Geophysical Methods Applied to the Mineralization Discovery of Rare-Earth Elements at the Fazenda Buriti Alkaline Complex, Goiás Alkaline Province, Brazil
<p>Map of Southern Brazil showing the main occurrences of alkaline rocks and the location of the study area (red dot). Detail for the metamorphic belts represented by BB (Brasília) and RB (Ribeira) (modified from [<a href="#B3-minerals-14-01163" class="html-bibr">3</a>]).</p> "> Figure 2
<p>Geology of the central-eastern sector of the Tocantins Province, with an emphasis on the Brasília Belt and the study area marked with a yellow dot (modified from [<a href="#B31-minerals-14-01163" class="html-bibr">31</a>]).</p> "> Figure 3
<p>Goiás Alkaline Province (GAP) with the study area marked by the green polygon. Location of GAP in the Tocantins Province (modified from [<a href="#B34-minerals-14-01163" class="html-bibr">34</a>]).</p> "> Figure 4
<p>Normal distribution (Gaussian) and anomalous thresholds defined based on the average (μ) and standard deviation (σ). The area under the curve shows the percentage that each threshold represents (modified from [<a href="#B54-minerals-14-01163" class="html-bibr">54</a>]).</p> "> Figure 5
<p>Map of the geophysical and geological units of the Fazenda Buriti Alkaline Complex containing the location of rock samples collected, interpreted magnetic lineaments and integration of the data used to produce the map. Previous works in [<a href="#B40-minerals-14-01163" class="html-bibr">40</a>].</p> "> Figure 6
<p>(<b>A</b>): In situ outcrops on a rock ledge at the margins of drainage with granitic gneiss. (<b>B</b>): Sigmoidal porphyroblasts of plagioclase rotated in granitic gneiss. (<b>C</b>): Metagranite outcrop intruded by a centimetric mafic alkaline dike with NW-SE direction. (<b>D</b>): Mylonite sample.</p> "> Figure 7
<p>(<b>A</b>,<b>B</b>): Decametric and metric boulders and blocks of granitic rock. (<b>C</b>): Granite outcrop with the intrusion of an alkaline mafic porphyritic dike. The red dashed line marks the contact between the dike and the granite. (<b>D</b>): Hand sample of porphyritic granite composed of very coarse phenocrysts of potassium feldspar inserted in a medium grain equigranular matrix with quartz, plagioclase, biotite, and magnetite.</p> "> Figure 8
<p>(<b>A</b>–<b>C</b>): Decametric blocks and boulders of sandstones outcropping from the Furnas Formation showing preserved sedimentary structures. (<b>D</b>): well-selected fine-grained cream sandstone block—hand specimen.</p> "> Figure 9
<p>(<b>A</b>): Outcrop with metric alkaline gabbro blocks in the meadow. (<b>B</b>): Medium-grained pyroxenite hand sample composed essentially of clinopyroxene, magnetite, olivine, and plagioclase. (<b>C</b>): Outcrop with alkaline breccia formed by fragments of pyroxenite/gabbro and syenite matrix. (<b>D</b>): Syenite sample found in a decametric “pocket” in the middle of alkaline gabbro.</p> "> Figure 10
<p>(<b>A</b>): Thin section—Pyroxenite formed by fractured and zoned phenocrysts of augite, biotite, and opaque minerals in the interstices and as inclusions. A 25× magnification with parallel polarizers. (<b>B</b>): Same thin section as A but with crossed polarizers. Op = opaque mineral, Aug = augite, Bt = biotite.</p> "> Figure 11
<p>(<b>A</b>): Blocks with microsyenite. (<b>B</b>): Sample of porphyritic microsyenite with a grayish color.</p> "> Figure 12
<p>Box plot for the petrophysical data of magnetic susceptibility and radioelements Potassium, Thorium, and Uranium recorded in rock samples.</p> "> Figure 13
<p>Magnetic maps, interpreted magnetic lineaments, and drainage. (<b>A</b>): Inclination of Total Gradient Amplitude (ITGA). (<b>B</b>): Block diagram with 3.5 times vertical exaggerations, with the Total Gradient (TG) associated with elevations. (<b>C</b>): First horizontal derivative in the X direction (dX). (<b>D</b>): First horizontal derivative in the Y direction (dY). (<b>E</b>): First Vertical derivative (dZ). Elevation [<a href="#B39-minerals-14-01163" class="html-bibr">39</a>].</p> "> Figure 14
<p>Radiometric and calculated ratios maps, lithological contacts, and drainage. (<b>A</b>): Potassium (K) concentrations; (<b>B</b>): Equivalent concentrations of Thorium (eTh); (<b>C</b>): Equivalent concentrations of Uranium (eU); (<b>D</b>): Block diagram with 3.5 vertical exaggerations, with RGB ternary image (K-eTh-eU) associated with elevations. (<b>E</b>): Estimated <span class="html-italic">F</span>-parameter [<a href="#B50-minerals-14-01163" class="html-bibr">50</a>,<a href="#B51-minerals-14-01163" class="html-bibr">51</a>], and; (<b>F</b>): U/Th ratio. Altitude data [<a href="#B39-minerals-14-01163" class="html-bibr">39</a>].</p> "> Figure 15
<p>Flowchart for integrating eU, eTh, and eU/eTh anomalies using the arithmetic average (μ) and standard deviation (σ) for the first threshold (μ + 1 × σ), second threshold (μ + 2 × σ), and third threshold (μ + 3 × σ). Arrows indicate the direction of overlay on the prospective map.</p> "> Figure 16
<p>(<b>A</b>): Radiometric anomalies were selected based on the average (µ) plus one standard deviation (σ), indicating targets and the location of the drill hole. (<b>B</b>): Block diagram with the selected anomalies over the relief. (<b>C</b>): Target 1. (<b>D</b>): Target 2. Altitude data [<a href="#B39-minerals-14-01163" class="html-bibr">39</a>].</p> "> Figure 17
<p>Drill hole log, total sum of rare-earth elements (∑REEs) in ppm (parts per million), light rare-earth elements (LREEs) sum in ppm, and heavy rare-earth elements (HREEs) sum in ppm.</p> "> Figure 18
<p>Summary of modal mineralogy of the samples HG1 and HG2.</p> "> Figure 19
<p>Summary of REE and Nb minerals of the samples HG1 and HG2.</p> ">
Abstract
:1. Introduction
2. Geological Context
2.1. Tocantins Province (TP)
2.2. The Brasilia Fold and Thrust Belt
2.3. The Goiás Magmatic Arc
2.4. The Paraná Basin (PB)
2.5. Goiás Alkaline Province
3. Materials and Methods
Attribute | Characteristics |
---|---|
Total area | 58,834 km2 |
Survey date | 19 June 2004 to 24 November 2004 |
Aircraft | Cessna 404 Titan |
Direction and spacing between of Flight Lines | NS and 500 m |
Direction and spacing between of Tie Lines | EW and 5000 m |
Average flight height and flight speed | 100 m and 294 km/h |
Measurement range | 0.1 s (mag) and 1.0 s (gamma) |
Magnetometer (cesium vapor) | Scintrex CS-2, Canada—0.001 nT resolution |
Gamma-ray spectrometer | Exploranium GR-820, Mississauga, ON, Canada |
Volume of Nal detector crystals | 2560 in3 (down) and 512 in3 (up) |
Coordinate System | South American 1969 UTM Zone 22S |
4. Results and Discussions
4.1. Local Geology
4.2. Petrophysics
4.3. Magnetometry
4.4. Gammaespectrometry
4.5. Delimitation of Prospective Targets
4.6. Mineralogical Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakhmouradian, A.R.; Wall, F. Rare Earth Elements: Minerals, Mines, Magnets (and More). Elements 2012, 8, 333–340. [Google Scholar] [CrossRef]
- Voncken, J.H.L. The Rare Earth Elements; SpringerBriefs in Earth Sciences; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-26807-1. [Google Scholar]
- Takehara, L. Avaliação do Potencial de Terras Raras no Brasil; Série Minerais Estratégicos, Informe de Recursos Minerais; CPRM—Serviço Geológico do Brasil: Brasília, Brazil, 2015; Volume 2, ISBN 978-85-7499-278-5.
- Lapido-Loureiro, F.E. O Brasil e a Reglobalização Da Indústria Das Terras Raras; CETEM, MCTI: Rio de Janeiro, Brazil, 2013; ISBN 978-85-8261-001-5.
- U.S. Geological Survey. Mineral Commodity Summaries 2024; U.S. Geological Survey: Reston, VA, USA, 2024; 212p. [CrossRef]
- Gibson, S.; Thompson, R.; Leonardos, O.; Dickin, A.; Mitchell, J. The Late Cretaceous Impact of the Trindade Mantle Plume: Evidence from Large-Volume, Mafic, Potassic Magmatism in SE Brazil. J. Petrol. 1995, 36, 189–229. [Google Scholar] [CrossRef]
- de Moraes Rocha, L.G.; Pires, A.C.B.; Carmelo, A.C.; de Araújo Filho, J.O. Geophysical Characterization of the Azimuth 125° Lineament with Aeromagnetic Data: Contributions to the Geology of Central Brazil. Precambrian Res. 2014, 249, 273–287. [Google Scholar] [CrossRef]
- de Moraes Rocha, L.G.; Pires, A.C.B.; Carmelo, A.C.; Oksum, E. Curie Surface of the Alkaline Provinces of Goiás (GAP) and Alto Paranaíba (APAP), Central Brazil. J. Volcanol. Geotherm. Res. 2015, 297, 28–38. [Google Scholar] [CrossRef]
- Sgarbi, P.B.A.; Heaman, L.M.; Gaspar, J.C. U–Pb Perovskite Ages for Brazilian Kamafugitic Rocks: Further Support for a Temporal Link to a Mantle Plume Hotspot Track. J. S. Am. Earth Sci. 2004, 16, 715–724. [Google Scholar] [CrossRef]
- Ribeiro, C.C. Geologia, Geometalurgia, Controles e Gênese Dos Depósitos de Fósforo, Terras Raras e Titânio Do Complexo Carbonatítico Catalão I, GO. Ph.D. Thesis, Universidade de Brasília, Instituto de Geociência, Brasília, Brazil, 2008. [Google Scholar]
- Araújo, I. Gênese e Controles Da Mineralização Secundária de P, Ti e ETR No Complexo Alcalino Carbonatítico de Salitre, MG. Master’s Thesis, Universidade de Brasília, Brasília, Brazil, 2015. [Google Scholar]
- Gomide, C.S. Geoquímica e Química Mineral de Carbonatitos e Isótopos Estáveis Em Carbonatitos Da Província Ígnea Do Alto Paranaíba. Ph.D. Thesis, Universidade de Brasília, Brasília, Brazil, 2015. [Google Scholar]
- Radaelli, V.A. Níquel Do Morro Do Engenho—Estado de Goiás; Informe de Recursos Minerais Série Oportunidades Minerais—Exame Atualizado de Projeto, no 02; CPRM: Goiânia, Brasil, 2000; p. 10. [Google Scholar]
- Radaelli, V.A. Níquel de Santa Fé—Estado de Goiás; Informe de Recursos Minerais Série Oportunidades Minerais—Exame Atualizado de Projeto, no 01; CPRM: Goiânia, Brasil, 2000; p. 10. [Google Scholar]
- Feitoza, L.M.; Carmelo, A.C.; Pires, A.C.B.; Huelsen, M.G.V.; de Freitas, M.E. Assinatura Geofísica Dos Complexos Alcalinos Fazenda Buriti e Arenópolis, Porção Norte Da Província Alcalina de Goiás. In Proceedings of the 12th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 15–18 August 2011; SEG Global Meeting Abstracts. Brazilian Geophysical Society: Rio de Janeiro, Brazil, 2011; pp. 682–690. [Google Scholar] [CrossRef]
- Dutra, A.C.; Marangoni, Y.R.; Trindade, R.I.F. Aeromagnetic and Physical-Chemical Properties of Some Complexes from Goiás Alkaline Province. Braz. J. Geol. 2014, 44, 361–373. [Google Scholar] [CrossRef]
- Marangoni, Y.R.; Zhang, H.; Ferreira, H.J. Gravity and Magnetic Integrated Data Interpretation of the Corrégo Dos Bois Complex, Goiás Alkaline Province, Central Brazil. Rev. Bras. Geof. 2016, 33, 599–610. [Google Scholar] [CrossRef]
- Martins, E.S.F.; Vidotti, R.M. Another Way of Looking at an Alkaline Province. J. Geodyn. 2021, 143, 101811. [Google Scholar] [CrossRef]
- Dentith, M.C.; Mudge, S.T. Geophysics for the Mineral Exploration Geoscientist; Cambridge University Press: Cambridge, UK, 2014; ISBN 978-0-521-80951-1. [Google Scholar]
- McCafferty, A.E.; Stoeser, D.B.; Van Gosen, B.S. Geophysical Interpretation of U, Th, and Rare Earth Element Mineralization of the Bokan Mountain Peralkaline Granite Complex, Prince of Wales Island, Southeast Alaska. Interpretation 2014, 2, SJ47–SJ63. [Google Scholar] [CrossRef]
- Shah, A.K.; Bern, C.R.; Van Gosen, B.S.; Daniels, D.L.; Benzel, W.M.; Budahn, J.R.; Ellefsen, K.J.; Karst, A.; Davis, R. Rare Earth Mineral Potential in the Southeastern U.S. Coastal Plain from Integrated Geophysical, Geochemical, and Geological Approaches. Geol. Soc. Am. Bull. 2017, 129, 1140–1157. [Google Scholar] [CrossRef]
- Verplanck, P.L.; Van Gosen, B.S.; Seal II, R.R.; McCafferty, A.E. A Deposit Model for Carbonatite and Peralkaline Intrusion-Related Rare Earth Element Deposits; U.S. Geological Survey Scientific Investigations Report 2010-5070-J; U.S. Geological Survey: Reston, VA, USA, 2014; p. 72.
- Orris, G.J.; Grauch, R.I. Rare Earth Element Mines, Deposits, and Occurrences; Open-File Report 02-189; U.S. Geological Survey: Reston, VA, USA, 2002.
- Almeida, F.F.M.; Hasui, Y. Províncias Estruturais Brasileiras. In Atas do VIII Simpósio de Geologia do Nordeste, Campina Grande, Brazil, 1977; Sociedade Brasileira de Geologia—Núcleo Nordeste: Recife, Brazil, 1977; Volume 1, pp. 363–392. [Google Scholar]
- Almeida, F.F.M. Relações Tectônicas Das Rochas Alcalinas Mesozóicas Da Região Meridional Da Plataforma Sul-Americana. Rev. Bras. Geociências 1983, 13, 139–158. [Google Scholar] [CrossRef]
- Almeida, F.F.M. Distribuição Regional e Relações Tectônicas Do Magmatismo Pós-Paleozóico No Brasil. Rev. Bras. Geociências 1986, 16, 325–349. [Google Scholar] [CrossRef]
- Pimentel, M.M.; Fuck, R.A.; Botelho, N.F. Granites and the Geodynamic History of the Neoproterozoic Brasília Belt, Central Brazil: A Review. Lithos 1999, 46, 463–483. [Google Scholar] [CrossRef]
- Moura, C.O. de Geologia Do Sudoeste Do Estado de Goiás: Integração de Dados Geológicos e Aerogeofísicos de Alta Densidade. Master’s Thesis, Universidade de Brasília, Instituto de Geociência, Brasília, Brazil, 2007. [Google Scholar]
- Pimentel, M.M. The Tectonic Evolution of the Neoproterozoic Brasília Belt, Central Brazil: A Geochronological and Isotopic Approach. Braz. J. Geol. 2016, 46, 67–82. [Google Scholar] [CrossRef]
- Fuck, R.; Pimentel, M.; D’el-Rey Silva, L.J. Compartimentação Tectônica Na Porção Oriental Da Província Tocantins. In Congresso Brasileiro de Geologia; SBG Balneário Camboriú: Balneario Camboriu, Brazil, 1994; Volume 38, pp. 215–217. [Google Scholar]
- Pimentel, M.M.; Fuck, R.A.; Jost, H.; Ferreira Filho, C.F.; Araújo, S.M. The Basement of the Brasília Fold Belt and the Goiás Magmatic Arc. In Tectonic Evolution of South America; Cordani, U.G., Milani, E.J., Thomaz Filho, A., Campos, D.A., Eds.; 31st International Geological Congress: Rio de Janeiro, Brazil, 2000; pp. 195–229. Available online: https://www.researchgate.net/publication/284312910_The_basement_of_the_Brasilia_Fold_Belt_and_the_Goias_Magmatic_Arc (accessed on 28 September 2024).
- Pimentel, M.M.; Fuck, R.A. Neoproterozoic Crustal Accretion in Central Brazil. Geology 1992, 20, 375–379. [Google Scholar] [CrossRef]
- Cordani, U.G.; Pimentel, M.M.; Ganade De Araujo, C.E.; Basei, M.A.S.; Fuck, R.A.; Girardi, V.A.V. Was There an Ediacaran Clymene Ocean in Central South America? Am. J. Sci. 2013, 313, 517–539. [Google Scholar] [CrossRef]
- Junqueira-Brod, T.C.; Roig, H.L.; Gaspar, J.C.; Brod, J.A.; Meneses, P.R. A Província Alcalina de Goiás e a Extensão Do Seu Vulcanismo Kamafugítico. RBG 2002, 32, 559–566. [Google Scholar] [CrossRef]
- Junqueira-Brod, T.C.; Brod, J.A.; Gaspar, J.C.; Jost, H. Kamafugitic Diatremes: Facies Characterisation and Genesis—Examples from the Goiás Alkaline Province, Brazil. Lithos 2004, 76, 261–282. [Google Scholar] [CrossRef]
- Junqueira-Brod, T.C.; Gaspar, J.C.; Brod, J.A.; Jost, H.; Barbosa, E.S.R.; Kafino, C.V. Emplacement of Kamafugite Lavas from the Goiás Alkaline Province, Brazil: Constraints from Whole-Rock Simulations. J. S. Am. Earth Sci. 2005, 18, 323–335. [Google Scholar] [CrossRef]
- Carlson, R.W.; Araujo, A.L.N.; Junqueira-Brod, T.C.; Gaspar, J.C.; Brod, J.A.; Petrinovic, I.A.; Hollanda, M.H.B.M.; Pimentel, M.M.; Sichel, S. Chemical and Isotopic Relationships between Peridotite Xenoliths and Mafic–Ultrapotassic Rocks from Southern Brazil. Chem. Geol. 2007, 242, 415–434. [Google Scholar] [CrossRef]
- SGB—Serviço Geológico do Brasil. Levantamento Aerogeofísico do Estado de Goiás—1ª Etapa: Arco Magmático de Arenópolis, Complexo Anápolis-Itauçu, Seqüência Vulcano-Sedimentar de Juscelândia: Relatório Final do Levantamento e Processamento dos Dados Magnetométricos e Gamaespectrométricos; Lasa Engenharia e Prospecções: Rio de Janeiro, Brazil, 2004. [Google Scholar]
- ASF DAAC. PALSAR Radiometrically Terrain-Corrected Low-Resolution Dataset; Alaska Satellite Facility: Fairbanks, AK, USA, 2014. Available online: https://catalog.data.gov/dataset/alos-palsar-rtc-low-res (accessed on 29 November 2020).
- Feitoza, L.M. Assinatura Geofísica Das Rochas Alcalinas Da Porção Norte Da Província Alcalina de Góias. Master’s Thesis, Universidade de Brasília, Instituto de Geociência Aplicadas, Brasília, Brazil, 2011. [Google Scholar]
- IAEA Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry Data; International Atomic Energy Agency: Vienna, Austria, 2003; ISBN 978-92-0-108303-6.
- Kearey, P.; Brooks, M.; Hill, I. An Introduction to Geophysical Exploration, 3rd ed.; Blackwell Science: Malden, MA, USA, 2002; ISBN 978-0-632-04929-5. [Google Scholar]
- Blum, M.d.L.B. Processamento E Interpretação De Dados De Geofísica Aérea No Brasil Central E Sua Aplicação À Geologia Regional E À Prospecção Mineral. Ph.D. Thesis, Universidade de Brasília, Instituto de Geociência, Brasília, Brazil, 1999. [Google Scholar]
- Nabighian, M.N. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation. Geophysics 1972, 37, 507–517. [Google Scholar] [CrossRef]
- Li, X. Understanding 3D Analytic Signal Amplitude. Geophysics 2006, 71, L13–L16. [Google Scholar] [CrossRef]
- Miller, H.G.; Singh, V. Potential Field Tilt—A New Concept for Location of Potential Field Sources. J. Appl. Geophys. 1994, 32, 213–217. [Google Scholar] [CrossRef]
- Ellis, R.G.; de Wet, B.; Macleod, I.N. Inversion of Magnetic Data from Remanent and Induced Sources. ASEG Ext. Abstr. 2012, 2012, 1–4. [Google Scholar] [CrossRef]
- Cowan, D.R.; Cowan, S. Separation Filtering Applied to Aeromagnetic Data. Explor. Geophys. 1993, 24, 429–436. [Google Scholar] [CrossRef]
- Cowan, D.; Dentith, M. Appendix: Data Processing and Presentation. ASEG Ext. Abstr. 2003, 2003, 283–292. [Google Scholar] [CrossRef]
- Efimov, A.V. Multiplikativnyj Pokazatel Dlja Vydelenija Endogennych Rud Po Aerogamma–Spektrometriceskim Dannym. In Metody Rudnoj Geofiziki; Naucno-proizvodstvennoje objedinenie geofizika: Leningrad, Russia, 1978. [Google Scholar]
- Gnojek, I.; Přichystal, A. A New Zinc Mineralization Detected by Airborne Gamma-Ray Spectrometry in Northern Moravia (Czechoslovakia). Geoexploration 1985, 23, 491–502. [Google Scholar] [CrossRef]
- Rose, A.W.; Hawkes, H.E.; Webb, J.S.; Hawkes, H.E. Geochemistry in Mineral Exploration, 2nd ed.; Academic Press: London, UK; New York, NY, USA, 1979; ISBN 978-0-12-596252-0. [Google Scholar]
- Bonham-Carter, G. Geographic Information Systems for Geoscientists: Modelling with GIS, 1st ed.; Computer Methods in the Geosciences; Pergamon: Oxford, UK; New York, NY, USA, 1994; ISBN 978-0-08-041867-4. [Google Scholar]
- Salles, R.d.R. Depósito Metamórfico-Hidrotermal de U-ETR Mary Kathleen, Noroeste de Queensland, Austrália = Uma Investigação Baseada Em Assinaturas Hiperespectrais e Aeroradiométricas. Ph.D. Thesis, Universidade Estadual de Campinas, Campinas, SP, Brazil, 2010. [Google Scholar]
- Reeves, C. Aeromagnetic Surveys: Principles, Practice and Interpretation; Geosoft: Washington, DC, USA, 2005. [Google Scholar]
- Cerqueira, M.R.S. Geologia e Evolução Petrológica Do Complexo Alcalino Fazenda Buriti, Iporá/GO; Universidade de Brasília, Instituto de Geociência: Brasília, Brazil, 1995. [Google Scholar]
- Souza, J.O.; Gollmann, K. Carta Geológica-Geofísica: Folha SE.22-V-B-III Iporá—Escala 1:100.000; Projeto Oeste de Goiás; CPRM: Goiânia, Brasil, 2020. [Google Scholar]
- Isles, D.J.; Rankin, L.R. Geological Interpretation of Aeromagnetic Data; Australian Society of Exploration Geophysicists: Perth, Australia, 2013; ISBN 978-0-643-09809-1. [Google Scholar]
- Dickson, B.; Scott, K. Interpretation of Aerial Gamma-Ray Surveys—Adding the Geochemical Factors. AGSO J. Aust. Geol. Geophys. 1997, 17, 187–199. [Google Scholar]
- Minty, B. Fundamentals of Airborne Gamma-Ray Spectrometry. AGSO J. Aust. Geol. Geophys. 1997, 17, 39–50. [Google Scholar]
- Wilford, J.R.; Bierwirth, P.N.; Craig, M.A. Application of Airborne Gamma-Ray Spectrometry in Soil/Regolith Mapping and Applied Geomorphology. AGSO J. Aust. Geol. Geophys. 1997, 17, 201–216. [Google Scholar]
Association | Types | Examples | |
---|---|---|---|
Primary | Carbonatite | Magmatics/Veins and Stockworks | Araxá (MG), Catalão (GO), Seis Lagos (AM) |
Peralkaline rocks undersaturated in silica | Plutons/stocks and dikes | Repartimento (RR), Morro do Ferro (MG) | |
Granite rocks | Differentiated granites | Pitinga (AM), Serra Dourada (GO), Granitos Rondonianos (RO) | |
Secondary | Marine placer | Sedimentary | Buena (RJ), Guarapari (ES), Cumuruxativa (BA) |
River placer | Sedimentary | São Gonçalo do Sapucaí (MG), Pitinga (AM) | |
Clays with adsorbed ions | Laterite profile | Serra Dourada (GO) |
Mine Productions | Reserves | ||
---|---|---|---|
2022 | 2023 | ||
United States | 42,000 | 43,000 | 1,800,000 |
Australia | 18,000 | 18,000 | 5,700,000 |
Brazil | 80 | 80 | 21,000,000 |
Myanmar | 12,000 | 38,000 | NA |
Canada | — | — | 830,000 |
China | 210,000 | 240,000 | 44,000,000 |
Greenland | — | — | 1,500,000 |
India | 2900 | 2900 | 6,900,000 |
Madagascar | 960 | 960 | NA |
Malaysia | 80 | 80 | NA |
Russia | 2600 | 2600 | 10,000,000 |
South Africa | — | — | 790,000 |
Tanzania | — | — | 890,000 |
Thailand | 7100 | 7100 | 4500 |
Vietnam | 1200 | 600 | 22,000,000 |
World total (rounded) | 300,000 | 350,000 | 110,000,000 |
Depth (m) | Lithological Description | Samples |
---|---|---|
1 to 8 | Soil—oxidation profile | 7 |
8 to 18 | Brecciated pyroxenite saprolite | 11 |
18 to 20 | Altered brecciated pyroxenite | 2 |
20 to 22 | Brecciated pyroxenite saprolite | 2 |
22 to 38 | Brecciated pyroxenite | 16 |
38 to 39 | Breccia with massive sulphite level | 1 |
39 to 45 | Hydrothermal breccia with pyroxenite fragment | 6 |
45 to 51 | Brecciated pyroxenite | 6 |
51 to 73 | Hydrothermal breccia with pyroxenite fragment | 22 |
73 to 90 | Brecciated pyroxenite | 17 |
90 to 98 | Hydrothermal breccia with pyroxenite fragment | 8 |
98 to 99 | Brecciated pyroxenite | 1 |
99 to 100 | Pyroxenite | 1 |
Total samples | 100 |
Lithology | K (%) | eTh (ppm) | eU (ppm) | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | µ | Min | Max | µ | Min | Max | µ | |
Sandstone | 0.04 | 3.2 | 0.8 | 6 | 40 | 17 | 0.8 | 5.8 | 2.8 |
Trachyte, Syenite | 0.9 | 2.0 | 1.5 | 17 | 26 | 20 | 2.1 | 4.7 | 3.0 |
Detrital-lateritic cover | 0.9 | 1.7 | 1.2 | 18 | 28 | 24 | 3.7 | 5.5 | 4.8 |
Microsyenite | 0.4 | 3.8 | 2.1 | 10 | 30 | 18 | 1.8 | 4.3 | 3.0 |
Gabbro, Pyroxenite | 0.01 | 3.9 | 0.6 | 3 | 49 | 16 | 0.5 | 6.9 | 2.5 |
Nepheline Syenite | 0.4 | 3.1 | 1.4 | 18 | 41 | 32 | 2.3 | 6.5 | 5.0 |
Iporá Granite | 0.02 | 4.3 | 1.7 | 15 | 58 | 28 | 1.7 | 8.8 | 5.0 |
Mylonitic gneisses | 0.2 | 2.8 | 1.4 | 3 | 28 | 11 | 0.0 | 4.9 | 1.9 |
Volcanic breccia | 1.8 | 3.0 | 2.4 | 22 | 50 | 35 | 2.0 | 3.2 | 2.6 |
Hydrothermal alteration zone | 1.8 | 2.6 | 2.2 | 46 | 53 | 50 | 4.0 | 6.4 | 5.3 |
Layers | µ | σ | µ + 1 × σ | µ + 2 × σ | µ + 3 × σ |
---|---|---|---|---|---|
eU ppm | 3.59 | 1.70 | 5.29 | 6.99 | 8.69 |
eTh ppm | 20.78 | 9.17 | 29.96 | 39.13 | 48.31 |
eU/eTh ratio | 0.18 | 0.05 | 0.23 | 0.27 | 0.32 |
Mineral | HG1 | HG2 |
---|---|---|
Goethite | 49.5 | 38.8 |
Quartz | 2.7 | 31.4 |
Goyazite | 11.3 | 4.3 |
Monazite | 5.7 | 5.1 |
Hematite | 4.8 | 4.9 |
Muscovite | 3.5 | 1.9 |
Boehmite | 1.7 | 1.8 |
Crandallite | 1.7 | 1.6 |
Anatase | 0.9 | 2.3 |
Bixbyite | 1.5 | 1.1 |
Clay | ||
Kaolinite | 12.4 | 3.1 |
Montmorillonite | 4.3 | 2.0 |
Illite | - | 1.7 |
Total | 100 | 100 |
Sample | HG1 | HG2 | HG1 (HLS) | HG2 (HLS) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fraction | Head | Head | Combined | Sink | Float | Combined | Sink | Float | ||||
Sample | Sample | Sample | Sample | Fraction | Sample | Fraction | Sample | Sample | Fraction | Sample | Fraction | |
Mass | 100.0 | 100.0 | 100.0 | 87.1 | 12.9 | 100.0 | 57.4 | 42.6 | ||||
Niobates | 0.30 | 0.06 | 0.61 | 0.54 | 0.62 | 0.07 | 0.54 | 0.06 | 0.05 | 0.09 | 0.01 | 0.01 |
Nb-rutile | 0.35 | 0.35 | 0.71 | 0.65 | 0.75 | 0.06 | 0.46 | 0.42 | 0.36 | 0.62 | 0.07 | 0.16 |
Monazite | 4.21 | 4.36 | 5.85 | 5.44 | 6.25 | 0.40 | 3.14 | 4.54 | 2.59 | 4.52 | 1.95 | 4.57 |
Ce Oxide | 0.21 | 0.18 | 0.28 | 0.26 | 0.30 | 0.02 | 0.12 | 0.16 | 0.09 | 0.16 | 0.07 | 0.17 |
Crandallite (Fe) | 3.20 | 3.10 | 3.90 | 3.40 | 3.91 | 0.50 | 3.86 | 2.43 | 1.27 | 2.21 | 1.16 | 2.73 |
Goyazite | 5.98 | 2.41 | 9.77 | 7.33 | 8.42 | 2.43 | 18.9 | 4.66 | 1.08 | 1.88 | 3.58 | 8.41 |
Other REM | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Zircon | 0.01 | 0.02 | 0.05 | 0.05 | 0.05 | 0.00 | 0.01 | 0.02 | 0.01 | 0.02 | 0.00 | 0.01 |
Fe oxides | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 |
Goethite | 57.4 | 51.2 | 56.8 | 53.3 | 61.2 | 3.56 | 27.6 | 47.5 | 38.3 | 66.7 | 9.20 | 21.6 |
Rutile | 0.64 | 0.65 | 0.97 | 0.87 | 0.99 | 0.10 | 0.81 | 0.95 | 0.77 | 1.35 | 0.18 | 0.41 |
Ilmenite | 0.56 | 3.79 | 0.77 | 0.69 | 0.80 | 0.08 | 0.61 | 4.24 | 3.74 | 6.51 | 0.50 | 1.18 |
Mn-(Fe)-(Ba)-Oxides | 2.15 | 1.14 | 3.48 | 3.15 | 3.61 | 0.33 | 2.55 | 3.21 | 3.06 | 5.33 | 0.15 | 0.35 |
Apatite | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.01 | 0.00 | 0.01 | 0.01 | 0.02 |
Amphibole/Pyroxene | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | 0.06 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Quartz | 0.27 | 22.2 | 0.55 | 0.14 | 0.16 | 0.42 | 3.22 | 27.3 | 4.08 | 7.11 | 23.3 | 54.6 |
Feldspars | 0.36 | 0.34 | 0.62 | 0.30 | 0.35 | 0.32 | 2.47 | 0.46 | 0.03 | 0.05 | 0.43 | 1.01 |
Fe-Ox/Smectites | 7.39 | 5.68 | 4.48 | 3.87 | 4.45 | 0.60 | 4.67 | 1.60 | 0.81 | 1.42 | 0.78 | 1.84 |
Biotite | 2.85 | 1.44 | 2.62 | 1.73 | 1.98 | 0.89 | 6.89 | 0.73 | 0.31 | 0.54 | 0.42 | 0.98 |
Kaolinite | 13.5 | 2.56 | 7.56 | 4.61 | 5.29 | 2.95 | 22.9 | 0.87 | 0.36 | 0.63 | 0.51 | 1.20 |
Muscovite | 0.06 | 0.13 | 0.07 | 0.03 | 0.04 | 0.04 | 0.29 | 0.10 | 0.02 | 0.03 | 0.08 | 0.20 |
Other silicates | 0.02 | 0.04 | 0.01 | 0.01 | 0.01 | 0.00 | 0.03 | 0.07 | 0.04 | 0.08 | 0.03 | 0.06 |
Barite | 0.03 | 0.01 | 0.03 | 0.02 | 0.03 | 0.00 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 |
Sulphides | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Gibbsite | 0.03 | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.06 | 0.02 | 0.00 | 0.00 | 0.01 | 0.03 |
Other | 0.47 | 0.33 | 0.80 | 0.70 | 0.80 | 0.11 | 0.82 | 0.58 | 0.41 | 0.72 | 0.17 | 0.40 |
Total | 100.0 | 100.0 | 100.0 | 87.1 | 100.0 | 12.9 | 100.0 | 100.0 | 57.4 | 100.0 | 42.6 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, F.P.; Leão-Santos, M.H.; Borges, W.R.; Borges, P.C. Geophysical Methods Applied to the Mineralization Discovery of Rare-Earth Elements at the Fazenda Buriti Alkaline Complex, Goiás Alkaline Province, Brazil. Minerals 2024, 14, 1163. https://doi.org/10.3390/min14111163
dos Santos FP, Leão-Santos MH, Borges WR, Borges PC. Geophysical Methods Applied to the Mineralization Discovery of Rare-Earth Elements at the Fazenda Buriti Alkaline Complex, Goiás Alkaline Province, Brazil. Minerals. 2024; 14(11):1163. https://doi.org/10.3390/min14111163
Chicago/Turabian Styledos Santos, Fabrício Pereira, Marcelo Henrique Leão-Santos, Welitom Rodrigues Borges, and Patrícia Caixeta Borges. 2024. "Geophysical Methods Applied to the Mineralization Discovery of Rare-Earth Elements at the Fazenda Buriti Alkaline Complex, Goiás Alkaline Province, Brazil" Minerals 14, no. 11: 1163. https://doi.org/10.3390/min14111163
APA Styledos Santos, F. P., Leão-Santos, M. H., Borges, W. R., & Borges, P. C. (2024). Geophysical Methods Applied to the Mineralization Discovery of Rare-Earth Elements at the Fazenda Buriti Alkaline Complex, Goiás Alkaline Province, Brazil. Minerals, 14(11), 1163. https://doi.org/10.3390/min14111163