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Abstract: Deep learning technology, such as fully convolutional networks (FCNs), have shown
competitive performance in the automatic extraction of buildings from high-resolution aerial images
(HRAIs). However, there are problems of over-segmentation and internal cavity in traditional FCNs
used for building extraction. To address these issues, this paper proposes a new building graph
convolutional network (BGC-Net), which optimizes the segmentation results by introducing the
graph convolutional network (GCN). The core of BGC-Net includes two major modules. One is an
atrous attention pyramid (AAP) module, obtained by fusing the attention mechanism and atrous con-
volution, which improves the performance of the model in extracting multi-scale buildings through
multi-scale feature fusion; the other is a dual graph convolutional (DGN) module, the build of which
is based on GCN, which improves the segmentation accuracy of object edges by adding long-range
contextual information. The performance of BGC-Net is tested on two high spatial resolution datasets
(Wuhan University building dataset and a Chinese typical city building dataset) and compared
with several state-of-the-art networks. Experimental results demonstrate that the proposed method
outperforms several state-of-the-art approaches (FCN8s, DANet, SegNet, U-Net, ARC-Net, BAR-Net)
in both visual interpretation and quantitative evaluations. The BGC-Net proposed in this paper
has better results when extracting the completeness of buildings, including boundary segmentation
accuracy, and shows great potential in high-precision remote sensing mapping applications.

Keywords: deep fully convolutional network (DFCN); graph convolutional neural network (GCN);
building extraction; high-resolution aerial images

1. Introduction

Automatic building extraction from remote sensing images (RSIs) has been a hot
topic in the field of photogrammetry and remote sensing for decades [1,2]. The end
product is extremely important for various applications, such as mapping, spatial planning
and urbanization processes [3–6]. With the continuous advancement of remote sensing
technology, the imaging quality and spatial resolution of RSI have been improved. Among
them, high-resolution aerial images (HRAIs) have become the preferred data source for
building extraction due to their rich feature information and texture semantics. However,
the increase of redundant interference information in HRAIs and the highly complex urban
scenes bring difficulties and challenges to the high accuracy extraction of buildings.

Traditional methods for building extraction from RSIs mainly include pixel-based
methods and object-oriented methods [7,8]. The pixel-based method is based on a single
pixel as the processing object, and extract the building by obtaining its spectrum, shape,
and geometric features [9–11]. This method is easy to implement, but it generates more
noise and is less effective in complex scenes. The object-oriented method is generally based
on image segmentation, with feature patches as the smallest unit of analysis, and is a
method of segmentation before classification. Du et al. [12] designed linearization and
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global regularization algorithms to draw residential contours from large-scale point clouds
for building extraction. Awrangjeb et al. [13] combined LIDAR data and aerial imagery to
effectively improve building extraction accuracy. Cui et al. [14] used a minimum spanning
tree with a rectangular index to control the segmentation scale, which extracted a better
building integrity. Li et al. [15] used worldview-2 data for a better extraction of buildings
through an object-oriented method, but the segmentation scale and rules of the method are
more complicated to determine. Li et al. [16] firstly used a multi-scale segmentation method
to divide the image objects, and then established a classification system and function rules
to extract residential buildings, which effectively solved the problem of “same objects
with different spectra”. Yan et al. [17] implemented object-oriented detection of building
damage information based on a multi-classifier system. However, the object-oriented
methods require artificially selected classification rules, which not only have the problems
of large workload and low efficiency, but also poor generalization ability of multi-source
information extraction. Therefore, there is an urgent requirement for a more effective and
intelligent means of building extraction from RSIs.

In recent years, the rapid growth of computational power has facilitated the devel-
opment of deep learning, especially convolutional neural networks (CNNs), which has
become a powerful tool for image processing [18]. CNNs can not only automatically extract
features from raw image data, but also obtain semantic information level by level, which
has achieved great success in image classification tasks [19–21] and provides a new solution
for building refinement extraction. In 2015, Long et al. [22] proposed a fully convolutional
network (FCN), the first end-to-end semantic segmentation method implemented in neural
networks. Following this paradigm, many scholars have further considered the relationship
between inter-pixel space and values, while many deepened and improved networks are
proposed, such as U-Net [23], SegNet [24], DeconvNet [25], etc. However, these networks
lose some detail information while obtaining multi-scale features, they are not the best
solution for addressing the task of building segmentation [26].

In order to obtain the multi-scale features of buildings more effectively, researchers
have proposed some new networks based on FCN. Jin et al. [27] designed the DASPP
module based on DeepLabv3+ to solve the problem of missing boundary information,
and proposed BARNet to extract buildings in complex urban scenes with high accuracy.
Pan et al. [28] proposed a new network DPN, which first processes the sensor data using
group convolution to obtain the feature maps of individual channels, and then goes through
the pyramid module to fully acquire the high-level features. Liu et al. [29] designed a deep
encoder–decoder network. The network uses striding convolution to obtain information
at multiple scales during down-sampling, while using densely upsampling convolution
to recover feature map dimensions. The effectiveness of this network was verified on the
WHU dataset and the SuZhou dataset. To integrate the semantic information of buildings
of different sizes, SR-FCN [30] adds atrous spatial pyramid pooling (ASPP) to the decoder.
AWNet [31] proposed an Adaptive Multi-Scale Module, which can adaptively fuse features
according to the change of building feature size. MAP-Net [32] uses a multi-parallel
strategy to obtain multi-scale building footprint features, followed by feature fusion using
an attention mechanism. Sun et al. [33] first extracted deep features at different scales using
multi-scale CNN, then input them into a different support vector mechanism (SVM) for
feature processing, respectively, finally refining the boundary to output the segmentation
results. This method can achieve high precision extraction of building contours in urban
scenes. However, the above methods do not add global dependencies when capturing
local features, and lack guidance from long-range contexts, which can easily cause the loss
of building feature information. At the same time, due to the complexity of the scenes
in HRAIs, there are still many difficulties for existing networks to make a high-precision
segmentation of buildings [34–36].

Based on the above analysis and discussion, we have designed two modules to solve
the above problems. To address the problem that existing networks cannot make good use
of multi-scale features, we propose the atrous attention pyramid (AAP) module. Based on
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the classical pyramid feature extraction structure, a new branch feature fusion method is
proposed, and a spatial attention mechanism is added to deepen the semantic information
of each branch. To make more efficient use of long-range contextual information, we
construct a dual graph convolution (DGC) module to model global dependencies.

The main contributions of this work are summarized as follows:

(1) A new multi-scale feature fusion module, the AAP (atrous attention pyramid) module,
is proposed to fuse multi-scale features through the combination of multi-branching
and attention mechanisms, which helps network to cope with complex scenes with
variable building dimensions.

(2) The DGC (dual graph convolution) module is used to obtain global contextual in-
formation in spatial and channel dimensions. This module guides the network to
perceive effective features from the global context, reduces the influence of the back-
ground environment on building recognition, and allows more accurate identification
of the classes to which edge pixels belong.

(3) A new network, the building graph convolutional network (BGC-Net), is proposed.
The proposed method was thoroughly evaluated on two different and versatile
datasets, which confirmed that the proposed method can comprehensively outper-
form the existing CNN-based methods in the Overall Accuracy (OA), Recall, F1 score,
and intersection over union (IoU).

2. Methodology
2.1. Overview of the Proposed Model

In this paper, we propose a combined FCN and GCN model named BGC-Net; the over-
all structure is shown in Figure 1. BGC-Net is designed as an asymmetric encoder–decoder
structure, consisting of three modules: a feature extraction (FE) module, atrous attention
pyramid (AAP) module, and dual graph convolutional (DGC) module. The input HRAIs
are first processed by the FE module to capture the building feature information at different
levels. The obtained high-level building features are input to the AAP module, which con-
structs a pyramid based on the atrous convolution and attention mechanism to effectively
capture the global dependencies and contextual information for a better feature representa-
tion. Finally, in order to improve the pixel-level prediction accuracy of the buildings, the
interdependencies between the channel feature maps as well as the pixel feature maps are
modeled using the DGC module.
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Figure 1. The structure of our proposed BGC-Net, consisting of three parts: FE module, AAP module,
DGC module.

2.2. Feature Extraction Module

The input HRAIs are first processed by the FE module to capture the building feature
information at different levels. To improve the feature extraction accuracy, some networks,
such as VGG and AlexNet, obtain better training results by increasing the network depth.
However, the increase of network depth brings gradient explosion and gradient vanishing
phenomenon, which affects the training and prediction of the network. To address this issue,



Buildings 2022, 12, 2233 4 of 21

ResNet [37] was proposed with the direct mapping between deep and shallow neurons.
The skip-connection integrates the original information with the high-level semantics,
effectively preventing the gradient from vanishing during backpropagation. The structure
of the residual block is shown in Figure 2. For ResNet, when the number of network layers
is enough, the network has already reached the maximum feature extraction capacity and
increasing the network depth again does not improve the feature extraction effect much.
Based on this, after an experimental comparison analysis and comprehensive consideration
of model accuracy and efficiency, we finally choose ResNet-50 to constitute the FE module
of BGC-Net; its structure is shown in Figure 3.
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ResNet-50 consists of five stages. The first stage consists of a 7 × 7 convolution and
a max-pooling layer for the down-sampling operation of the input image. Each of the
four subsequent stages consists of a different number of residual blocks. The residual
block contains two 1 × 1 convolutional and one 3 × 3 convolutional constructs, while
fusing low-level and high-level features by skip-connection. Subsequently, the features are
processed using the rectified linear unit (ReLU) function as well as the batch normalization
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(BN) layer, thus ensuring a uniform distribution of the features in each layer. Finally, the
obtained feature maps are used as an input to the AAP module, which is used for further
contextual information extraction.

2.3. Atrous Attention Pyramid Module

For the problem of difficult classification caused by the existence of multi-scale build-
ings in HRAIs, the AAP module is proposed in this paper. The AAP module captures
multi-scale features by aggregating atrous convolutions and uses a spatial attention mecha-
nism to make each layer more focused on building features, which helps to enhance the
prediction capability of targets at different scales.

Through constructing different branches to extract features separately, and finally
fusing different samples, the pyramid structure is considered as an effective way to extract
multi-scale features [6,38]. Zhao et al. [39] proposed a pyramid pooling module to aggregate
contexts at multiple scales, which enhanced the scene parsing capability of the network
and improved the accuracy of image segmentation results. Chen et al. [40] combined
different rates of atrous convolution and image-pooling to construct ASPP that obtains
multi-scale association information. Yang et al. [41] proposed a densely connected ASPP,
which organizes different rates of atrous convolution layers in a cascade fashion. The
output features of each layer are fused with the input features, and together they are
used as feature inputs for the next layer. The final output of each branch integrates all
the information from the previous layers, thus obtaining multi-scale information with
better results.

The attention mechanism can focus on regions of interest to optimize the feature
extraction process, which is widely used in the image field [42]. Among them, the spatial
attention mechanism (SAM) gives more attention to locally important information by
weighting the feature map, which promotes the classification accuracy among different
local features [43]. The SAM structure is shown in the bottom half of Figure 4. The input
feature map is first transposed and then multiplied with the feature map matrix to obtain
the attention map S. Then S is matrix multiplied with the transpose of the feature map to
obtain the feature map of each position weight. Finally, this map is added with the original
feature graph to obtain the final output of the integrated correlation results.
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The AAP module proposed in this paper is shown in Figure 4. This module includes
image-pooling, 1 × 1 convolution, and three branches of atrous convolution containing a
SAM. In order to better extract contextual information from different scales, the rate in the
atrous convolution of the AAP module is set to 6, 12 and 18, respectively. Meanwhile, the
SAM is added in each branch to improve the feature extraction for buildings at different
scales. The pyramid gradually integrates information at different scales according to the
RF size, making full use of the hierarchical dependence of contextual information, and then
multiplies the fusion results with the feature map after 1 × 1 convolution. Finally, the AAP
module in this paper introduces the image-pooling layer to obtain global high-dimensional
features. It is used to further reduce the loss of features and to obtain more effective
multi-scale information.

2.4. Dual Graph Convolutional Module

Adding long-range contextual information to the CNN enables the network to extract
more complete semantics, which enhances the network’s ability to parse scenes [44]. There-
fore, in this paper, the DGC module is designed to model the contextual information of the
input features in spatial and channel dimensions. This enhances the feature learning of
building area pixels and enables better building feature extraction.

In HRAIs, the spatial distribution between different types of features is strongly
correlated. However, traditional deep semantic segmentation networks have difficulty in
handling this spatial topological relationship information, which is extremely important
for image interpretation [45]. Graph convolutional network (GCN), as an application of
deep learning on graph data, has obvious advantages in processing these non-Euclidean
spaces [46,47]. Based on this, inspired by several works [48,49], this paper develops the
DGC module based on GCNs. The DGC module can better distinguish different objects by
detecting features from the global, thus improving segmentation accuracy.

The structure diagram of the DGC module is shown in Figure 5, which is divided
into two parts: spatial dimension GCN and channel dimension GCN. The main purpose
of the spatial dimension GCN part is to explicitly model the spatial relationships between
individual pixels in the image, obtaining correlation predictions considering all pixels. First
project the input feature X

(
XεRN×D) into the coordinate space Ωs, and transform it into

the new feature Vs in Ωs using the spatial down-sampling operation. where D represents
the feature dimension, and N = H ×W represents the number of nodes of the feature.
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The new feature Vs is defined as follows:

Vs = HsX (1)

where VsεR
H×W

d2 ×d, d denotes the sampling rate of spatial down-sampling, and Hs repre-
sents the spatial down-sampling.

On this basis, a lightweight fully connected graph AsεR
H
d ×

W
d is constructed, which

is used for information dissemination across nodes. Global relational inference for the
new feature Vs has three linear variations and is used to model the relationships that exist
between the nodes. Obtain the new feature Ms:

Ms = f
(

δ(Vs), ψ(Vs)
T
)

ν(Vs)Ws (2)

where δ, ψ, ν are the three linear transformations and Ws is the weight matrix.
Finally, it is inverse mapped into the original space, and resized using the nearest

neighbor interpolation method:

Xs = ξ(interp(Ms)) (3)

where Xs is the inverse mapped posterior feature and interp(·) is the closest interpolation
method.

The main purpose of the channel dimension GCN part is to model the interdependence
between the channel dimensions of the network feature mapping, which can obtain more
abstract feature information in the image. First, the input feature X

(
XεRN×D) is projected

onto the feature space Ω f to obtain the new feature Vf :

Vs = HT
f θ(X) = φ(X)θ(X) (4)

where θ(X) εRN×D1 is used to reduce the channel dimension of X, and φ(X) = HT
f εRN×D2

is the projection function, φ and θ are linear transformations.
Then, build the lightweight fully connected graph A f εRD1×D1 containing the adja-

cency matrix, such that each node in the graph contains the symbols describing the features.
Obtain the feature M f :

M f =
(

I − A f

)
Vf W f (5)

where W f is the edge weight and I is the unit matrix.

On this basis, the feature X f = φ
(

H f M f

)
is obtained by mapping M f into the original

coordinate space. Finally, the output feature X = X + Xs + X f .

2.5. Decoder Module

The main task of the decoder phase is to up-sample the feature maps and to recover
the input resolution from the encoder phase. Inspired by the idea of a light-weight and
asymmetric decoder, we designed a simple and effective decoder module. The proposed
decoder module is shown in Figure 6. The feature maps obtained by the FE module, AAP
module and DGC module are fused, in turn, to obtain a new feature map containing high-
and low-level semantic information. Further, the feature map is output as a binary map
with a channel number of 1 by upsampling to enlarge the size of the fused feature map and
reducing the channel number.
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3. Experimental Datasets and Evaluation
3.1. Datasets

In this study, the WHU building dataset (WHU dataset) [50] and the China typical city
building dataset (CHN dataset) [51] were used to verify the performance of the proposed
network. The two datasets are taken from complex urban scenes in different regions with
very high resolution. The basic parameters and image examples are shown in Table 1 and
Figure 7.

Table 1. Basic parameters and training assignment of dataset.

Dataset Resolution/m Size Train Validation Test

WHU 0.30 512 × 512 4736 1036 2416
CHN 0.29 500 × 500 5985 - 1275
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WHU building dataset: Provided by Prof. Shunping Ji’s team at Wuhan University, it is
a building detection dataset based on large-scene, high-resolution RSIs. The dataset mainly
covers part of Christchurch, New Zealand, with an overall coverage area of 450 km2.
The whole image is divided into 3 bands of RGB. The dataset contains a total sample
of 22,000 buildings of different styles, functions, sizes, and colors. The WHU dataset
surpasses the current international mainstream building dataset in several metrics such as
size, resolution, and accuracy.

Chinese typical city building dataset: The images were taken from four representative
urban centers in Beijing, Shanghai, Shenzhen and Wuhan, covering an area of 120 km2.
The dataset contains orthophotos, non-orthophotos, sparse distribution of buildings and
dense distribution images, containing 63,886 buildings. It is a more challenging dataset
with richer imaging angles and building classes than the WHU dataset.

In order to avoid overfitting during network training due to the small training sample
size, the training set images are processed by data enhancement, including image rotation
and random flip.

3.2. Evaluation Metrics

In order to evaluate the performance of the network more comprehensively, Overall
Accuracy (OA), Precision, Recall, F1-score and Intersection-over-Union (IoU) are chosen as
evaluation metrics. The evaluation indicators are calculated as follows:

OA =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 =
2(

1
Precision

)
+

(
1

Recall

) (9)

IoU =
TP

TP + FP + FN
(10)

where TP is the true positive, TN is the true negative, FP is the false positive, and FN is the
true negative. OA indicates the percentage of correct predictions among all pixels. Precision
is the number of pixels correctly predicted as a positive class divided by the number of
pixels predicted as a positive class. Recall is the number of pixels correctly predicted to be
in the positive class divided by the number of pixels in all positive classes. The F1-score
takes into account both Precision and Recall. IoU can describe segment-level accuracy.

3.3. Implementation Details

In this paper, in order to verify the building extraction performance of BGC-Net,
the current better performance and widely used U-Net, SegNet, DANet, and FCN8s are
introduced as comparison methods. The five networks were tested on two datasets, using
the same training set, validation set and test set, and the same software and hardware
environment for training. The software and hardware configurations for this experiment are
shown in Table 2. The same parameter settings were performed for all networks: the Adam
optimizer [52] was selected and the initial learning rate was set to 0.0001, β1 = 0.9, and
β2 = 0.999. The network has a batch size of 4 and a learning rate of 0.001, with 150 epochs
trained on each of the two datasets.
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Table 2. Hardware and software configuration.

Project Parameter Project Parameter

CPU Intel(R) Core(TM) i9-10850K Operating system Windows 10
RAM 32G CUDA version CUDA 11

Hard disk 1T Language used Python 3.6
GPU NVIDIA GeForce GTX 3070 Deep learning framework Pytorch 1.8

4. Results
4.1. Visualization Results
4.1.1. Results on WHU Dataset

The results of the building segmentation for different networks on the WHU dataset
are shown in Figure 8. From an overall perspective, BGC-Net has achieved the best building
extraction results with few false detections or missed detections. U-Net, FCN8s and SegNet
have good extraction results for small buildings, but the extracted large buildings have
obvious internal incompleteness. DANet is poor for building edge recognition, and it is
hard to acquire clear building outlines. Next, the building extraction results are analyzed
for each network in different scenes.
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rows of Figure 8 show the extraction results of different networks for the densely distrib-
uted small buildings. As shown in Figure 8d, DANet has the worst extraction results. Most 
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The building segmentation details are shown in Figure 9, with the detail area being 
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some building areas not identified and a large number of missing building interiors in the 
figure. Due to the addition of multi-scale features and long-range contextual information, 
BGC-Net can effectively improve the extraction accuracy of buildings. BGC-Net can 

Figure 8. Examples of building extraction results obtained by different networks on the WHU dataset.
(a) Original image. (b) Ground-truth. (c) FCN8s. (d) DANet. (e) SegNet. (f) U-Net. (g) BGC-Net.
Note, in Columns (b–g), black, white, green, blue, and red indicate true, false, true-positive, false-
negative, and false-positive, respectively. The red rectangles in (a) are the selected regions for close-up
inspection in Figure 8.

The first row of Figure 8 represents the extraction results of different networks for
multi-scale buildings. For this scene, only BGC-Net extracted all the buildings completely.
The rest of the networks fail to extract the complete internal structure of the buildings,
and all of them have missing building interiors. This shows that BGC-Net can efficiently
acquire multi-scale context information. The second row of Figure 8 shows the extraction
results of different networks for complex buildings. FCN8s, DANet, SegNet and U-Net
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have different degrees of building omission, which means that these networks are not well
capable of extracting buildings with complex and irregular structures. In comparison, BGC-
Net enables relatively accurate extraction of the entire building. Unfortunately, all networks
failed to accurately identify the “Y-structure” in the figure. The third and fourth rows of
Figure 8 show the extraction results of different networks for the densely distributed small
buildings. As shown in Figure 8d, DANet has the worst extraction results. Most of the
contour information of the building is missed, and also, some areas with similar spectral
values are misclassified as building areas. FCN8s, SegNet and U-Net can extract relatively
complete buildings, but there is a problem of too much noise in the non-building areas, i.e.,
minor misclassification. BGC-Net has solved the above problems very well. Although the
edges of the building body are effectively extracted, the non-building area segmentation
does not show significant noise and the perception performance is excellent.

The building segmentation details are shown in Figure 9, with the detail area being
the red matrix location in Figure 8. As can be seen from the detail figure, FCN8s, DANet,
SegNet and U-Net all present an underfitting phenomenon in building extraction, with
some building areas not identified and a large number of missing building interiors in the
figure. Due to the addition of multi-scale features and long-range contextual information,
BGC-Net can effectively improve the extraction accuracy of buildings. BGC-Net can obtain
the whole internal structure with only a small amount of noise at the building’s boundary.
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buildings at the edge of the image. The building extraction of FCN8s, DANet and SegNet 
is incomplete, while U-Net and BGC-Net extract this building accurately. In the third row, 
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cannot extract the building areas under shadows at all. In the fourth row, FCN8s and 
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Figure 9. Close-up views of the results obtained by different networks on the WHU dataset. Images
and results shown in (a–g) are the subset from the selected regions marked in Figure 7a. (a) Original
image. (b) Ground-truth. (c) FCN8s. (d) DANet. (e) SegNet. (f) U-Net. (g) BGC-Net. Note, in
Columns (b–g), black, white, green, blue, and red indicate true, false, true-positive, false-negative,
and false-positive, respectively.
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4.1.2. Results on CHN Dataset

The results of the building segmentation for different networks on the CHN dataset are
shown in Figure 10. From the figure, it is clear that BGC-Net obtains the best segmentation
results. Although a few background pixels were misclassified as buildings, the overall
extraction effect best matches the ground truth. In contrast, other networks extract buildings
with unclear edges. Figure 11 shows the comparison of the building extraction details. As
shown in the first row of Figure 11, DANet and SegNet did not extract the buildings in the
upper part of the image at all, and FCN8s and U-Net only extracted part of the building.
Although BGC-Net detected most of the area of the building, the effect was better than
the previous networks. The second row of Figure 11 shows the separate buildings at the
edge of the image. The building extraction of FCN8s, DANet and SegNet is incomplete,
while U-Net and BGC-Net extract this building accurately. In the third row, BGC-Net can
identify buildings partially covered by shadows, while the other networks cannot extract
the building areas under shadows at all. In the fourth row, FCN8s and DANet have obvious
underfitting and poor extraction. SegNet has a slight underfitting phenomenon, and a few
regions are not identified. U-Net and BGC-Net suffer from overfitting, misclassifying gaps
as buildings, but BGC-Net has fewer misclassified pixels.
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Figure 10. Examples of building extraction results obtained by different networks on the CHN dataset.
(a) Original image. (b) Ground-truth. (c) FCN8s. (d) DANet. (e) SegNet. (f) U-Net. (g) BGC-Net.
Note, in Columns (b–g), black, white, green, blue, and red indicate true, false, true-positive, false-
negative, and false-positive, respectively. The red rectangles in (a) are the selected regions for close-up
inspection in Figure 10.
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false-positive, respectively. 
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improved by 4.1% (0.89 vs. 0.849) compared to U-Net, which had the next highest overall 
score performance. In terms of index F1-score scores, BGC-Net improved 2.5%, 12.3%, 
10.9% and 7%, respectively, over other models. The above score performance confirms 
that BGC-Net has a good and stable performance, which could perform the task of ex-
tracting buildings from HRAIs satisfactorily. When processing the more challenging CHN 
dataset, the quantitative evaluation results of each network are shown in Figure 12b. The 
OA score of BGC-Net is 0.935, Recall score is 0.919, F1-score score is 0.925, and IoU score 
is 0.861. These four scores are in the first position among all of the network scores. Unfor-
tunately, the Precision score of BGC-Net is only 0.939, which is low compared with other 
networks, indicating that there is a certain overfitting phenomenon in BGC-Net. It is 
worth noting that DANet has a lower index than U-Net and SegNet on both datasets. This 
is because the upsampling process of DANet is simpler. In contrast, SegNet and U-Net 
use a layer-by-layer feature map recovery strategy in the decoder to obtain better building 

Figure 11. Close-up views of the results obtained by different networks on the CHN dataset. Images
and results shown in (a–g) are the subset from the selected regions marked in Figure 9a. (a) Original
image. (b) Ground-truth. (c) FCN8s. (d) DANet. (e) SegNet. (f) U-Net. (g) BGC-Net. Note, in
Columns (b–g), black, white, green, blue, and red indicate true, false, true-positive, false-negative,
and false-positive, respectively.

The above qualitative analysis shows that, compared with other advanced networks,
our proposed BGC-Net is more effective in extracting complex buildings and large buildings
in urban environments, and can obtain a more complete internal structure of buildings. It is
also possible to accurately extract the edge contours of small buildings. This demonstrates
the effectiveness of the proposed network for building extraction in complex urban scenes.

4.2. Quantitative Comparisons

Figure 12 shows a quantitative comparison of the different networks on the urban
building dataset. As shown in Figure 12a, our proposed BGC-Net scores higher than other
networks on OA, Recall, F1-score and IoU in the WHU dataset. The IoU score of BGC-Net
improved by 4.1% (0.89 vs. 0.849) compared to U-Net, which had the next highest overall
score performance. In terms of index F1-score scores, BGC-Net improved 2.5%, 12.3%,
10.9% and 7%, respectively, over other models. The above score performance confirms that
BGC-Net has a good and stable performance, which could perform the task of extracting
buildings from HRAIs satisfactorily. When processing the more challenging CHN dataset,
the quantitative evaluation results of each network are shown in Figure 12b. The OA score
of BGC-Net is 0.935, Recall score is 0.919, F1-score score is 0.925, and IoU score is 0.861.
These four scores are in the first position among all of the network scores. Unfortunately,
the Precision score of BGC-Net is only 0.939, which is low compared with other networks,
indicating that there is a certain overfitting phenomenon in BGC-Net. It is worth noting
that DANet has a lower index than U-Net and SegNet on both datasets. This is because the
upsampling process of DANet is simpler. In contrast, SegNet and U-Net use a layer-by-layer
feature map recovery strategy in the decoder to obtain better building segmentation results.
The above quantitative evaluation shows that BGC-Net is robust, which can effectively
handle the task of building extraction in a variety of urban scenes.
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5. Discussion
5.1. Ablation Study

In order to investigate the effects of the AAP module and DGC module on the BGC-
Net, ablation experiment is set up in this paper. Based on ResNet-50, three models
(ResNet + AAP, ResNet + DGC and ResNet + AAP + DGC) are constructed by differ-
ent combinations of these two modules. The three models are trained for 150 epochs each
under the conditions of computer software, hardware and hyperparameter settings in
Section 3.3. The three trained models were tested based on the two datasets.
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The extraction results for different module combinations on the WHU dataset are
shown in Figure 13. As shown in the first and second rows of Figure 13, the segmentation
result of the AAP module has a partial misdetection, misclassifying the surrounding roads
as buildings. The DGC module improves this situation, but there is still a small fraction
of red pixels in the segmentation result. The combination of the AAP module and DGC
module can accurately extract the building, and the false detection is greatly improved.
The third row of Figure 13 shows the results of the segmentation of large buildings with
different combinations of modules. The AAP module still has a relatively obvious case of
false detection, and the DGC module has a partial case of missed detection. Combining the
AAP module with the DGC module obtains a clear and accurate outline of the building
with no noise.

Table 3 shows the comparison of accuracy evaluation metrics for different modules
on the WHU dataset. The comparison shows that the combined AAP and DGC modules
have the best accuracy performance, with the IoU score being 7% and 1.3% higher than the
AAP and DGC modules alone, respectively. This proves that the combination of the AAP
module and the DGC module contributes significantly to the performance of the BGC-Net.
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The extraction results for different module combinations on the CHN dataset are 
shown in Figure 14. As shown in the first row of Figure 14, neither the AAP module nor 
the DGC module alone identifies the separate building on the right edge of the figure. In 
contrast, the combination of the AAP module and the DGC module can identify this 

Figure 13. Comparison of ablation experimental results on the WHU dataset. (a) Original image.
(b) Ground-truth. (c) ResNet + AAP. (d) ResNet + DGC. (e) ResNet + AAP + DGC. Note, in Columns
(b–e), black, white, green, blue, and red indicate true, false, true-positive, false-negative, and false-
positive, respectively.

Table 3. Accuracy statistics of the ablation experiment on the WHU dataset. The best scores are
highlighted in bold.

ResNet AAP DGC OA Precision Recall F1-Score IoU
√ √

0.957 0.879 0.947 0.912 0.838√ √
0.973 0.952 0.936 0.944 0.895√ √ √
0.976 0.951 0.952 0.951 0.908

The extraction results for different module combinations on the CHN dataset are
shown in Figure 14. As shown in the first row of Figure 14, neither the AAP module nor
the DGC module alone identifies the separate building on the right edge of the figure. In
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contrast, the combination of the AAP module and the DGC module can identify this build-
ing. In addition, only the combination of the AAP module and the DGC module identifies
the independent building in the lower right corner of the second image. Unfortunately, all
three module combinations incorrectly misclassify the shadows between the buildings in
the third image as buildings.

Table 4 shows the comparison of accuracy evaluation metrics for different modules on
the CHN dataset. The combination of the AAP module and the DGC module achieved the
highest scores on OA, Precision, Recall, F1-score, and IoU. Ablation experiments show that
the segmentation performance of the DGC module is better than that of the AAP module.
Combining two modules at the same time enables the best building extraction performance.
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Figure 14. Comparison of ablation experimental results on the CHN dataset. (a) Original image.
(b) Ground truth. (c) ResNet + AAP. (d) ResNet + DGC. (e) ResNet + AAP + DGC. Note, in Columns
(b–e), black, white, green, blue, and red indicate true, false, true-positive, false-negative, and false-
positive, respectively.

Table 4. Accuracy statistics of the ablation experiment on the CHN dataset. The best scores are
highlighted in bold.

ResNet AAP DGC OA Precision Recall F1-Score IoU
√ √

0.956 0.921 0.919 0.919 0.852√ √
0.958 0.919 0.929 0.923 0.859√ √ √
0.961 0.926 0.939 0.932 0.871

5.2. Comparing with the State-of-the-Art

In order to verify the advancedness of SCA-Net, we conducted a building extraction
comparison experiment with two state-of-the-art networks (ARC-Net [3] and BARNet [27]).
ARC-Net includes residual blocks with asymmetric convolution (RBAC) to reduce the
computational cost and to shrink the model size. In addition, the multi-scale pyramid pool-
ing modules is used to obtain the multi-scale features. BARNet contains a Denser Atrous
Spatial Pyramid Pooling (DASPP) module to capture dense multi-scale building features.

The results of the building segmentation are shown in Figure 15. The first and second
rows of Figure 15 show the extraction results of different networks for densely distributed
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small buildings. Among them, the extraction results of ARC-Net are relatively the worst,
with a part of the roads detected as buildings. The extraction results of BARNet and BGC-
Net are similar, with only a small number of buildings not extracted. In the third row of
the figure, for large buildings, BGC-Net has the best extraction results. Although ARC-Net
misclassifies part of the shadows as well as the ground as buildings, BARNet cannot obtain
the edge information of buildings well. The quantitative comparison results of different
networks are shown in Table 5. BGC-Net has the highest scores in OA, Precision, Recall,
F1-score and IoU.
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Figure 15. Building extraction results of different networks on the WHU dataset. (a) Original image.
(b) Ground truth. (c) ARC-Net. (d) BARNet. (e) BGC-Net. Note, in Columns (b–e), black, white,
green, blue, and red indicate true, false, true-positive, false-negative, and false-positive, respectively.

Table 5. Average accuracy of different networks for building extraction on WHU dataset. The best
scores are highlighted in bold.

Network OA Precision Recall F1-Score IoU

ARC-Net [2] 0.968 0.929 0.949 0.938 0.884
BARNet [23] 0.972 0.954 0.934 0.944 0.895

BGC-Net 0.976 0.959 0.949 0.953 0.909

5.3. The Effects of Channel Dimension GCN Part

In the DGC module, the channel dimension DGC part interdependencies along the
channel dimensions of the network’s feature map, which can obtain more abstract feature
information in the image. To test the performance, we conducted a comparison experiment
with and without the channel dimension DGC part of BGC-Net on the WHU dataset. As
shown in Figure 16, the model without channel dimension GCN does not detect part of the
edges of the buildings well. In addition, the model with channel dimension GCN extracts
the buildings more completely. As presented in Table 6, the model with channel dimension
DGC shows an obvious improvement over the model without channel dimension DGC
across all evaluation metrics. The comparison result demonstrates the necessity of the
channel dimension GCN part as part of GCN.
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Figure 16. Comparison of the BGC-Net with or without the channel dimension DGC part on the
WHU dataset. (a) Original image. (b) Ground truth. (c) Without channel dimension DGC. (d) Without
channel dimension DGC. Note, in Columns (b–d), black, white, green, blue, and red indicate true,
false, true-positive, false-negative, and false-positive, respectively.

Table 6. Average accuracy of the BGC-Net with or without the channel dimension DGC part on the
WHU dataset. The best scores are highlighted in bold.

OA Precision Recall F1-Score IoU

Without channel dimension DGC 0.965 0.969 0.944 0.956 0.907
With channel dimension DGC 0.975 0.957 0.966 0.961 0.918

5.4. Limitations

Although the BGC-Net proposed in this paper exhibits good performance, there are
still some shortcomings. As shown in Table 7, the number of parameters and computation of
BGC-Net is 79.73 M and 29.46 G Mac, respectively, which exceeds the number of parameters
of some conventional networks, such as SegNet (16.31 M and 23.77 G Mac) and U-Net
(13.4 M and 23.77 G Mac). Second, our network is relatively inefficient. BGC-Net trains
an epoch on the WHU dataset and CHN dataset in 256 s and 294 s, respectively, which
prevents our network from achieving real-time building segmentation. Therefore, we intend
to further simplify the model structure in the future to improve the network efficiency with
guaranteed performance. Finally, our network relies on a large amount of labeled data.
Therefore, we will explore semi-supervised learning and data augmentation techniques.

Table 7. Parameters, computation, and training time of each model in WHU dataset and CHN dataset.
The best scores are highlighted in bold.

Model WHU Training
(s)/Epoch

CHN Training
(s)/Epoch Parameters (M) Computation

(G Mac)

FCN8s [18] 275 344 134.27 62.81
DANet [39] 103 119 49.48 10.93
SegNet [20] 140 179 16.31 23.77
U-Net [19] 129 187 13.4 23.77
BGC-Net 256 294 79.73 29.46
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6. Conclusions

In order to better obtain contextual information, this paper combines DFCN and
GCN, and proposes the BGC-Net network for the semantic segmentation of buildings. In
BGC-Net, the residual module is used to efficiently extract the primary features of the input
image. Meanwhile, the attention mechanism is embedded into the pyramid structure to
build the AAP module, in order to obtain the multi-scale features of the building more
accurately. Moreover, the DGC module is developed based on GCN to model contextual
information in space and channels, enhancing the network’s description of the detailed
parts of the building. Extensive experiments were conducted on the WHU dataset and
the CHN dataset. The results show that BGC-Net can effectively extract a building in a
variety of complex urban scenes, outperforming several of the high-performance networks
compared. In addition, we explored the impact of each module on the network performance
through ablation experiments. The proposed workflow and experimental results highlight
the potential of deep learning for rapid and efficient building extraction in complex urban
scenes and can provide a theoretical reference for related work.

In this study, compared with other networks, BGC-Net can extract complete large
buildings and clear building edges, but there are some limitations. With the introduction
of the multiscale module and the graph convolution module, the number of parameters
to be trained in the network increases subsequently, making the overall training time of
the network longer. In our future work, we will conduct in-depth research in network
lightweighting to better balance the efficiency and performance. Simultaneously, we will
explore semi-supervised learning techniques to reduce the data cost of deep learning.
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