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Abstract: The world reserves of oxidized lead–zinc ores are large, but their processing faces significant
difficulties due to their refractory nature. This paper presents a novel approach to the preparation
of refractory oxidized lead ores for flotation. The proposed method is based on the co-roasting of
oxidized lead-bearing ores from the Ozernoye polymetallic deposit (Western Transbaikalia, Russia)
with fine-grained sulfide lead–zinc ore sourced from the same deposit and the addition of calcium
oxide. This method allows for the activation of mineral complexes, the sulfidation of oxidized
lead–zinc minerals, and the minimization of the amount of sulfur dioxide gas emitted. Co-roasting
oxidized lead–zinc ore with sulfide ore (10–30 wt. pct) at 650–700 ◦C has been shown to result in
the selective oxidation of pyrite and sulfidation of oxidized lead and zinc minerals. The proposed
method of processing polymetallic ores is capable of simultaneously involving not only oxidized
lead–zinc ores but also refractory sulfide ores, thereby extending the operational lifespan of the
mining enterprise and reducing the environmental impact.

Keywords: oxidized lead–zinc ore; sulfidation roasting; sulfide ore as a sulfidation agent; sulfur
dioxide absorption

1. Introduction

The primary global reserves of lead and zinc are found in countries such as Canada,
the USA, Australia, Kazakhstan, Russia, China, India, Mexico, South Africa, and Peru. At
the same time, polymetallic deposits located in Buryatia (Russia) are estimated to account
for 26.1 pct of Russian lead resources and 50.9 pct of zinc resources [1–3].

The Ozernoye deposit is situated in Buryatia, although it is not within the Lake Baikal
protection zone. It is the second largest zinc deposit in Russia and the eighth largest in the
world. The Ozernoye deposit is characterized by favorable mining conditions, convenient
geographical, economic, and environmental location. The enrichment plant at the deposit
with a capacity of six million tons of ore per year is scheduled to be commissioned in
2024. The ores at the deposit are rich in lead and zinc with very low copper content: the
ratio of Pb:Zn:Cu is 1:6:0.05 [4]. The estimated reserves of polymetallic ores in the deposit
is approximately 157 million tons. The average grade of zinc is 6.16 pct; lead, 1.17 pct;
cadmium, 0.017 pct; and silver, 35 g/ton.

The Ozernoye deposit is complex, but the main industrial value is made up by sulfide–
polymetallic ores [5–9]. At the same time, sulfide ores from the Ozernoye are heterogeneous
and complex by mineral and phase composition. They are characterized by an increased
content of refractory ores, which contain disseminated lead, zinc, and iron minerals, in
addition to a significant presence of fine intergrown crystals consisting of sulfide min-
erals. The main ore minerals are pyrite (FeS2) and sphalerite (ZnS), with galena (PbS)
being less abundant. The host rocks at the Ozernoye deposit consist of limestones, an-
desite porphyrite, andesite–basalt porphyrite, and basaltic porphyrite. An oxidation zone
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20–30 m thick is distributed throughout the deposit, reaching depths of 50–70 m along fault
zones [1,8]. Iron hydroxides predominate in the oxidized ores, along with sulfates, oxides,
and carbonates of lead and zinc. The lead content in oxidized ores varies from 0.3 pct to
20 pct, while the zinc content ranges from 0.3 pct to 1.8 pct.

During the design phase for the Ozernoye deposit, a flotation enrichment scheme for
sulfide ores was planned. The reserves of oxidized ores amount to 5.788 thousand tons;
however, due to the lack of rational processing technology, these ores are planned to be
stored near the quarry in an open-air storage facility for oxidized ores.

It is well established that oxidized ores of heavy non-ferrous metals are typically refrac-
tory ores, which are difficult to enrich. Therefore, for the extraction of heavy non-ferrous
metals from difficult-to-process ores and waste from non-ferrous metallurgy, flotation
is practically impossible; thus, it is advisable to employ combined schemes involving
hydro- or pyro-metallurgical operations [10–27]. For instance, a combined scheme has
been proposed for the processing of refractory oxidized ore containing beudantite and
plumbojarosite. The initial stage of the proposed scheme involves roasting the ore at
600–700 ◦C, which serves to expose the complex minerals and induce the formation of
microcracks. This process also results in the decomposition of plumbojarosite, which is
then leached with a sodium chloride solution. The disadvantages of this method include
the combination of roasting, leaching, precipitation, etc. in a single scheme, as well as
the relatively low extraction of lead in the solution (up to 85 pct). In a study conducted
by the authors of [17], technology was developed for extracting valuable metals from
oxidized lead–zinc ore (Yunnan Province, China) by roasting with pyrite and coal. One of
the limitations of this technology is the use of pure pyrite as a sulfidation agent. In previous
works [19,20], elemental sulfur was proposed as a sulfidation agent, and the possibility of
thermal sulfidation of zinc oxides with sulfur in the presence of coal and iron oxides was
also investigated [21]. It has been demonstrated that the sulfidation process in the presence
of coal contributes to the reduction of sulfur dioxide gas formation. Furthermore, the iron
sulfides formed in the studied system may also participate in the sulfidation process.

In previous studies, we developed methods for the sulfidation of ores from several
lead–zinc deposits in Western Transbaikalia. These methods were based on sulfidation
roasting of the ore in a water vapor atmosphere, using industrial pyrite concentrates as
sulfidation agents, which significantly increased the extraction of valuable metals [28,29].
However, these methods had limitations, including a reduction in the content of valuable
metals in oxidized ores (due to the use of pyrite concentrates) and the presence of residual
hydrogen sulfide in the flue gases (resulting from roasting in a steam atmosphere).

To improve the environmental safety of the thermal sulfidation process and reduce
processing costs, this paper proposes an improved technology for preparing refractory
ores for subsequent flotation. The efficiency of this process can be enhanced by using
pyrite-bearing lead–zinc ore (including refractory varieties) from the same deposit as the
sulfidation agent, thereby eliminating the need for water and reducing sulfur-containing
gas emissions.

In this study, for the first time, the process of sulfidation roasting the refractory
oxidized lead–zinc ores (using ores from the Ozernoye deposit as an example), using
fine-grained sulfide lead–zinc ore from the same deposit as the sulfidation agent, was
investigated. In contrast to previous studies, this method did not require a water supply
and included the addition of calcium oxide.

2. Materials and Methods
2.1. Materials

In this study we used samples of oxidized and sulfide ores from the Ozernoye polymetal-
lic deposit. According to the XRD data (Figure 1a), the main minerals in the oxidized ore
sample were goethite (FeOOH) (39.72 wt. pct), quartz (SiO2) (42.56 wt. pct), plumbojarosite
(PbFe6(OH)12(SO4)4) (16.08 wt. pct), and cerussite (PbCO3) (1.49 wt. pct), as well as hetaerolite
(ZnMn2O4), the mass fraction of which in the sample was about 0.15 wt. pct [30].
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pattern of the sulfide ore sample.

The main minerals of the sulfide ore were pyrite (FeS2) (38.23 wt. pct), sphalerite
(ZnS) (9.04 wt. pct), and galena (PbS) (1.01 wt. pct). Among rock-forming minerals, calcite
(CaCO3) (28.89 wt. pct), quartz (SiO2) (16.50 wt. pct), small amounts of siderite (FeCO3)
(2.37 wt. pct) and muscovite (KAl2(AlSi3O10)(OH)2) (2.96 wt. pct) were found (Figure 1b).

According to the chemical analysis (Table 1), the main valuable components in the
oxidized ore sample were lead (4.11 wt. pct) and silver (100 g/ton). The content of total
iron was 29.73 pct, while the contents of zinc and manganese were low—0.04 and 0.15 pct,
respectively. The silicon oxide content was 42.56 pct.

Table 1. The results of chemical analysis of the oxidized and sulfide ores.

Sample
Component, wt. %

SiO2 Al2O3 Fetotal. K2O CaO MnO Zn Pb Ag, g/t

Oxidized ore 42.56 0.06 29.73 0.11 0.21 0.15 0.04 4.11 100

Sulfide ore 17.97 1.15 18.97 0.36 16.74 0.08 6.07 0.87 25

The valuable components in the sulfide ore sample were Zn (6.07 pct), Pb (0.87 pct), and
Ag (25 g/ton). The content of total iron in this ore sample was 18.97 pct, and the contents
of silica and calcium oxide were 17.97 pct and 16.74 pct, respectively. So, the investigated
ore from the Ozernoye deposit was complex and contained silver. A significant part of the
world’s silver reserves is associated with lead–zinc ores [31], and it can be easily separated
by flotation into a galena concentrate [28].

A mineragraphic of the sulfide ore sample was carried out. It showed that the sample
belonged to the sulfide ores with a layered, banded texture—this type accounts for 23 to
30 pct of the reserves in the Ozernoye deposit. Microscopic examination of the polished
section revealed sericite–quartz–carbonate–sulfide rock including fragments of andesite,
limestone, and granitoids (Figure 2). The rock contained ore minerals (sulfides), which
were mainly pyrite and sphalerite. Individual flakes of muscovite (sericite), quartz, and
carbonates, together with aggregates of quartz–sericite–carbonate composition, were found
in the sulfide mass.

Ore minerals were formed by the fine-grained intergrowths of pyrite and sphalerite
crystals with a mixture of galena (as part of pyrite aggregates). The pyrite grains ranged in
size from 4 to 40 microns. Pyrite crystals were aggregated in clusters within sphalerite for-
mations. Sphalerite particles of irregular isometric shape (up to 150 microns) were observed
along the margins of the banded sphalerite–pyrite aggregates. Individual sphalerite grains
were also found within the main non-metallic mass. Galena formed small (2–30 microns)
xenomorphic formations that were visible only at high magnification (50× lens). Galenite
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also occurred as rare grains up to 50–70 microns in size and were sometimes associated
with sphalerite.
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Thus, the sulfide ore sample showed a significant intergrowth of sulfide crystals, small
grain size (1–50 microns), and relatively simple mineralogical composition. Typically, such
sulfide ores are subjected to very fine grinding (to 2–50 microns) prior to flotation, and even
so, acceptable recoveries are not always achieved [32–41].

2.2. Methods

Experiments on the sulfidation roasting of oxidized ore were carried out in a laboratory
plant of the flow type with a flue gas collection system. Pyrite-bearing lead–zinc ore was used
as the sulfidation agent. A ground sample, with a mass of 1.5 g and a particle size of 0.25 mm,
was placed in a heated furnace. The amount of sulfidation agent varied from 10 wt. pct to
30 wt. pct of the total mass of the sample, and the roasting time was 15 or 30 min.

The interaction of the oxidized and sulfide ores was studied by thermal analysis with
subsequent analysis of the cinders by the X-ray diffraction (XRD) method. Thermal analysis
for the mixture of the oxidized and sulfide forms of the lead–zinc ore was performed using
the thermogravimetric differential scanning calorimetric (TG-DTA/DSC) method on a
Netzsch Jupiter STA 449C Thermoanalyzer. To record thermograms, a sample was loaded
into a platinum crucible under an argon atmosphere and subsequently heated to 850 ◦C at
a rate of 10 ◦C/min. Phase identification was conducted using powder XRD with a Bruker
D8 ADVANCE diffractometer (Cu–Kα radiation), equipped with a VANTEC linear detector.
Quantitative phase analysis and refinement of the elementary cell parameters were carried
out by the Rietveld method using the TOPAS program. Mineragraphic study for the sulfide
ore, used as a sulfidation agent, and the cinder was performed using an Olympus BX-
51 optical microscope and a LEO-1430VP scanning electron microscope (SEM) equipped
with an INCAEnergy 350 energy-dispersive microanalysis system at the N.L. Dobretsov
Geological Institute SB RAS. To evaluate the thermodynamic favorability of the reactions,
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the Temkin–Schwartzman method was employed [42–44]. The sulfur dioxide content
of the flue gases was quantified by analyzing sludge in the absorption tanks containing
chemisorption solutions.

3. Results and Discussion
3.1. The Results of Research on the Sulphidation Roasting of Oxidized Ore

In this study, we employed sulfidation roasting of the oxidized ore at the stage of
its preparation for flotation in order to adapt this process to the specific mineralogical
composition of the oxidized lead–zinc ore from the Ozernoye deposit. One of its key
features is the presence of the oxidized lead mineral plumbojarosite (PbFe6(OH)12(SO4)4)
in the ore, which is poorly extractable using conventional enrichment methods.

A thermal analysis of a mixture of the oxidized and sulfide forms of the lead–zinc
ore (with a sulfide form content of 30 wt. pct) was performed. The endothermic peak
on the DTA curve at 280–300 ◦C (Figure 3a) corresponded to the transition of goethite
to hematite with the release of water (mass loss was 7 pct). Another endothermic peak
(520–540 ◦C) corresponded to the initial decomposition of plumbojarosite, accompanied
by the formation of basic lead sulfate and water release. Mass losses above 400 ◦C were
associated with the decomposition of cerussite and muscovite. The exothermic effect at
405 ◦C can be attributed to the interaction of pyrite decomposition products with su-
perheated water vapor, which was accompanied by the formation of hydrogen sulfide
and iron oxides. The second exothermic effect observed in the temperature range of
580–640 ◦C was likely associated with the formation of lead and zinc sulfides (during the
interaction of sulfur-containing compounds with the decomposition products of plumbo-
jarosite, cerussite, and hetaerolite).
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Figure 3. (a) TG and DSC curves for the mixture of the oxidized and sulfide forms of the lead–zinc
ore. (b) XRF of the sample after the completion of thermal analysis.

XRD phase analysis (Figure 3b) revealed that the major components of the sample
after heating to 850 ◦C were sphalerite, galena, hematite, magnetite, quartz, and calcite. No
oxidized lead and zinc minerals were detected.

In order to select the optimum roasting temperature and duration, ore containing
30 wt. pct of the sulfidation component was used in the experiments. It was determined
that at a temperature of 650 ◦C and a roasting time of 15 min, the oxidation process of
pyrite was not complete (Table 2, Figure 4). Small particles of ore and non-metallic minerals
up to 200 microns in diameter were found in the pyrite cinder (Figure 4). The total content
of the newly formed and relict sulfide minerals was approximately 40–45 vol. pct.
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Table 2. Reaction products detected by XRD analysis.

T, ◦C
Compounds Detected (τroasting, min)

15 30

650 PbS, ZnSwurtz., Fe2O3, Fe3O4, FeS2(trace),
SiO2, CaCO3, CaSO4

ZnSsph., ZnSwurtz., PbS, Fe3O4,
Fe2O3, SiO2, CaCO3, CaSO4

700 ZnSwurtz., ZnSsph., PbS, Fe3O4, Fe2O3,
SiO2, CaCO3, CaSO4

ZnSsph., PbS, Fe2O3, Fe3O4, SiO2,
CaCO3, CaSO4
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Hematite (Hem) was the most common ore mineral and formed relatively large angular
grains with a hypidiomorphic texture. The grains were isometric in shape, sometimes
nearly rounded and less often irregularly elongated. Furthermore, grains of sphalerite
(Sph), with a diameter of 50–150 µm, and skeleton crystal structures of pyrite (Py) and
galena were observed. As magnetite had previously been removed from the studied
preparation (nonmagnetic fraction), it occurred only as rare relicts in the central parts of
the hematite grains.

It was determined that the complete oxidation of pyrite could be achieved at
700 ◦C (for 15 or 30 min) or at 650 ◦C (for 30 min). The optimal conditions for the complete
oxidation of pyrite and sulfidation of the oxidized forms of lead and zinc (at a sulfide ore
content of 30 wt. pct) were found to be a temperature of 650 ◦C and a duration of 30 min
(Figure 5c). Further studies using other (smaller) amounts of sulfide ore were carried out
under the previously identified optimal conditions.

At a sulfide ore content of 10 wt. pct and a duration of 30 min, the presence of lead and
zinc sulfides, as well as the iron-bearing phases of hematite and magnetite, was observed in
the cinder (Figure 5a). Upon increasing the sulfide ore content to 20 wt. pct, the complete
oxidation of pyrite and formation of lead and zinc sulfides were also observed (Figure 5b).

No oxidized lead and zinc minerals were detected. It was observed that calcite
CaCO3 reacted with sulfur dioxide emitted during the roasting process, leading to the
formation of anhydrite CaSO4. According to DSC data, plumbojarosite (PbFe6(OH)12(SO4)4)
decomposed at 500–600 ◦C to form lead sulfate and hematite, and released a crystallization
of water and sulfur dioxide gas. All oxidized lead and zinc minerals were completely
converted to sulfide forms under the indicated experimental conditions. It should be noted
that at lower contents of the sulfidizer (10 wt. pct and 20 wt. pct), only galena and sphalerite
were detected among sulfides, but wurtzite was not formed (Figure 6).
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The proposed mechanism involved the sulfidation of the oxidized forms of lead and zinc
during the co-roasting of the oxidized ore, which contained goethite and plumbojarosite with
sulfide ore. The decomposition of goethite (FeOOH) and plumbojarosite (PbFe6(OH)12(SO4)4)
at high temperatures produced water vapor, which reacted with elemental sulfur and iron
sulfide (decomposition products of pyrite) to form hydrogen sulfide:

3S + 2H2O = 2H2S + SO2
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FeS + H2O = FeO + H2S

Iron oxide (FeO) was further oxidized to form iron (II) oxide (Fe2O3). Hydrogen sulfide
was involved in the sulfidation of cerussite (and probably its decomposition product, PbO)
and the decomposed minerals plumbojarosite and hetaerolite:

PbCO3 + H2S = PbS + CO2 + H2O, ∆G = −17.37 − 0.15T

PbSO4 + 4H2S = PbS + 2S2 + 4H2O, ∆G = −315.67 − 0.37T

PbO + H2S = PbS + H2O, ∆G = −97.29 − 0.018T

ZnO+ H2S = ZnS + H2O, ∆G = −75.06 − 0.012T

The following reactions may also occur if the amount of hydrogen sulfide in the system
is insufficient:

2PbCO3 + 3S = 2PbS + 2CO2 + SO2, ∆G = 188.46 − 0.63T

PbCO3 + FeS2 = FeS + PbS + SO2 + CO2, ∆G = 407.96 − 0.819T

7PbSO4 + 8FeS = 7PbS + 4Fe2O3 + 8SO2, ∆G = 1395.7 − 2.443T

PbSO4 + 2S = PbS + 2SO2, ∆G = 329.43 − 0.584T

PbO + ZnO + 2FeS2 + 2.5O2 = PbS + ZnS + Fe2O3 + 2SO2, ∆G = −341.63 − 0.16T

Thus, at roasting temperatures of 650–700 ◦C (923–973 K), the calculated values of ∆G
for all the above reactions have negative values, indicating the possibility of their occurrence.

3.2. The Results of Research on Reducing SO2 Content in Exhaust Gases

According to the analysis data, the flue gases, generated during sulfidation, contained
sulfur dioxide, but hydrogen sulfide was not detected. The formation of sulfur dioxide gas
during sulfidation roasting of the oxidized zinc and lead minerals using pyrite or elemental
sulfur as a sulfidation agent has been reported in a number of studies [17–21].

One of the most commonly used methods for cleaning flue gases from SO2 at low
concentrations is the sulfation process [45–48]. Gases containing SO2 are absorbed by the
Ca(OH)2 suspension in a scrubber, with the formation of hemihydrate or calcium sulfite:

SO2 + Ca(OH)2 + H2O → CaSO3·0.5H2O + 3/2H2O

Gypsum is further formed when sulfite was oxidized by the addition of oxygen:

CaSO3·0.5H2O + 3/2H2O + 1/2O2 → CaSO4·2H2O

Instead of calcium hydroxide suspension, the authors [49,50] proposed the use of Ca- and
Mg-containing wastes of the phosphorus production and construction industries to capture
SO2. These cleaning methods have a number of advantages, such as the relative simplicity
and compatibility with other processes, but they require the use of specialized equipment and
its maintenance, which significantly increase the cost of the production process.

Binding SO2 in the cinder by adding inexpensive reagents to the initial mixture can
serve as a promising and cost-effective way to utilize flue gases in the process of the
sulfidation of oxidized lead–zinc ores.

Thermodynamic analysis of the possible reactions of the gas phase components with
calcium oxide and calcium carbonate at different temperatures was performed.

CaO + CO2 = CaCO3, ∆G1 = −173.9 + 0.152T (1)

CaO + SO2 + 1/2O2 = CaSO4, ∆G2 = −555.35 + 0.399T (2)
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CaCO3 + SO2 + 1/2O2 = CaSO4 + CO2, ∆G3 = −381.46 + 0.247T (3)

According to these calculations, the most efficient process was the interaction of sulfur
dioxide with calcium oxide to form CaSO4.

In order to reduce the content of SO2 in the flue gases, experiments on roasting with
the addition of calcium oxide to the initial mixture were carried out. The roasting time was
30 min, the mass of the sample of the studied oxidized and sulfide ore of the Ozernoye
deposit was 1.5 g, and the amount of the added additive varied from 3 to 9 wt. pct of the
sample mass (0.05 g, 0.1 g, and 0.15 g). The solutions of H2O2, Na2CO3, and a suspension
of Ca(OH)2 were used as the sulfur dioxide absorbers.

The data in Table 3 show that the calcium hydroxide suspension absorbed the residual
sulfur dioxide most effectively, so we used it for further quantitative studies.

Table 3. SO2 binding (%) in cinder and different chemisorption solutions.

Content of
CaO, wt.%

SO2 SO2 SO2

Cinder, 30 wt.% of
Sulfidation Agent H2O2

Cinder, 30 wt.% of
Sulfidation Agent Na2CO3

Cinder, 30 wt.% of
Sulfidation Agent Ca(OH)2

3 39.0 61.0 30.9 69.1 39.1 60.9
6 57.8 42.2 68.1 31.9 46.5 53.5
9 66.5 33.5 65.1 34.9 48.3 51.7

The addition of calcium oxide reduced the sulfur dioxide content in the flue gases by
binding it to the non-volatile compound CaSO4. In addition, sulfur dioxide interacted with
calcium carbonate (a mineral within the sulfide ore). However, at 30 wt. pct sulfidation ore
content, the degree of absorption was incomplete for all CaO amounts (Table 3). For this
reason, sulfidation roasting was further carried out using lower contents (10 wt. pct and
20 wt. pct) of the pyrite-bearing ore. At these contents, the almost complete sulfidation of
Pb and Zn compounds was observed according to the XRD data (Figures 4 and 5).

The Ca(OH)2 suspension was used as a sulfur dioxide absorber for the flue gases of the
investigated roasting process, using a content of the sulfidation agent at 10–20 wt. pct, and the
CaO additive—6 wt. pct. The roasting time was 30 min at a temperature of 650 ◦C. According
to the XRD analysis of the cinder (Figure 7a,b), the final lead- and zinc-containing compounds
were galena (PbS) and sphalerite (ZnS). It was also found that the addition of CaO led to
a significant increase in the anhydrite CaSO4 content up to 19.13–27.30 pct (while roasting
without the addition resulted in a CaO content of only 3.8–5.9 pct).
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It was experimentally established that sulfur dioxide was formed from the very
beginning of the process and reacted with calcium oxide in the cinder during the first ten
minutes of roasting. According to the XRD data (Figure 8), the main compounds of the
evaporated sludge in the absorber were portlandite Ca(OH)2 (85.05 wt. pct), hannebachite
(CaSO3·0.5H2O) (9.16 wt. pct), and calcite (CaCO3) (5.78 wt. pct). Thus, the degree of the
SO2 binding rate in the cinder was 92.13 pct when the oxidized ore was burned together
with a pyrite-bearing ore and calcium oxide addition (20 wt. pct and 6 wt. pct, respectively).

Minerals 2024, 14, 1241 10 of 15 
 

 

 

and 20 wt. pct) of the pyrite-bearing ore. At these contents, the almost complete sulfidation 

of Pb and Zn compounds was observed according to the XRD data (Figures 4 and 5). 

The Ca(OH)2 suspension was used as a sulfur dioxide absorber for the flue gases of 

the investigated roasting process, using a content of the sulfidation agent at 10–20 wt. pct, 

and the CaO additive—6 wt. pct. The roasting time was 30 min at a temperature of 650 °C. 

According to the XRD analysis of the cinder (Figure 7a,b), the final lead- and zinc-contain-

ing compounds were galena (PbS) and sphalerite (ZnS). It was also found that the addition 

of CaO led to a significant increase in the anhydrite CaSO4 content up to 19.13–27.30 pct 

(while roasting without the addition resulted in a CaO content of only 3.8–5.9 pct). 

  

Figure 7. XRD of the samples cinders with the addition of 6 wt. pct CaO: (a) at 10 wt. pct sulfidation 

agent; (b) at 20 wt. pct sulfidation agent. 

It was experimentally established that sulfur dioxide was formed from the very be-

ginning of the process and reacted with calcium oxide in the cinder during the first ten 

minutes of roasting. According to the XRD data (Figure 8), the main compounds of the 

evaporated sludge in the absorber were portlandite Ca(OH)2 (85.05 wt. pct), hannebachite 

(CaSO3·0.5H2O) (9.16 wt. pct), and calcite (CaCO3) (5.78 wt. pct). Thus, the degree of the SO2 

binding rate in the cinder was 92.13 pct when the oxidized ore was burned together with a 

pyrite-bearing ore and calcium oxide addition (20 wt. pct and 6 wt. pct, respectively). 

 

Figure 8. XRD of a sample of evaporated sludge from the absorber (20 wt.% of the sulfidation agent). 

Similarly, when the 10 wt. pct sulfide ore and 6 wt. pct calcium oxide were added, 

the SO2 binding rate was 99.97 pct. In this case, the main compounds of the evaporated 

sludge in the absorber were portlandite (Ca(OH)2) (84.53 wt. pct), hannebachite 

Figure 8. XRD of a sample of evaporated sludge from the absorber (20 wt.% of the sulfidation agent).

Similarly, when the 10 wt. pct sulfide ore and 6 wt. pct calcium oxide were added, the
SO2 binding rate was 99.97 pct. In this case, the main compounds of the evaporated sludge
in the absorber were portlandite (Ca(OH)2) (84.53 wt. pct), hannebachite (CaSO3·0.5H2O)
(0.03 wt. pct), and calcite (CaCO3) (15.44 wt. pct) (Figure 9), based on the material balance
and XRD data.
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The experimental conditions were also tested on a larger mass sample (60 g). The
laboratory setup included a vertical tube furnace and a flue gas collection system. The
following parameters were used: sulfidation agent content—14 wt. pct, CaO additive—6 wt.
pct, particle size—0.25 mm, and firing time—30 min. It was demonstrated that the roasting of
this mixture at 650 ◦C led to the formation of sphalerite (ZnS), galena (PbS), magnetite (Fe3O4),
hematite (Fe2O3), and anhydrite (CaSO4); such a composition can significantly facilitate
further flotation enrichment (Figure 10). The degree of SO2 binding in the cinder (using
sulfide ore and calcium oxide contents of 14 wt. pct and 6 wt. pct, respectively) was 98.1 pct.
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Additional examination of the cinder using a LEO-1430VP electron microscope con-
firmed the presence of newly formed phases, including galena (PbS), sphalerite (ZnS), iron
oxides, and anhydrite (CaSO4) (Figure 11).
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Thus, the process of co-roasting the oxidized ore containing plumbojarosite together
with the refractory sulfide ore (characterized by the intergrowth of FeS, ZnS, and PbS
crystals) was studied. It was demonstrated that the selective oxidation of pyrite was ac-
companied by the disintegration of intergrown crystals of PbS and ZnS, and the sulfidation
of oxidized minerals. The theoretical justification for these processes was also provided.
The binding of SO2 in the cinder reached 98.1 pct at sulfide ore and calcium oxide contents
of 14 wt. pct and 6 wt. pct, respectively. The potential for the nearly complete utilization of
SO2 in flue gases was demonstrated through the addition of calcium oxide to the initial
mixture, which effectively bound SO2 into a solid compound (CaSO4).

The optimum parameters for the sulfidation process were determined: roasting
temperature—650 ◦C, duration—30 min, sulfidation ore content—10–15 wt. pct, calcium
oxide content—6 wt. pct.

These conditions have been shown to be the most effective in activating complex
minerals and reducing the amount of sulfur-containing flue gases. The approach described
in this paper can improve production efficiency by increasing the reserves of ore that can
be processed.

4. Conclusions

This paper presents a novel approach to the flotation of oxidized ore containing
goethite and plumbojarosite. The method involves co-roasting the oxidized ore with
refractory sulfide lead–zinc ore from the same deposit (the Ozernoye deposit), with the
addition of calcium oxide to the process. This method enables the activation of mineral
complexes and the sulfidation of the oxidized minerals of lead and zinc. The addition of
calcium oxide into the process facilitated the binding of sulfur dioxide, thereby reducing its
content in the flue gases to 1–2 pct. Additionally, a portion of the sulfur dioxide was bound
by calcium carbonate, which is a component of the sulfide ore. It has been demonstrated
that roasting the ore at 650–700 ◦C results in the formation of new minerals, including
sphalerite (ZnS), galena (PbS), magnetite (Fe3O4), hematite (Fe2O3), and anhydrite (CaSO4).
However, galena and sphalerite, which are components of the original sulfide ore, did not
undergo any changes during this process. Due to its composition, this roasted product can
serve as a lead–zinc raw material suitable for flotation enrichment.
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