







The solutions of Equation (1) obtained with the help of the adaptive (APC-G) method are presented in Table 1 and Table 2, corresponding to two sets of parameters. Table 1 compares the results obtained by the implementation of the adaptive (APC-G) method at   α = 1  ,   ρ = 1  , and   t = 0.1   with the results obtained by the RK4 method. The APC-G method shows high conformity with the findings, displaying its efficiency and precision in solving fractional models. In particular, when the step size (h) goes down, the solutions tend to coincide, indicating the flexibility of the method. Thus, as presented in Table 2,   α = 0.95  ,   ρ = 1  , and   t = 0.5  . The solutions seem to vary because of changes in the fractional-order parameter ( α ). This sensitivity of the solution to  α  is significant in real-world problems in which fractional-order effects are present. Overall, the APC-G method was found to be efficient for analyzing fractional-order systems while providing satisfactory and reliable results for additional studies and applications in various scientific and engineering fields.




4.  ρ -Laplace New Iterative Method (LρNIM)


This section outlines the NIM’s approach to solving fractional systems, explained here by considering the following system of a fractional differential system involving generalized derivatives.


   D  0   α , ρ    ρ   x j   ( t )  = L  [  x j   ( t )  ]  + N  [  x j   ( t )  ]   



(23)







The above system is subject to the following initial conditions:


   x j   ( 0 )  =  g j  ,  j = 1 , 2 , 3 , … , m .  



(24)







Here,    D  0   α , ρ    ρ    is the generalized fractional derivative of the functions (  x j  , where j refers to the equation in the system). The terms  L  and  N  represent the linear and nonlinear parts, respectively. Application of the  ρ -Laplace transform to Equation (25) yields the following expression:


   L ρ   [  x j   ( t )  ]  =    g j  s   +   1  s α     L ρ   L  [  x j   ( t )  ]  + N  [  x j   ( t )  ]    



(25)







Taking   L ρ  − 1   , we get


   x j   ( t )  =  g j  +  L ρ  − 1      1  s α     L ρ   L  [  x j   ( t )  ]  + N  [  x j   ( t )  ]     



(26)







Now, we take the solution of (27) in the form of


   x j  =  ∑  r = 0  ∞   x  j r    .  



(27)







Then,


  L   ∑  r = 0  ∞   x  j r    =  ∑  r = 0  ∞  L  (  x  j r   )   



(28)








   N   ∑  r = 0  ∞   x  j r    = N  (  x  j 0   )  +  ∑  r = 1  ∞    ∑  i = 0  r  N  (  x  j i   )  −   ∑  i = 0   r − 1   N  (  x  j i   )      



(29)





Then, (28) can be written as


   ∑  r = 0  ∞   x  j r   =  g j  +  L ρ  − 1      1  s α     L ρ   ∑  i = 0  ∞  L  (  x  j r   )  + N  (  x  j 0   )  +  ∑  r = 1  ∞    ∑  i = 0  r  N  (  x  j i   )  −   ∑  i = 0   r − 1   N  (  x  j i   )      



(30)







Furthermore, the repeating formula can be obtained as follows:


     x  j 0      =  g j        x  j 1      =  L ρ  − 1      1  s α     L ρ   L  [  x  j 0    ( t )  ]  + N  [  x  j 0    ( t )  ]          x  j r + 1      =  L ρ  − 1      1  s α     L ρ   L  (  x  j r   )  +  N   ∑  r = 0  r   (  x  j i   )   ( t )    −  N   ∑  i = 0   r − 1    (  x  j i   )   ( t )      ,      r    = 1 , 2 , …     












5. Application of the New Iterative  ρ -Laplace Method


In this section, we analyze the system described by Equation (20). Using the L ρ NIM method outlined earlier, we start with initial conditions as the first approximation that is,   x  j 0    = 0.1,   j = 1 , 2 , 3 , 4 , 5  . We obtain the approximate solutions for the system variables. The general form of the series solution is given by


   x j  =  ∑  r = 0  ∞   x  j r   ,  j = 1 , 2 , 3 , … , m .  











We apply the   N  L ρ  M   method explained in the previous section to get


     x  1 ( 1 )      =  0.1 r + k ( 0.001 β + 0.1 δ )     t  α ρ     ρ α  Γ  [ 1 + α ]     ,       x  2 ( 1 )      =  − 0.11 + 0.1 c     t  α ρ     ρ α  Γ  [ 1 + α ]     ,       x  3 ( 1 )      =  0.01 − 0.1 b     t  α ρ     ρ α  Γ  [ 1 + α ]     ,       x  4 ( 1 )      =  − 0.1 − 0.1 a     t  α ρ     ρ α  Γ  [ 1 + α ]     ,       x  5 ( 1 )      =    0.1  t  α ρ      ρ α  Γ  [ 1 + α ]     ,       x  1 ( 2 )      =  − 0.1 r + k ( 0.0009 β + 0.001 c β − 0.11 δ + 0.1 c δ )  +           a  − 0.11 + 0.1 c − 0.2 r − 0.001 k β − 0.1 k δ     t  2 α ρ     ρ  2 α   Γ  [ 1 + 2 α ]     ,       x  2 ( 2 )      =  0.109 + 0.01 b − 0.01 r − 0.0001 k β − 0.01 k δ  +           c  − 0.1 + 0.1 r + 0.001 k β + 0.1 k δ     t  2 α ρ     ρ  2 α   Γ  [ 1 + 2 α ]     ,       x  3 ( 2 )      =  − 0.011 − 0.01 b + 0.1  b 2  + 0.01 c + 0.01 r + 0.0001 k β + 0.01 k δ     t  2 α ρ     ρ  2 α   Γ  [ 1 + 2 α ]     ,       x  4 ( 2 )      =  0.1 a + 0.1  a 2  − 0.1 r − 0.001 k β − 0.1 k δ     t  2 α ρ     ρ  2 α   Γ  [ 1 + 2 α ]     ,       x  5 ( 2 )      =  − 0.11 + 0.1 c     t  2 α ρ     ρ  2 α   Γ  [ 1 + 2 α ]     .     












      x  1 ( 3 )      =   1  Γ  [ 1 +  a 2  ]  Γ  [ 1 + 3 a ]      t  3 a ρ − 3 a    ρ  − 3 a             − 0.1  r 2  + k r  ( − 0.0011 + 0.001 c ) β + ( − 0.11 + 0.01 c ) δ  +           a  0.109 + 0.01 b − 0.1 c + 0.19 r + 0.1 c r − 0.001 k β + 0.1 k δ  +            a 2   0.11 − 0.1 c + 0.3 r + 0.001 k β + 0.1 k δ  +           k   ( − 0.000001 + 0.00001 c )   β 2  + β  ( − 0.00111 + 0.0001 b + 0.001 c − 0.0002 k δ + 0.0002 c k δ  +             δ  0.109 + 0.01 b − 0.1 c − 0.01 k β + 0.1 k δ             +  ( − 0.0012 + 0.002 c ) k β [ 1 + 2 a ]        x  2 ( 3 )      =    Γ [ 1 + 2 a ] c   Γ [ 1 + 3 a ]     t  3 a ρ − 3 a               1  Γ [ 1 +  a 2  ]     ( − 0.001 + 0.01 b ) r + ( − 0.00001 + 0.0001 b ) k β + ( − 0.001 + 0.01 b ) δ  +             1  Γ [ 1 + 2 a ]     − 0.1079 − 0.009 b − 0.01  b 2  + 0.099 c + 0.019 r − 0.2 c r +            2.710505431213761 ×  10  − 20   k β − 0.000021 c k β + 0.001  c 2  k β +           0.02 k δ − 0.22 c k δ + 0.1  c 2  + 0.02 r + 0.0001 k β + 0.01 k δ +           c  − 0.12 − 0.2 r − 0.001 k β − 0.1 k δ        x  3 ( 3 )      =    Γ [ 1 + 2 a ] c   Γ [ 1 + 3 a ]     t  3 a ρ − 3 a               1  Γ [ 1 +  a 2  ]     ( − 0.011 + 0.01 c ) r + ( − 0.000011 + 0.0001 c ) k β + ( − 0.011 + 0.01 c ) δ  +             1  Γ [ 1 + 2 a ]     0.0109 + 0.01  b 2  − 0.1  b 3  − 0.01 c − 0.01 r + 0.01  c 2  −            0.012 k δ + 0.02 c k δ + a  − 0.011 + 0.01 c − 0.2 r − 0.001 k β − 0.1 k δ  +             b  0.012 − 0.01 c − 0.017 − 0.0001 k β − 0.01 k δ          x  4 ( 3 )      =   1  Γ [ 1 +  a 2  ]      1  Γ [ 1 + 3 a ]     t  3 a ρ − 3 a             − 0.1  a 2  − 0.1  a 3  + 0.1 r + k  − 0.00009 β − 0.001 c β + 0.11 δ − 0.1 c δ  +            a  0.11 − 0.1 c + 0.3 r + 0.002 k β + 0.2 k δ         x  5 ( 3 )      =  0.109 + 0.01 b − 0.01 r − 0.0001 k β − 0.01 k δ + c  − 0.1 + 0.1 r + 0.001 k β + 0.1 k δ      t  3 a ρ     ρ  3 a   Γ  [ 1 + 3 a ]          









The approximate solution of system (1) in the series form


   x j  =  ∑  r = 0  ∞   x  j r   , j = 1 , 2 , 3 , … , m    ( 31 )   



(31)







Table 3, Table 4 and Table 5 present the approximate solutions of Equation (1) obtained with the help of the    L p  N I M   method for two different parameter values. When   α = 1  ,   ρ = 1  , and t changes, it is evident from Table 3 that the    L ρ  N I M   method successfully captures changes in the system at each t. The system naturally changes its behavior over time, as reflected by the symbolizing of this change. The obtained results generally conform with the results that were attained by using the APC-G method, as well as those of the RK4 method; therefore, the employment of the    L ρ  N I M   method offers a guarantee of accuracy and reliability. Table 4 provides the solutions when   α = 0.95   and   ρ = 1  . Considering the influence of fractional-order parameters, when   α = 0.95  ,   ρ = 1  , and t is varied, the outcomes indicate the flexibility and simplicity of using the method with different parameters. Exploiting the    L ρ  N I M   approach yields satisfactory results for the precise and stable solution of the fractional-order Lorenz–Stenflo model. In view of these conclusions, adopting    L ρ  N I M   in solving numerical computations for dynamical systems in several related applications is credible. Table 5 provides the solutions when   α = 1   and   ρ = 0.95  , and t is varied.



The figures display the long-term system state obtained in response to the defined parameters using the APC-G adaptive approach in system (1), where   a = 0.9  ,   r = 1.5  ,   k = 4  ,   c = 10  ,   δ = 20  ,   β = 0.02  , and   b = 3   under the abovementioned initial conditions, which is critical in analyzing system behavior. The chosen set of parameters (  ( α , ρ ) = ( 1 , 1 )  ) is illustrated in Figure 1; it previews a typical Lorenz-like attractor and demonstrates the system’s behavior in response to the variation of initial values. In Figure 2 for   ( α , ρ ) = ( 0.95 , 1.1 )  , we can see very small distortions in the shape of the attractor, showing how minor parameter changes strongly influence the system dynamics. These chaotic phase diagrams stress the complexity and fragile character of the system, which have been crucial for the analysis of its behavior for a long time and are useful for outlooks on applications in directions such as stability and control of chaotic dynamics in various fields.




6. Numerical Method Accuracy


This section evaluates the accuracy of    L ρ  N I M  , RK4, and ABC numerical methods in solving fractional systems with   α = 1   and varying step sizes. Comparative error analysis highlights their convergence and reliability for precise computations.



Table 6, Table 7 and Table 8 present the results that confirm the accuracy and convergence of the    L ρ  N I M  , RK4, and ABC methods for   α = 1  . In Table 6, it is observed that for the comparison of error values between    L ρ  N I M   and APC-G,    L ρ  N I M   produces highly accurate results at relatively small time steps. Again, as shown in Table 7,    L ρ  N I M   yields very robust performance for four terms, unlike the other methods. Finally, the comparison of APC-G with RK4 in Table 8 shows close agreement. However, APC-G results in slightly higher deviations for some of the variables.



These results really pinpoint the reliability of    L ρ  N I M   for iterative solutions, its precision for fine step sizes, and its competitive performance compared to the RK4 and ABC methods. The differences in errors are minimal, further validating the suitability of all three methods for solving fractional systems.




7. Conclusions


The APC-G adaptive approach and the new iterative  ρ -Laplace method have been validated as highly effective tools for the numerical solution of the novel fractional-order Lorenz–Stenflo model. This study’s outcomes demonstrate these methods’ capacity to produce accurate solutions consistent with those generated by other numerical approaches. Their successful use in modeling attractors’ chaotic behaviors adds to the reliability of these mathematical structures for the analysis of dynamical systems. For these reasons, extending these methods to various other systems can extend the accuracy and usefulness of numerical solutions in science and engineering. In the future, using such methods when analyzing the intricacies of various models will undeniably help advance our capacity to probe, analyze, and control the vast scale of disordered and unpredictable elements found in natural and artificial systems. This work lays the foundation for future works attempting to provide further analysis of numerical techniques to enhance understanding of the stochastic behaviors embedded in dynamic systems, and we aim to solve new fractional models [55,56] and compare them with other numerical methods [57,58].
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	Adaptive Predictor–Corrector



	  L ρ  NIM
	 ρ -Laplace New Iterative Method



	RK4
	Runge–Kutta Fourth Order



	FD
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Figure 1. Chaotic phase diagram when ( α , ρ ) = (1, 1). 
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Figure 2. Chaotic phases diagram when ( α , ρ ) = (0.95, 1.1). 
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Table 1. Solutions of system (1), where   α = 1  ,   ρ = 1  , and   t = 0.1  .






Table 1. Solutions of system (1), where   α = 1  ,   ρ = 1  , and   t = 0.1  .





	h
	    x 1    
	    x 2    
	    x 3    
	    x 4    
	    x 5    





	1/320
	2.283844413301
	0.797952499551
	0.097915278058
	0.019077283069
	0.127649330154



	1/640
	2.963285220975
	1.03718333291
	0.126836648668
	−0.004500262625
	0.136359373489



	1/1280
	2.984712038990
	1.044671936092
	0.127749294328
	−0.005262457164
	0.136633522408



	1/2560
	2.991922447418
	1.047191683709
	0.128058233862
	−0.005518947956
	0.136725777104



	1/5120
	3.004794654208
	1.051680099158
	0.128568355814
	−0.005980712961
	0.136890349447



	1/10,240
	3.001589953123
	1.050569877279
	0.128473891927
	−0.005862845215
	0.136849469476



	RK4
	3.006448780948
	1.052267663399
	0.128633313127
	−0.00603568706
	0.136911634742










 





Table 2. Solutions of system (1), where   α = 0.95  ,   ρ = 1  , and   t = 0.5  .






Table 2. Solutions of system (1), where   α = 0.95  ,   ρ = 1  , and   t = 0.5  .





	h
	    x 1    
	    x 2    
	    x 3    
	    x 4    
	    x 5    





	1/320
	47.685154780554
	−4.114032737681
	13.287109187924
	−12.411184587899
	0.901407507414



	1/640
	40.102941236787
	−2.025588329848
	9.467929973564
	−12.946371308421
	0.818245196762



	1/1280
	39.661374122144
	−1.087209789707
	9.328098040913
	−13.068338115120
	0.815746294088



	1/2560
	39.664382948745
	−0.750562638749
	9.356660757819
	−13.116575537325
	0.817018962946



	1/5120
	39.691627088949
	−0.607088038525
	9.381702777609
	−13.138724381420
	0.817935536388



	1/10,240
	39.709777236828
	−0.539979893277
	9.396142234635
	−13.149522678932
	0.818445472344










 





Table 3.    L p  N I M   solutions of Equation (1) when   α = 1   and   ρ = 1  .






Table 3.    L p  N I M   solutions of Equation (1) when   α = 1   and   ρ = 1  .





	t
	    X 1    
	    X 2    
	    X 3    
	    X 4    
	    X 5    





	0.0
	0.1
	0.1
	0.1
	0.1
	0.1



	0.01
	0.18578455362077229
	0.11298492371226668
	0.0971926346926667
	0.09769151125200001
	0.10105780413200001



	0.02
	0.28439526896617817
	0.1345144312981334
	0.09458627597013335
	0.09452791649600001
	0.1022844433056



	0.03
	0.4022201277608152
	0.1651506274312001
	0.0922045295992
	0.09045201117400001
	0.103759711564



	0.04
	0.545647111729425
	0.20545561785066666
	0.09007100136106667
	0.0854065996800002
	0.10555634644480001



	0.05
	0.7210642025963535
	0.2559915040333334
	0.0882292703333334
	0.07933447025
	0.1077755165000002



	0.06
	