Quartz Fine Particle Processing: Hydrophobic Aggregation by Shear Flocculation
<p>Schematic representation of shear flocculation.</p> "> Figure 2
<p>Particle size distribution of quartz sample.</p> "> Figure 3
<p>Zeta potential measurements for the quartz particles in the absence (NaCl −10<sup>−3</sup> mol·L<sup>−1</sup>) and presence of DDA (at 1 × 10<sup>−3</sup> mol·L<sup>−1</sup>) as a function of the solution pH.</p> "> Figure 4
<p>Influence of the stirring speed and DDA dosage on the floc volume in the Imhoff cone at pH 10.5: (<b>a</b>) contour plot; and (<b>b</b>) response surface.</p> "> Figure 5
<p>Influence of the stirring speed and sedimentation time on the DoA for the quartz particles with DDA at 10<sup>−3</sup> mol·L<sup>−1</sup> and pH 10.5: (<b>a</b>) Contour plot; (<b>b</b>) Response surface.</p> "> Figure 6
<p>The volume of sedimented quartz flocs as a function of conditioning time [min] using DDA at 1 × 10<sup>−3</sup> mol·L<sup>−1</sup>, pH 10.5, and 2000 rpm stirring speed.</p> "> Figure 7
<p>Sedimented quartz flocs volume as a function of the solution pH, in the presence of DDA (at 1 × 10<sup>−3</sup> mol·L<sup>−1</sup>), both with and without stirring at 2000 rpm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material, Its Preparation and Characterization
2.2. Zeta Potential Measurements
2.3. Shear Flocculation Experiments
3. Results and Discussions
3.1. Particle Size Analysis
3.2. Zeta Potential Analysis
3.3. Shear Flocculation Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassanzadeh, A.; Safari, M.; Hoang, D.H. Fine, coarse and fine-coarse particle flotation in mineral processing with a particular focus on the technological assessments. In Proceedings of the 2nd International Electronic Conference on Mineral Science, Online, 1–15 March 2021. [Google Scholar]
- Hassanzadeh, A.; Safari, M.; Hoang, D.H.; Khoshdast, H.; Albijanic, B.; Kowalczuk, P.B. Technological assessments on recent developments in fine and coarse particle flotation systems. Miner. Eng. 2022, 180, 107509. [Google Scholar] [CrossRef]
- Garmsiri, M.R.; Nosrati, A. Dewatering of copper flotation tailings: Effect of feed dilution on the thickener performance. Miner. Process. Extr. Metall. 2019, 40, 141–147. [Google Scholar] [CrossRef]
- Bilgen, S.; Wills, B.A. Shear flocculation—A review. Miner. Eng. 1991, 4, 483–487. [Google Scholar] [CrossRef]
- Song, S.; Zhang, X.; Yang, B.; Lopez-Mendoza, A. Flotation of molybdenite fines as hydrophobic agglomerates. Sep. Purif. Tech. 2012, 98, 451–455. [Google Scholar] [CrossRef]
- Yang, B.; Song, S.; Lopez-Valdivieso, A. Kinetics of hydrophobic agglomeration of molybdenite fines in aqueous suspensions. Phys. Probl. Miner. Process. 2015, 51, 181–189. [Google Scholar]
- Warren, L.J. Flocculation of stirred suspensions of cassiterite and tourmaline. Colloids Surf. 1982, 5, 301–319. [Google Scholar] [CrossRef]
- Lu, S.; Song, S. Hydrophobic flocculation of fine mineral particles in aqueous solution. Colloids Surf. 1991, 57, 49–60. [Google Scholar] [CrossRef]
- Raju, G.B.; Subrahmanyam, T.V.; Sun, Z.; Forsling, W. Shear flocculation of quartz. Int. J. Miner. Process. 1991, 32, 283–294. [Google Scholar] [CrossRef]
- Akdemir, Ü. Shear flocculation of fine hematite particles and correlation between flocculation, flotation and contact angle. Powder Technol. 1997, 94, 1–4. [Google Scholar] [CrossRef]
- Kitchener, J.A. Flocculation in Mineral Processing. In The Scientific Basis of Flocculation; NATO Advanced Study Institutes Series; Ives, K.J., Ed.; Springer: Dordrecht, The Netherlands, 1978; Volume 27. [Google Scholar] [CrossRef]
- Rulyov, N.N.; Korolyov, B.Y.; Kovalchuk, N.M. Ultra-flocculation of quartz suspension: Effects of shear rate, dispersity and solids concentration. Miner. Process. Extr. Metall. 2009, 118, 175–181. [Google Scholar] [CrossRef]
- Rulyov, N.N.; Laskowski, J.S.; Concha, F. The use of ultra-flocculation in optimization of the experimental flocculation procedures. Physicochem. Probl. Miner. Process. 2011, 46, 5–16. [Google Scholar]
- Khoshdast, H.; Hassanzadeh, A.; Kowalczuk, P.B.; Farrokhpay, S. Characterization Techniques of Flotation Frothers—A Review. Miner. Process. Extr. Metall. Rev. 2023, 44, 77–101. [Google Scholar] [CrossRef]
- Wightman, E.M.; Grano, S.R.; Ralston, J. Selectivity in the polymer assisted separation of galena from quartz by flotation. Miner. Eng. 2000, 13, 843–856. [Google Scholar] [CrossRef]
- Yin, W.Z.; Yang, X.S.; Zhou, D.P.; Li, Y.J.; Lü, Z.F. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate. Trans. Nonferrous Met. Soc. China 2011, 21, 652–664. [Google Scholar] [CrossRef]
- Wang, C.; Wang, P.; Tan, X.; Huang, G.; Kou, J.; Sun, C.; Liu, Q. Selective aggregation of fine quartz by polyaluminum chloride to mitigate its entrainment during fine and ultrafine mineral flotation. Sep. Purif. Technol. 2021, 279, 119606. [Google Scholar] [CrossRef]
- Li, M.; Xiang, Y.; Chen, T.; Gao, X.; Liu, Q. Separation of ultra-fine hematite and quartz particles using asynchronous flocculation flotation. Miner. Eng. 2021, 164, 106817. [Google Scholar] [CrossRef]
- Song, S.; Lu, S. Theory and applications of hydrophobic flocculation technology. Dev. Miner. Process. 2000, 13, C5-31–C5-38. [Google Scholar]
- Patil, D.P.; Andrews, J.R.G.; Uhlherr, P.H.T. Shear flocculation—Kinetics of floc coalescence and breakage. Int. J. Miner. Process. 2001, 61, 171–188. [Google Scholar] [CrossRef]
- Arnold, R.; Warren, L.J. Electrokinetic properties of scheelite. J. Colloid Interface Sci. 1974, 47, 134–144. [Google Scholar] [CrossRef]
- Warren, L.J. Shear flocculation of ultrafine scheelite in sodium oleate solution. J. Colloid Interface Sci. 1975, 50, 307. [Google Scholar] [CrossRef]
- Ni, C.; Zhang, Q.; Jin, M.; Xie, G.; Peng, Y.; Yu, H.; Bu, X. Effect of high-speed shear flocculation on the flotation kinetics of ultrafine microcrystalline graphite. Powder Technol. 2022, 396, 345–353. [Google Scholar] [CrossRef]
- Hassanzadeh, A.; Tanisali, E.; Hassas, B.V.; Karakaş, F.; Çelik, M.S. Effect of particle morphology on coagulation of silica. In Proceedings of the XXVIII International Mineral Processing Congress, Quebec, QC, Canada, 11–15 September 2016. [Google Scholar]
- Krishnan, S.; Klein, A.; El-Aasser, M.S.; Sudol, E.D. Agitation Effects in Emulsion Copolymerization of n-Butyl Methacrylate and N-Methylol Acrylamide. Polym. React. Eng. 2007, 11, 335–357. [Google Scholar] [CrossRef]
- Ramphal, S.R.; Sibiya, M.S. Optimization of coagulation-flocculation parameters using a photometric dispersion analyser. Drink. Water Eng. Sci. 2014, 7, 73–82. [Google Scholar] [CrossRef]
- Nazari, S.; Hassanzadeh, A. The effect of reagent type on generating bulk sub-micron (nano) bubbles and flotation kinetics of coarse-sized quartz particles. Powder Technol. 2020, 374, 160–171. [Google Scholar] [CrossRef]
- Fuerstenau, D.W.; Pradip. Zeta Potentials in the Flotation of Oxide and Silicate Minerals. Adv. Colloid Interface Sci. 2005, 114, 9–26. [Google Scholar] [CrossRef]
- Fuerstenau, D.W.; Fuerstenau, M.C. The flotation of oxide and Silicate Minerals. In Principles of Flotation; King, R.P., Ed.; Inst. Min. Metall. Monograph Series: Johannesburg, South Africa, 1982; 276p. [Google Scholar]
- Duan, H.; Liu, W.; Wang, X.; Liu, W.; Zhang, X. Effect of Secondary Amino on the Adsorption of N-Dodecylethylenediamine on Quartz Surface: A Molecular Dynamics Study. Powder Technol. 2019, 351, 46–53. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Y.; Li, W.; Song, Y.; Xu, W.; Li, K.; Zhang, Y. Mechanism of Modified Ether Amine Agents in Petalite and Quartz Flotation Systems under Weak Alkaline Conditions. Minerals 2023, 13, 825. [Google Scholar] [CrossRef]
- Bulatovic, S.M. Adsorption Mechanism of Flotation Collectors. In Handbook of Flotation Reagents: Chemistry, Theory and Practice: Flotation of Sulfide Ores; Elsevier: Amsterdam, The Netherlands, 2007; Volume 1, pp. 139–150. [Google Scholar]
- Smith, R.W.; Akhtar, S. Cationic flotation of oxides and silicates. In Flotation, A.M. Gaudin Memorial Volume; Fuerstenau, M.C., Ed.; AIME Society of Mining Engineers: New York, NY, USA, 1976; pp. 87–116. [Google Scholar]
- Filippov, L.O.; Filippova, I.V.; Severov, V.V. The use of collectors mixture in the reverse cationic flotation of magnetite ore: The role of Fe-bearing silicates. Miner. Eng. 2010, 23, 91–98. [Google Scholar] [CrossRef]
- Pinheiro, V.S.; Baltar, C.A.M.; Leite, J.Y.P. Amine flotation: The importance of the water quality. REM Int. Eng. J. 2012, 65, 549–552. [Google Scholar]
- Forbes, E. Shear, selective and temperature responsive flocculation: A comparison of fine particle flotation techniques. Int. J. Miner. Process. 2011, 99, 1–10. [Google Scholar] [CrossRef]
- Zhu, H.; Qin, W.; Chen, C.; Chai, L.; Li, L.; Liu, S.; Zhang, T. Selective flotation of smithsonite, quartz and calcite using alkyl diamine ether as collector. Trans. Nonferrous Met. Soc. China 2018, 28, 163–168. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Hou, B.; Junjian, Y.; Mao, S.; Li, X. Flotation Separation of Quartz from Collophane Using an Amine Collector and Its Adsorption Mechanisms. Powder Technol. 2017, 318, 224–229. [Google Scholar] [CrossRef]
- Song, S.; Lopez-Valdivieso, A. Parametric aspect of hydrophobic flocculation technology. Miner. Process. Extr. Metall. Rev. 2002, 23, 101–127. [Google Scholar] [CrossRef]
- Warren, L.J. Shear-flocculation. In Colloidal Chemistry in Mineral Processing; Laskowski, J.S., Ralston, J., Eds.; Elsevier Science Publishers: New York, NY, USA, 1992; Volume 12, pp. 309–329. [Google Scholar]
- Lu, S.; Ding, Y.; Guo, J. Kinetics of fine particle aggregation in turbulence. Adv. Colloid Interface Sci. 1998, 78, 197–235. [Google Scholar] [CrossRef]
- Yang, B.; Huang, P.; Song, S.; Luo, H.; Zhang, Y. Hydrophobic agglomeration of apatite fines induced by sodium oleate in aqueous solutions. Results Phys. 2018, 9, 970–977. [Google Scholar] [CrossRef]
- Zhang, T.; Qin, W.Q.; Yang, C.; Huang, S.P. Floc flotation of marmatite fines in aqueous suspensions induced by butyl xanthate and ammonium dibutyl dithiophosphate. Trans. Nonferrous Met. Soc. China 2014, 24, 1578–1586. [Google Scholar] [CrossRef]
- Asgari, K.; Khoshdast, H.; Nakhaei, F.; Garmsiri, M.R.; Huang, Q.; Hassanzadeh, A. A Review on Floc-Flotation of Fine Particles: Technological Aspects, Mechanisms, and Future Perspectives. Miner. Process. Extr. Metall. Rev. 2023, in press. [Google Scholar] [CrossRef]
- Slabov, V.; Jain, G.; Chernyshova, I.; Rao Kota, H.; Ertesvåg, H. Alginates as Green Flocculants for Metal Oxide Nanoparticles. Trans. Indian Inst. Met. 2023. [Google Scholar] [CrossRef]
- Slabov, V.; Jain, G.; Larsen, E.; Rao Kota, H.; Chernyshova, I. Eco-Friendly Collectors for Flotation of Fine Hematite and Malachite Particles. Min. Metall. Explor. 2023, 40, 475–492. [Google Scholar] [CrossRef]
Source | Sum of Squares | df * | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 419.54 | 9 | 46.62 | 68.46 | <0.0001 |
Stirring speed (rpm) | 2.14 | 1 | 2.14 | 3.15 | 0.0842 |
DDA dosage (mol·L−1) | 13.91 | 1 | 13.91 | 20.43 | <0.0001 |
AB | 1.28 | 1 | 1.28 | 1.88 | 0.1782 |
A² | 20.27 | 1 | 20.27 | 29.77 | <0.0001 |
B² | 197.54 | 1 | 197.54 | 290.10 | <0.0001 |
A²B | 1.52 | 1 | 1.52 | 2.23 | 0.1438 |
AB² | 1.92 | 1 | 1.92 | 2.81 | 0.1018 |
A³ | 0.2880 | 1 | 0.2880 | 0.4229 | 0.5195 |
B³ | 26.91 | 1 | 26.91 | 39.51 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogueira, F.; Rodrigues, K.; Pereira, C.; Silva, A.C.; Silva, E.M.S.; Azizi, A.; Hassanzadeh, A. Quartz Fine Particle Processing: Hydrophobic Aggregation by Shear Flocculation. Minerals 2023, 13, 1208. https://doi.org/10.3390/min13091208
Nogueira F, Rodrigues K, Pereira C, Silva AC, Silva EMS, Azizi A, Hassanzadeh A. Quartz Fine Particle Processing: Hydrophobic Aggregation by Shear Flocculation. Minerals. 2023; 13(9):1208. https://doi.org/10.3390/min13091208
Chicago/Turabian StyleNogueira, Francielle, Karine Rodrigues, Carlos Pereira, André Carlos Silva, Elenice M. Schons Silva, Asghar Azizi, and Ahmad Hassanzadeh. 2023. "Quartz Fine Particle Processing: Hydrophobic Aggregation by Shear Flocculation" Minerals 13, no. 9: 1208. https://doi.org/10.3390/min13091208
APA StyleNogueira, F., Rodrigues, K., Pereira, C., Silva, A. C., Silva, E. M. S., Azizi, A., & Hassanzadeh, A. (2023). Quartz Fine Particle Processing: Hydrophobic Aggregation by Shear Flocculation. Minerals, 13(9), 1208. https://doi.org/10.3390/min13091208