Origin of the Miaoling Gold Deposit, Xiong’ershan District, China: Findings Based on the Trace Element Characteristics and Sulfur Isotope Compositions of Pyrite
<p>(<b>a</b>) Map of the distribution and locations of plates in China [<a href="#B25-minerals-15-00006" class="html-bibr">25</a>]. (<b>b</b>) Geological map of the southern margin of the NCC [<a href="#B5-minerals-15-00006" class="html-bibr">5</a>]. (<b>c</b>) Regional geological map of the Xiong’ershan district [<a href="#B7-minerals-15-00006" class="html-bibr">7</a>].</p> "> Figure 2
<p>(<b>a</b>) Geological diagram of Miaoling gold deposit [<a href="#B12-minerals-15-00006" class="html-bibr">12</a>]. (<b>b</b>) Projection of ore body in Miaoling gold deposit [<a href="#B39-minerals-15-00006" class="html-bibr">39</a>]. (<b>c</b>) Exploration line profile of Miaoling gold deposit [<a href="#B40-minerals-15-00006" class="html-bibr">40</a>].</p> "> Figure 3
<p>(<b>a</b>) F8 fault structure alteration zone. (<b>b</b>,<b>c</b>) Primary ore body in the F8 fault.</p> "> Figure 4
<p>Field and underground photos of quartz veins and altered rocks in four stages of the Miaoling gold deposit: (<b>a</b>) Stage 1 quartz vein; (<b>b</b>) two stages of crossing–cutting quartz veins; (<b>c</b>) Stage 2 quartz vein and pyrite; (<b>d</b>) pyrite in altered rocks; (<b>e</b>) Stage 3 quartz–polymetallic sulfide vein; (<b>f</b>) specularite vein; (<b>g</b>) Stage 4 quartz–fluorite vein; (<b>h</b>) carbonate vein; (<b>i</b>) epidotization; Py—pyrite; Py2a—pyrite in quartz vein; Py2b—pyrite in altered rocks; Ccp—chalcopyrite; Sp—sphalerite; Gn—galena; Spe—specularite; Qtz—quartz; Fl—fluorite; Cal—calcite; Ep—epidotization.</p> "> Figure 5
<p>An overview of the paragenetic sequence from the four stages of mineralization in the Miaoling gold deposit.</p> "> Figure 6
<p>Microscopic photos of pyrite in Miaoling gold deposit: (<b>a</b>,<b>b</b>) pyrite in Stage 1 quartz vein; (<b>c</b>–<b>d</b>) pyrite in Stage 2 quartz vein; (<b>e</b>–<b>f</b>) pyrite in altered rocks; (g) pyrite in Stage 3 quartz vein; (<b>h</b>–<b>i</b>) polymetallic sulfide in Stage 3 quartz vein. Py—pyrite; Gn—galena; Ccp—chalcopyrite; Sp—sphalerite.</p> "> Figure 7
<p>Box and whisker plots of trace element concentrations in pyrite, acquired by means of LA-ICP-MS analysis, from the Miaoling gold deposit.</p> "> Figure 8
<p></p> "> Figure 9
<p></p> "> Figure 10
<p>(<b>a</b>) A histogram of the sulfur isotopic compositions of sulfides from the Miaoling gold deposit. (<b>b</b>) The ranges of δ<sup>34</sup>S values in the Miaoling gold deposit and other deposits [<a href="#B5-minerals-15-00006" class="html-bibr">5</a>,<a href="#B12-minerals-15-00006" class="html-bibr">12</a>,<a href="#B84-minerals-15-00006" class="html-bibr">84</a>,<a href="#B87-minerals-15-00006" class="html-bibr">87</a>,<a href="#B88-minerals-15-00006" class="html-bibr">88</a>,<a href="#B91-minerals-15-00006" class="html-bibr">91</a>].</p> ">
Abstract
:1. Introduction
2. Regional Geology
3. Deposit Geology
4. Sampling and Analytical Methods
4.1. Sampling and Preparation
4.2. In Situ Trace Element Analysis
4.3. In Situ Sulfur Isotope Analysis
5. Results
5.1. Types of Pyrite
5.2. Trace Element Compositions of Pyrite
5.3. In Situ S Isotope Compositions of Pyrite
6. Discussion
6.1. Trace Element Distributions in Pyrite
6.2. Gold Occurrence in Pyrite
6.3. Fluid Evolution Based on Pyrite Compositions
6.4. Source of Ore-Forming Materials and Deposit Genesis
7. Conclusions
- The pyrite in the Miaoling gold deposit can be divided into four generations (Py1, Py2a, Py2b, and Py3). The trace element characteristics of the pyrite indicate that the Au content in the ore-forming fluid is closely related to As.
- Gold mainly exists in the form of a solid solution within the pyrite lattice, with smaller amounts being present as mineral inclusions of native gold and electrum.
- During the main mineralization stages (Py2 and Py3), the δ34S∑ values (0.31–2.68‰) and Co/Ni ratios (0.56–62.02, with an average of 12.34) of the pyrite suggest that the ore-forming materials likely originated from magmatic hydrothermal fluids, confirming the deposit as a hydrothermal gold deposit.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.H.; Sun, J.F.; Chen, F.; Wilde, S.A.; Wu, F.Y. Sources and Petrogenesis of Late Triassic Dolerite Dikes in the Liaodong Peninsula: Implications for Post-Collisional Lithosphere Thinning of the Eastern North China Craton. J. Petrol. 2007, 48, 1973–1997. [Google Scholar] [CrossRef]
- Dong, Y.P.; Zhang, G.W.; Neubauer, F.; Liu, X.M.; Genser, J.; Hauzenberger, C. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. J. Asian Earth Sci. 2011, 41, 213–237. [Google Scholar] [CrossRef]
- Zhai, L.; Ye, H.S.; Zhou, K.; Meng, F.; Gao, Y.L. Geological Characteristics and K-Feldspar 40ar/39ar Dating of the Miaoling Gold Deposit in Songxian County, Henan Province. Geol. Bull. China 2012, 31, 569–576. [Google Scholar]
- Zhai, M.G. Tectonic Evolution and Metallogenesis of North China Craton. Miner. Depos. 2010, 29, 24–36. [Google Scholar] [CrossRef]
- Tang, K.F. Characteristics, Genesis, and Geodynamic Setting of Representative Gold Deposits in the Xiong’ershan District. South. Margin North China Craton. Ph.D. Dissertation, China University of Geosciences, Wuhan, China, 2014. [Google Scholar]
- Mao, J.W.; Xie, G.Q.; Bierlein, F.; Qü, W.J.; Du, A.D.; Ye, H.S.; Pirajno, F.; Li, H.M.; Guo, B.J.; Li, Y.F.; et al. Tectonic Implications from Re-Os Dating of Mesozoic Molybdenum Deposits in the East Qinling-Dabie Orogenic Belt. Geochim. Cosmochim. Acta 2008, 72, 4607–4626. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, Q.; Guo, Y.; Wang, R.; Yang, J.; Chen, Y. Genesis of the Kangshan Au-Polymetallic Deposit, Xiong’ershan District, North China Craton: Constraints from Fluid Inclusions and C-H-O-S-Pb Isotopes. Ore. Geol. Rev. 2020, 127, 103815. [Google Scholar] [CrossRef]
- Zhai, M.; Santosh, M. Metallogeny of the North China Craton: Link with Secular Changes in the Evolving Earth. Gondwana Res. 2013, 24, 275–297. [Google Scholar] [CrossRef]
- Bao, Z.W.; Zeng, Q.S.; Zhao, T.P.; Yuan, Z.L. Geochemistry and Petrogenesis of the Ore-Related Nannihu and Shangfanggou Granite Porphyries from East Qinling Belt and Their Constaints on the Molybdenum Mineralization. Acta Petrol. Sin. 2009, 25, 2523–2536. [Google Scholar]
- Mao, J.W.; Zheng, R.F.; Ye, H.S.; Gao, J.J.; Chen, W. 40ar/39ar Dating of Fuchsite and Sericite from Altered Rocks Close to Ore Veins in Shagou Large-Size Ag-Pb-Zn Deposit of Xiong’ershan Area, Western Henan Province, and Its Significance. Miner. Depos. 2006, 4, 359–368. [Google Scholar]
- Zheng, R.F.; MAO, J.W.; Gao, J.J. Characteristics of Sulfide and Silver Minerals in Shagou Silver-Lead-Zinc Deposit of Xiong’er Shan, Henan Province, and Their Significance. Miner. Depos. 2006, 6, 715–726. [Google Scholar]
- Li, Z.Y. Geological Characteristics and Metallogenesis in the Miaoling Gold Deposit, Western Henan Province, China University of Geosciences. Master’s Thesis, China University of Geosciences, Beijing, China, 2015. [Google Scholar]
- Cao, Y.; Li, S.R.; Shen, J.F.; Yao, M.J.; Li, Q.K.; Mao, F.L. Fluid-Rock Interaction in Ore-Forming Process of Qianhe Structure-Controlled Alteration-Type Gold Deposit in Western Henan Province. Miner. Depos. 2008, 27, 714–726. [Google Scholar]
- Fan, H.R.; Xie, Y.H.; Wang, Y.L. Fluid-Rock Interaction During Mineralization of the Shanggong Structure-Controlled Alteration-Type Gold Deposit in Western Henan Province, Central China. Acta Petrol. Sin. 1998, 14, 529–541. [Google Scholar]
- Zhang, Z.M.; Zeng, Q.D.; Wang, Y.B.; Guo, Y.P.; Yu, B.; Wang, R.L.; Yang, J.H.; Chen, Y.K. Metallogenic Age and Fluid Evolution of the Kangshan Au-Polymetallic Deposit in the Southern Margin of the North China Craton:Constraints from Monazite U-Pb Age, and in-Situ Trace Elements and S Isotopes of Pyrite. Acta Petrol. Sin. 2023, 39, 865–885. [Google Scholar] [CrossRef]
- Qi, D.M.; Zhou, H.W.; Gong, Y.J.; Xiong, S.F.; Jia, D.; Zhang, J.; Zhang, M.Y. Element Mobility During the Fluid-Rock Hydrothermal Alteration: Evidence from Altered Porphyritic Granite in IV Pipe of the Qiyugou Gold Deposit, Henan Province. Acta Petrol. Sin. 2015, 31, 2655–2673. [Google Scholar]
- Liu, Y.W. The Geological Characteristics of Miaoling Gold Deposit and Its Ore-Finding Orientation. Gold 2003, 4, 19–21. [Google Scholar]
- Yang, J.H.; Wu, F.Y.; Wilde, S.A. A Review of the Geodynamic Setting of Large-Scale Late Mesozoic Gold Mineralization in the North China Craton: An Association with Lithospheric Thinning. Ore Geol. Rev. 2003, 23, 125–152. [Google Scholar] [CrossRef]
- Han, Y.G.; Zhang, S.H.; Franco, P.; Zhang, Y.H. Evolution of the Mesozoic Granites in the Xiong’ershan-Waifangshan Region, Western Henan Province, China, and Its Tectonic Implications. Acta Geol. Sin. Engl. Ed. 2007, 81, 253–265. [Google Scholar]
- Chen, Y.J.; Pirajno, F.; Qi, J.P. The Shanggong Gold Deposit, Eastern Qinling Orogen, China: Isotope Geochemistry and Implications for Ore Genesis. J. Asian Earth Sci. 2008, 33, 252–266. [Google Scholar] [CrossRef]
- Chen, Y.J.; Pirajno, F.; Li, N.; Guo, D.S.; Lai, Y. Isotope Systematics and Fluid Inclusion Studies of the Qiyugou Breccia Pipe-Hosted Gold Deposit, Qinling Orogen, Henan Province, China: Implications for Ore Genesis. Ore Geol. Rev. 2009, 35, 245–261. [Google Scholar] [CrossRef]
- Mao, J.W.; Li, Y.Q.; Goldfarb, R.; He, Y.; Zaw, K. Fluid Inclusion and Noble Gas Studies of the Dongping Gold Deposit, Hebei Province, China: A Mantle Connection for Mineralization? Econ. Geol. Bull. Soc. Econ. Geol. 2003, 98, 517–534. [Google Scholar] [CrossRef]
- Fan, H.R.; Hu, F.F.; Wilde, S.A.; Yang, K.F.; Jin, C.W. The Qiyugou Gold-Bearing Breccia Pipes, Xiong’ershan Region, Central China: Fluid-Inclusion and Stable-Isotope Evidence for an Origin from Magmatic Fluids. Int. Geol. Rev. 2011, 53, 25–45. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Mao, J.W. Textural Control on Gold Distribution in as-Free Pyrite from the Dongping, Huangtuliang and Hougou Gold Deposits, North China Craton (Hebei Province, China). Chem. Geol. 2009, 264, 101–121. [Google Scholar] [CrossRef]
- Wang, P.; Mao, J.; Ye, H.; Jian, W.; Chen, X.; Tian, Y.; He, S.; Yan, J.; Wu, S.; Wan, L. The Qiyugou Au Orefield—An Intrusion-Related Gold System in the Eastern Qinling Ore Belt, China: Constraints from Sims Zircon U-Pb, Molybdenite Re-Os, Sericite 40ar-39ar Geochronology, in-Situ S-Pb Isotopes, and Mineralogy. Ore Geol. Rev. 2020, 124, 103636. [Google Scholar] [CrossRef]
- Landtwing, M.R.; Pettke, T.; Halter, W.E.; Heinrich, C.A.; Redmond, P.B.; Einaudi, M.T.; Kunze, K. Copper Deposition During Quartz Dissolution by Cooling Magmatic-Hydrothermal Fluids: The Bingham Porphyry. Earth Planet. Sci. Lett. 2005, 235, 229–243. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Migdisov, A.A. Experimental Constraints on the Transport and Deposition of Metals in Ore-Forming Hydrothermal Systems. In Building Exploration Capability for the 21st Century; Society of Economic Geologists: Littleton, CO, USA, 2014; pp. 77–95. [Google Scholar]
- Zhou, T.F.; Zhang, L.J.; Yuan, F.; Fan, Y.; Cooke, D.R. La-Icp-Ms in Situ Trace Element Analysis of Pyrite from the Xinqiao Cu-Au-S Deposit in Tongling, Anhui, and Its Constraints on the Ore Genesis. Earth Sci. Front. 2010, 17, 306–319. [Google Scholar]
- Qiu, Z.W.; Li, Z.K.; Yuan, Z.Z. Microstructure and Trace Elements of Pyrite from Sanshandao Gold Deposit in Jiaodong District: Implications for Mechanism of Gold Enrichment. Editor. Comm. Earth Sci. J. China Univ. Geosci. 2022, 47, 290–308. [Google Scholar]
- Feng, Y.Z.; Zhang, Y.; Xie, Y.L.; Shao, Y.J.; Lai, C. Pyrite Geochemistry and Metallogenic Implications of Gutaishan Au Deposit in Jiangnan Orogen, South China. Ore Geol. Rev. 2020, 117, 103298. [Google Scholar] [CrossRef]
- Gao, F.; Du, Y.; Pang, Z.; Du, Y.; Xin, F.; Xie, J. La-Icp-Ms Trace-Element Analysis of Pyrite from the Huanxiangwa Gold Deposit, Xiong’ershan District, China: Implications for Ore Genesis. Minerals 2019, 9, 157. [Google Scholar] [CrossRef]
- Luo, Z.X.; Huang, X.L.; Wang, X.; Yang, F.; Han, L. Geochronology and Geochemistry of the Ttg Gneisses from the Taihua Group in the Xiaoshan Area, North China Craton: Constraints on Petrogenesis. Geotecton. Metallog. 2018, 42, 332–347. [Google Scholar] [CrossRef]
- Meng, J.; Li, H.M.; Li, L.X.; Li, J.R. Depositional Time of the Tieshanmiao Iron Ore Deposit in the Taihua Complex, Southern Margin of the North China Craton: Constraint from Zircon U-Pb Dating and Hf Isotope Evidence. Acta Geol. Sin. 2018, 92, 125–141. [Google Scholar]
- Shi, M.; Yu, J.H.; Xu, X.S.; Tang, H.F.; Qiu, J.S.; Chen, L.H. U-Pb Ages and Hf Isotope Compositions of Zircons of Taihua Group in Xiaoqinling Area, Shaanxi Province. Acta Petrol. Sin. 2011, 27, 3095–3108. [Google Scholar]
- Zhao, T.P.; Xu, Y.H.; Zhai, M.G. Petrogenesis and Tectonic Setting of the Paleoproterozoic Xiong’er Group in the Southern Part of the North China Craton:A Review. Geol. J. China Univ. 2007, 13, 191–206. [Google Scholar]
- Jin, X.; Wang, G.; Tang, P.; Hu, C.; Liu, Y.; Zhang, S. 3D Geological Modelling and Uncertainty Analysis for 3d Targeting in Shanggong Gold Deposit (China). J. Geochem. Explor. 2020, 210, 106442. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; McNaughton, N.J.; Ling, X.X.; Deng, X.H.; Yao, J.M.; Wu, Y.S. Formation and Tectonic Evolution of the Khondalite Series at the Southern Margin of the North China Craton: Geochronological Constraints from a 1.85-Ga Mo Deposit in the Xiong’ershan Area. Precambrian Res. 2015, 269, 1–17. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhang, S.H.; Han, Y.G.; Zhang, H.J. Strik-Slip Features of the Machaoying Fault Zone and Its Evolution in the Huaxiong Terrane, Southern North China Craton. J. Jilin Univ. 2006, 36, 169–176+193. [Google Scholar] [CrossRef]
- Hu, X.G. Discussion on Geological-Geochemical Characteristics and Oer-Controlling Conditions of Yanshanian Rock Mass in Xiong’ershan Ore District. Master’s Thesis, China University of Geosciences, Beijing, China, 2019. [Google Scholar]
- You, Y.Y.; Wang, X.G.; Zhao, Y.J. Geological Characteristics and Resource Potential of the Miaoling Gold Deposit, Western Henan Province. Miner. Explor. 2020, 11, 1831–1836. [Google Scholar]
- Zhai, L.; Liu, Y.G.; Jiao, Y.H. Geological Features and Ore-Forming Age of Miaoling Gold Deposit in Henan. Jilin Geol. 2011, 30, 34–40. [Google Scholar]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by La-Icp-Ms without Applying an Internal Standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Abraitis, P.K.; Pattrick, R.A.D.; Vaughan, D.J. Variations in the Compositional, Textural and Electrical Properties of Natural Pyrite: A Review. Int. J. Miner. Process. 2004, 74, 41–59. [Google Scholar] [CrossRef]
- Large, R.R.; Bull, S.W.; Maslennikov, V.V. A Carbonaceous Sedimentary Source-Rock Model for Carlin-Type and Orogenic Gold Deposits. Econ. Geol. 2011, 106, 331–358. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Y.J.; Chen, H.Y.; Liu, Z.F.; Li, D.F. A Hydrothermal Origin for the Large Xinqiao Cu-S-Fe Deposit, Eastern China: Evidence from Sulfide Geochemistry and Sulfur Isotopes. Ore Geol. Rev. 2017, 88, 534–549. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Reich, M.; Kesler, S.E.; Ewing, R.C.; Hough, R.; Walshe, J. Trace Metal Nanoparticles in Pyrite. Ore Geol. Rev. 2011, 42, 32–46. [Google Scholar] [CrossRef]
- Palenik, C.S.; Utsunomiya, S.; Reich, M.; Kesler, S.E.; Wang, L.M.; Ewing, R.C. “Invisible” Gold Revealed: Direct Imaging of Gold Nanoparticles in a Carlin-Type Deposit. Am. Mineral. 2004, 89, 1359–1366. [Google Scholar] [CrossRef]
- Sung, Y.H.; Brugger, J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Nugus, M. Invisible Gold in Arsenian Pyrite and Arsenopyrite from a Multistage Archaean Gold Deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Miner. Depos. 2009, 44, 765–791. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Utsunomiya, S.; Kogagwa, M.; Green, L.; Gilbert, S.; Wade, B. Gold-Telluride Nanoparticles Revealed in Arsenic-Free Pyrite. Am. Mineral. 2012, 97, 1515–1518. [Google Scholar] [CrossRef]
- Hou, L.; Peng, H.J.; Ding, J.; Zhang, J.R.; Zhu, S.B.; Wu, S.Y.; Wu, Y.; Ouyang, H.G. Textures and in Situ Chemical and Isotopic Analyses of Pyrite, Huijiabao Trend, Youjiang Basin, China: Implications for Paragenesis and Source of Sulfur. Econ. Geol. 2016, 111, 331–353. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Wang, Z.L.; Guo, L.N.; Li, R.H.; Groves, D.I.; Danyushevsky, L.V.; Zhang, C.; Zheng, X.L.; Zhao, H. Relationships between Gold and Pyrite at the Xincheng Gold Deposit, Jiaodong Peninsula, China: Implications for Gold Source and Deposition in a Brittle Epizonal Environment. Econogeol. Mic Geol. 2016, 111, 105–126. [Google Scholar] [CrossRef]
- Li, W.; Cook, N.J.; Xie, G.Q.; Mao, J.W.; Ciobanu, C.L.; Fu, B. Complementary Textural, Trace Element, and Isotopic Analyses of Sulfides Constrain Ore-Forming Processes for the Slate-Hosted Yuhengtang Au Deposit, South China. Econ. Geol. 2021, 116, 1825–1848. [Google Scholar] [CrossRef]
- Reich, M.; Kesler, S.E.; Utsunomiya, S.; Palenik, C.S.; Chryssoulis, S.L.; Ewing, R.C. Solubility of Gold in Arsenian Pyrite. Geochim. Cosmochim. Acta 2005, 69, 2781–2796. [Google Scholar] [CrossRef]
- Gregory, D.D.; Large, R.R.; Halpin, J.A.; Baturina, E.L.; Lyons, T.W.; Wu, S.; Danyushevsky, L.; Sack, P.J.; Chappaz, A.; Maslennikov, V.V.; et al. Trace Element Content of Sedimentary Pyrite in Black Shales. Econ. Geol. 2015, 110, 1389–1410. [Google Scholar] [CrossRef]
- Deditius, A.P.; Reich, M.; Kesler, S.E.; Utsunomiya, S.; Chryssoulis, S.L.; Walshe, J.; Ewing, R.C. The Coupled Geochemistry of Au and as in Pyrite from Hydrothermal Ore Deposits. Geochim. Cosmochim. Acta 2014, 140, 644–670. [Google Scholar] [CrossRef]
- Cook, N.J.; Spry, P.G.; Vokes, F.M. Mineralogy and Textural Relationships among Sulfosalts and Related Minerals in the Bleikvassli Zn-Pb-(Cu) Deposit, Nordland, Norway. Miner. Depos. 1998, 34, 35–56. [Google Scholar] [CrossRef]
- Bralia, A.; Sabatini, G.; Troja, F. A Revaluation of the Co/Ni Ratio in Pyrite as Geochemical Tool in Ore Genesis Problems. Miner. Depos. 1979, 14, 353–374. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Koglin, N.; Frimmel, H.E.; Minter, W.E.L.; Brätz, H. Trace-Element Characteristics of Different Pyrite Types in Mesoarchaean to Palaeoproterozoic Placer Deposits. Miner. Depos. 2010, 45, 259–280. [Google Scholar] [CrossRef]
- Reich, M.; Deditius, A.; Chryssoulis, S.; Li, J.W.; Ma, C.Q.; Parada, M.A.; Barra, F.; Mittermayr, F. Pyrite as a Record of Hydrothermal Fluid Evolution in a Porphyry Copper System: A Sims/Empa Trace Element Study. Geochim. Cosmochim. Acta 2013, 104, 42–62. [Google Scholar] [CrossRef]
- Tauson, V.L.; Kravtsova, R.G.; Smagunov, N.V.; Spiridonov, A.M.; Grebenshchikova, V.I.; Budyak, A.E. Structurally and Superficially Bound Gold in Pyrite from Deposits of Different Genetic Types. Russ. Geol. Geophys. 2014, 55, 273–289. [Google Scholar] [CrossRef]
- Kouhestani, H.; Ghaderi, M.; Large, R.R.; Zaw, K. Texture and Chemistry of Pyrite at Chah Zard Epithermal Gold-Silver Deposit, Iran. Ore Geol. Rev. 2017, 84, 80–101. [Google Scholar] [CrossRef]
- Shao, Y.J.; Wang, W.S.; Liu, Q.Q.; Zhang, Y. Trace Element Analysis of Pyrite from the Zhengchong Gold Deposit, Northeast Hunan Province, China: Implications for the Ore-Forming Process. Minerals 2018, 8, 262. [Google Scholar] [CrossRef]
- Keith, M.; Smith, D.J.; Doyle, K.; Holwell, D.A.; Jenkin, G.R.T.; Barry, T.L.; Becker, J.; Rampe, J. Pyrite Chemistry: A New Window into Au-Te Ore-Forming Processes in Alkaline Epithermal Districts, Cripple Creek, Colorado. Geochim. Cosmochim. Acta 2020, 274, 172–191. [Google Scholar] [CrossRef]
- Grundler, P.V.; Brugger, J.; Etschmann, B.E.; Helm, L.; Liu, W.; Spry, P.G.; Tian, Y.; Testemale, D.; Pring, A. Speciation of Aqueous Tellurium (IV) in Hydrothermal Solutions and Vapors, and the Role of Oxidized Tellurium Species in Te Transport and Gold Deposition. Geochim. Cosmochim. Acta 2013, 120, 298–325. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Zhao, Q.Q.; Zhao, G.; Hong, J.X.; Liu, J.J.; Zhai, D.G. In Situ La-Icp-Ms Trace Element Analysis of Pyrite and Its Application in Study of Au Deposit. Miner. Depos. 2022, 41, 1182–1199. [Google Scholar] [CrossRef]
- Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; et al. Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Maslennikova, S.P.; Large, R.R.; Danyushevsky, L.V. Study of Trace Element Zonation in Vent Chimneys from the Silurian Yaman-Kasy Volcanic-Hosted Massive Sulfide Deposit (Southern Urals, Russia) Using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). Econ. Geol. 2009, 104, 1111–1141. [Google Scholar] [CrossRef]
- Rottier, B.; Kouzmanov, K.; Wälle, M.; Bendezú, R.; Fontboté, L. Sulfide Replacement Processes Revealed by Textural and La-Icp-Ms Trace Element Analyses: Example from the Early Mineralization Stages at Cerro De Pasco, Peru. Econ. Geol. 2016, 111, 1347–1367. [Google Scholar] [CrossRef]
- Tauson, V.L.; Babkin, D.N.; Akimov, V.V.; Lipko, S.V.; Smagunov, N.V.; Parkhomenko, I.Y. Trace Elements as Indicators of the Physicochemical Conditions of Mineral Formation in Hydrothermal Sulfide Systems. Russ. Geol. Geophys. 2013, 54, 526–543. [Google Scholar] [CrossRef]
- Tauson, V.L.; Lipko, S.V.; Smagunov, N.V.; Kravtsova, R.G.; Arsent’ev, K.Y. Distribution and Segregation of Trace Elements During the Growth of Ore Mineral Crystals in Hydrothermal Systems: Geochemical and Mineralogical Implications. Russ. Geol. Geophys. 2018, 59, 1718–1732. [Google Scholar] [CrossRef]
- Afifi, A.M.; Kelly, W.C.; Essene, E.J. Phase Relations among Tellurides, Sulfides, and Oxides; I, Thermochemical Data and Calculated Equilibria. Econ. Geol. 1988, 83, 377–394. [Google Scholar] [CrossRef]
- Roman, N.; Reich, M.; Leisen, M.; Morata, D.; Barra, F.; Deditius, A.P. Geochemical and Micro-Textural Fingerprints of Boiling in Pyrite. Geochim. Cosmochim. Acta 2019, 246, 60–85. [Google Scholar] [CrossRef]
- Clark, C.; Grguric, B.; Mumm, A.S. Genetic Implications of Pyrite Chemistry from the Palaeoproterozoic Olary Domain and Overlying Neoproterozoic Adelaidean Sequences, Northeastern South Australia. Ore Geol. Rev. 2004, 25, 237–257. [Google Scholar] [CrossRef]
- Grant, H.L.J.; Hannington, M.D.; Petersen, S.; Frische, M.; Fuchs, S.H. Constraints on the Behavior of Trace Elements in the Actively-Forming Tag Deposit, Mid-Atlantic Ridge, Based on La-Icp-Ms Analyses of Pyrite. Chem. Geol. 2018, 498, 45–71. [Google Scholar] [CrossRef]
- Migdisov, A.A.; Zezin, D.; Williams-Jones, A.E. An Experimental Study of Cobalt (Ii) Complexation in Cl− and H2S-Bearing Hydrothermal Solutions. Geochim. Cosmochim. Acta 2011, 75, 4065–4079. [Google Scholar] [CrossRef]
- Skirrow, R.G.; Walshe, J.L. Reduced and Oxidized Au-Cu-Bi Iron Oxide Deposits of the Tennant Creek Inlier, Australia: An Integrated Geologic and Chemical Model. Econ. Geol. Bull. Soc. Econ. Geol. 2002, 97, 1167–1202. [Google Scholar] [CrossRef]
- Huston, D.L.; Sie, S.H.; Suter, G.F.; Cooke, D.R.; Both, R.A. Trace-Elements in Sulfide Minerals from Eastern Australian Volcanic-Hosted Massive Sulfide Deposits 1. Proton Microprobe Analyses of Pyrite, Chalcopyrite, and Sphalerite, And 2. Selenium Levels in Pyrite—Comparison with Delta-S-34 Values and Implications for the Source of Sulfur in Volcanogenic Hydrothermal Systems. Econ. Geol. 1995, 90, 1167–1196. [Google Scholar] [CrossRef]
- Li, X.H.; Fan, H.R.; Yang, K.F.; Hollings, P.; Liu, X.; Hu, F.F.; Cai, Y.C. Pyrite Textures and Compositions from the Zhuangzi Au Deposit, Southeastern North China Craton: Implication for Ore-Forming Processes. Contrib. Mineral. Petrol. 2018, 173, 73. [Google Scholar] [CrossRef]
- Ulrich, T.; Long, D.G.F.; Kamber, B.S.; Whitehouse, M.J. In Situ Trace Element and Sulfur Isotope Analysis of Pyrite in a Paleoproterozoic Gold Placer Deposit, Pardo and Clement Townships, Ontario, Canada. Econ. Geol. 2011, 106, 667–686. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, J.; Chen, H.; Yang, L.; Cooke, D.; Danyushevsky, L.; Gong, Q. La-Icp-Ms Trace Element Analysis of Pyrite from the Chang’an Gold Deposit, Sanjiang Region, China: Implication for Ore-Forming Process. Gondwana Res. 2014, 26, 557–575. [Google Scholar] [CrossRef]
- Zhai, D.; Williams-Jones, A.; Liu, J.; Tombros, S.; Cook, N. Mineralogical, Fluid Inclusion, and Multiple Isotope (H-O-S-Pb) Constraints on the Genesis of the Sandaowanzi Epithermal Au-Ag-Te Deposit, Ne China. Econ. Geol. 2018, 113, 1359–1382. [Google Scholar] [CrossRef]
- Li, S.R.; Santosh, M.; Zhang, H.F.; Shen, J.F.; Dong, G.C.; Wang, J.Z.; Zhang, J.Q. Inhomogeneous Lithospheric Thinning in the Central North China Craton: Zircon U-Pb and S-He-Ar Isotopic Record from Magmatism and Metallogeny in the Taihang Mountains. Gondwana Res. 2013, 23, 141–160. [Google Scholar] [CrossRef]
- LaFlamme, C.; Sugiono, D.; Thébaud, N.; Caruso, S.; Fiorentini, M.; Selvaraja, V.; Jeon, H.; Voute, F.; Martin, L. Multiple Sulfur Isotopes Monitor Fluid Evolution of an Archean Orogenic Gold Deposit. Geochim. Cosmochim. Acta 2018, 222, 436–446. [Google Scholar] [CrossRef]
- Fan, H.R.; Xie, Y.H.; Zhao, R.; Wang, R.L. Stable Isotope Geochemistry of Rocks and Gold Deposits in the Xiongershan Area Western Henan Province. Contrib. Geol. Miner. Resour. Res. 1994, 1, 54–64. [Google Scholar]
- Li, N.; Carranza, E.J.M.; Ni, Z.Y.; Guo, D.S. The Co2-Rich Magmatic-Hydrothermal Fluid of the Qiyugou Breccia Pipe, Henan Province, China: Implication for Breccia Genesis and Gold Mineralization. Geochem. Explor. Environ. Anal. 2012, 12, 147–160. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; Pirajno, F.; Gong, H.J.; Mao, S.D.; Ni, Z.Y. La-Icp-Ms Zircon U-Pb Dating, Trace Element and Hf Isotope Geochemistry of the Heyu Granite Batholith, Eastern Qinling, Central China: Implications for Mesozoic Tectono-Magmatic Evolution. Lithos 2012, 142, 34–47. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Zheng, Y.F. Theoretical Calculation of Oxygen Isotope Fractionation in Magmatic Rocks. Acta Petrol. Sin. 1999, 15, 1–13. [Google Scholar]
- Fu, Z.G.; Wong, J.C.; Lu, X.X. Sulfur Isotope Geochemical Characteristics of Gold Deposits in Xiaoqinling-Xionger Mountain Area. Geophys. Geochem. Explor. 2009, 33, 507–514+519. [Google Scholar]
- Ohmoto, H. Stable Isotope Geochemistry of Ore Deposits. Rev. Mineral. Geochem. 1986, 161, 491–559. [Google Scholar]
- Ohmoto, H.; Goldhaber, B. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Wei, D.T.; Xia, Y.; Gregory, D.D.; Steadman, J.A.; Tan, Q.P.; Xie, Z.J.; Liu, X.J. Multistage Pyrites in the Nibao Disseminated Gold Deposit, Southwestern Guizhou Province, China: Insights into the Origin of Au from Textures, in Situ Trace Elements, and Sulfur Isotope Analyses. Ore Geol. Rev. 2020, 122, 103446. [Google Scholar] [CrossRef]
- Cook, N.J. Mineralogy of the Sulphide Deposits at Sulitjelma, Northern Norway. Ore Geol. Rev. 1996, 11, 303–338. [Google Scholar] [CrossRef]
Stage | Number | Au | As | Co | Ni | Cu | Pb | Zn | Ag | Te | Bi | Sb | TI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stage 1 | M2-2-1 | 871.47 | 17011 | 14.82 | 5.60 | 576.87 | 3136.5 | 1111.9 | 357.7 | 941.52 | 1.57 | 1325.8 | 134.38 |
Stage 2 | M8-1-1 | 0.31 | 1954. | 1.76 | 3.14 | 22.05 | 60.38 | 1.27 | 4.08 | 0.38 | 0.01 | 58.46 | 8.65 |
M8-1-2 | 0.32 | 607.93 | 28.86 | 3.41 | 43.74 | 380.49 | 1.80 | 12.54 | 4.18 | 0.02 | 127.06 | 15.36 | |
M8-1-3 | 0.48 | 169.18 | 37.67 | 5.34 | 46.31 | 402.48 | 3.82 | 11.88 | 2.90 | 0.52 | 154.38 | 26.84 | |
M8-2-1 | 0.01 | 397.69 | 8.73 | — | 5.99 | 12.93 | 8.03 | 0.45 | 0.15 | 0.01 | 8.09 | 2.06 | |
M8-2-2 | 0.35 | 45.41 | 7.79 | — | 61.52 | 124.59 | 7.44 | 9.37 | 0.64 | 0.04 | 61.54 | 8.53 | |
M8-2-3 | 0.48 | 89.63 | 69.42 | 7.33 | 41.56 | 124.58 | 2.08 | 3.36 | 0.13 | 0.01 | 43.55 | 6.14 | |
M8-3-1 | 0.01 | 8.31 | 420.72 | 22.50 | 4.04 | 57.41 | 3.44 | 0.22 | 0.12 | 2.94 | 1.88 | 0.04 | |
M8-4-1 | 0.03 | 2316.4 | 0.43 | — | 6.97 | 0.23 | 0.47 | — | — | 0.01 | 4.37 | 0.06 | |
M8-5-1 | 0.06 | 76.02 | 5.46 | 4.24 | 11.62 | 35.46 | 2.47 | 1.33 | — | 0.01 | 20.22 | 5.29 | |
M8-6-1 | 0.72 | 157.31 | 7.47 | 3.24 | 66.12 | 1507.8 | 1.64 | 60.92 | 60.35 | 0.05 | 159.79 | 28.37 | |
M8-6-2 | 0.03 | 309.08 | 3.79 | 2.49 | 10.91 | 42.61 | 1.97 | 0.89 | 0.35 | 0.01 | 23.65 | 5.43 | |
M8-7-1 | 0.31 | 55.13 | 18.27 | 2.15 | 30.77 | 96.39 | 1.35 | 9.36 | 5.96 | 0.01 | 45.06 | 2.97 | |
M11-1-1 | 4.28 | 8568.8 | 17.23 | 6.03 | 5554.8 | 28779 | 1911.9 | 296.60 | 44.45 | 0.13 | 2168.9 | 30.31 | |
M11-2-1 | 0.55 | 2694.5 | 38.52 | 4.02 | 160.45 | 727.64 | 6.63 | 78.17 | 11.64 | 0.16 | 323.31 | 34.70 | |
M13-2-1 | 10.84 | 6330.5 | 12.13 | 4.39 | 1942 | 6382.5 | 665.37 | 171.99 | 36.60 | 0.06 | 1248.8 | 37.33 | |
M13-2-2 | 4.40 | 4774.7 | 64.03 | 7.21 | 3690.1 | 62020 | 1083.1 | 370.43 | 61.29 | 0.38 | 1979.8 | 19.45 | |
M15-1-1 | 1.94 | 3471.5 | 71.04 | 11.21 | 246.47 | 6185.5 | 53.81 | 110.33 | 89.71 | 0.08 | 312.18 | 30.27 | |
M15-1-2 | 6.84 | 5499.1 | 45.47 | 3.08 | 128.67 | 34404 | 3.38 | 19.20 | 42.02 | 0.49 | 76.91 | 0.89 | |
M15-1-3 | 0.18 | 8571.3 | 92.79 | 9.33 | 6.24 | 83.53 | 18.48 | 0.61 | — | 0.03 | 16.66 | 0.07 | |
M15-2-1 | 15.16 | 4165.5 | 104.70 | 19.40 | 139.51 | 13672 | 44.00 | 81.32 | 51.77 | 0.33 | 124.39 | 3.87 | |
M15-2-2 | 9.94 | 6147.9 | 184.16 | 19.68 | 134.26 | 3655.8 | 18.49 | 118.87 | 78.07 | 0.73 | 208.82 | 4.83 | |
Stage 3 | M5-1-1 | 0.10 | 16.03 | 198.47 | 3.48 | 287.52 | 28290 | 3.13 | 291.61 | 20.84 | 188.39 | 0.73 | 0.28 |
M5-3-1 | 0.06 | 23.59 | 481.79 | 7.77 | 103.77 | 72052 | 2742.6 | 282.20 | 15.96 | 414.39 | 0.87 | 0.13 |
Element | Au | Ag | Cu | Pb | Zn | Co | Ni | As | Bi |
---|---|---|---|---|---|---|---|---|---|
Ag | 0.44 | ||||||||
Cu | 0.01 | 0.63 | |||||||
Pb | −0.11 | 0.69 | 0.45 | ||||||
Zn | 0.24 | 0.74 | 0.56 | 0.75 | |||||
Co | −0.11 | 0.24 | −0.13 | 0.48 | 0.41 | ||||
Ni | −0.02 | 0.08 | −0.01 | 0.06 | 0.02 | 0.59 | |||
As | 0.73 | 0.52 | 0.39 | 0.07 | 0.33 | −0.12 | 0.16 | ||
Bi | −0.06 | 0.43 | −0.08 | 0.68 | 0.63 | 0.71 | 0.01 | −0.21 | |
TI | 0.89 | 0.51 | 0.21 | −0.11 | 0.28 | −0.26 | −0.08 | 0.73 | −0.17 |
Stage | Sulfide Generation | Sample | δ34S |
---|---|---|---|
Stage1 | Py1 | M8-3-1 | 4.24 |
Stage2 | Py2a | M8-1-2 | −9.18 |
Py2a | M8-2-2 | −6.63 | |
Py2a | M8-6-1 | −8.41 | |
Py2a | M11-2-1 | −13.79 | |
Py2a | M11-3-1 | −13.50 | |
Py2b | M2-1-1 | −10.52 | |
Py2b | M2-2-1 | −9.72 | |
Py2b | M8-1-1 | −6.63 | |
Py2b | M8-1-3 | −9.09 | |
Py2b | M8-2-1 | −9.03 | |
Py2b | M8-4-1 | −8.31 | |
Py2b | M8-5-1 | −9.50 | |
Py2b | M8-6-2 | −7.02 | |
Py2b | M8-7-1 | −9.39 | |
Py2b | M11-1-1 | −12.40 | |
Py2b | M13-1-1 | −9.60 | |
Py2b | M13-2-1 | −10.32 | |
Py2b | M15-1-1 | −7.94 | |
Py2b | M15-1-2 | −9.90 | |
Py2b | M15-1-3 | −11.39 | |
Py2b | M15-2-1 | −11.53 | |
Py2b | M5-2-2 | −10.75 | |
Stage3 | Py3 | M5-1-1 | −5.11 |
Py3 | M5-2-1 | −5.15 | |
Py3 | M5-3-1 | −4.31 | |
Sp | M5-4-1 | −8.19 | |
Gn | M5-5-1 | −17.90 | |
Ccp | M5-6-1 | −14.24 |
Deposit Characteristics | Miaoling | Qianhe | Gongyu | Shanggong |
---|---|---|---|---|
Ore-hosting layer | Jidangping Formation of the Xiong’er Group | Jidangping Formation of the Xiong’er Group | Xushan Formation of the Xiong’er Group | Xushan Formation of the Xiong’er Group |
Ore type | Tectonically altered rock | Tectonically altered rock | Tectonically altered rock | Tectonically altered rock, explosion breccia |
Mineral combination | Pyrite, sphalerite, galena, chalcopyrite, electrum and quartz, potassium feldspar, calcite, and fluorite | Pyrite, sphalerite, galena, chalcopyrite, molybdenite, native gold, electrum and quartz, potassium feldspar, and calcite | Pyrite, sphalerite, galena, chalcopyrite, limonite, scheelite, argentite and quartz, potassium feldspar, calcite, and biotite | Pyrite, sphalerite, galena, chalcopyrite, scheelite, calaverite and quartz, calcite, chlorite, sericite, and fluorite |
Gold-bearing mineral | Pyrite | Pyrite | Pyrite | Pyrite |
Ore-controlling structure | Near north–south fault | Near east–west fault | Northeast fault | Northeast fault |
Surrounding rock alterations | Silicification, potassium feldspar alteration, sericitization, pyrite–sericite alteration, fluorite alteration, and carbonate alteration | Silicification, potassium feldspar alteration, sericitization, pyrite–sericite alteration, chloritization, and epidotization | Silicification, potassium feldspar alteration, sericitization, Epidotization, and carbonate alteration | Silicification, potassium feldspar alteration, sericitization, pyrite–sericite alteration, fluorite alteration, carbonate alteration, and chloritization |
δ34S | −13.79–0.24‰ Average of −8.65‰ | −10.60–0.26‰ Average of −4.28‰ | −1.9–1.1‰ Average of −0.15‰ | −14.3–-13.3‰ Average of −13.75‰ |
Mineralization age | 127–121 Ma | 127–123 Ma | 130–124 Ma | 236–227 Ma |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Xu, J.; Yang, Y.; Han, S.; Ding, P.; Song, Z.; Chen, T.; Zhang, D. Origin of the Miaoling Gold Deposit, Xiong’ershan District, China: Findings Based on the Trace Element Characteristics and Sulfur Isotope Compositions of Pyrite. Minerals 2025, 15, 6. https://doi.org/10.3390/min15010006
Chen S, Xu J, Yang Y, Han S, Ding P, Song Z, Chen T, Zhang D. Origin of the Miaoling Gold Deposit, Xiong’ershan District, China: Findings Based on the Trace Element Characteristics and Sulfur Isotope Compositions of Pyrite. Minerals. 2025; 15(1):6. https://doi.org/10.3390/min15010006
Chicago/Turabian StyleChen, Simo, Junqiang Xu, Yanchen Yang, Shijiong Han, Peichao Ding, Zhaoyang Song, Tianwen Chen, and Daixin Zhang. 2025. "Origin of the Miaoling Gold Deposit, Xiong’ershan District, China: Findings Based on the Trace Element Characteristics and Sulfur Isotope Compositions of Pyrite" Minerals 15, no. 1: 6. https://doi.org/10.3390/min15010006
APA StyleChen, S., Xu, J., Yang, Y., Han, S., Ding, P., Song, Z., Chen, T., & Zhang, D. (2025). Origin of the Miaoling Gold Deposit, Xiong’ershan District, China: Findings Based on the Trace Element Characteristics and Sulfur Isotope Compositions of Pyrite. Minerals, 15(1), 6. https://doi.org/10.3390/min15010006