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Abstract: This study investigates the scale effects on the experimental shear strength
of earthen walls, a critical parameter influencing the seismic performance of adobe and
rammed-earth (RE) buildings. Recognized for their historical significance and sustainable
construction practices, earthen structures require a comprehensive understanding of their
mechanical behavior under shear loads to ensure effective design and preservation. This
research compiles data from over 120 in-plane shear wall tests (adobe and RE), nearly
20 direct shear tests from the scientific and technical literature, and new cyclic direct
shear tests performed on large cubic specimens (300 mm side length) made from the
same material as a previously tested two-story RE wall. Based on the findings, this study
recommends a minimum specimen cross-sectional area of 0.5 m2 for reliable shear strength
testing of earthen walls in structural laboratories. This recommendation aims to prevent the
unconservative overestimation of shear strength commonly observed in smaller specimens,
including direct shear tests. Furthermore, the Mohr–Coulomb failure criterion outlined in
the AIS-610 Colombian standard is validated as a conservative lower bound for all compiled
shear strength data. Cyclic direct shear tests on nine 300 mm cubic specimens produced
a Mohr–Coulomb envelope with an apparent cohesion of 0.0715 MPa and a slope of 0.66,
whereas the full-scale two-story wall (5.95 × 6.20 × 0.65 m) constructed with the same
material exhibited a much lower cohesion of 0.0139 MPa and a slope of 0.26. The analysis
reveals significant scale effects, as small-scale specimens consistently overestimate shear
strength due to their inability to capture macro-structural behaviors such as compaction
layer interactions, construction joint weaknesses, and stress redistributions. Based on the
analysis of the compiled data, the novelty of this study lies in defining a strength reduction
factor for direct shear tests (3.4–3.8 for rammed earth, ~3.0 for adobe) to align with full-scale
wall behavior, as well as establishing a minimum specimen size (≥0.5 m2) for reliable
in-plane shear testing of earthen walls, ensuring accurate structural assessments of shear
strength. This study provides a first approach to the shear behavior of unstabilized earth.
To expand its application, future research should explore how the scale of specimens with
different stabilizers affects their shear strength.

Keywords: shear strength; rammed-earth walls; adobe walls; direct shear tests; static and
pseudo-static in-plane load shear tests
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1. Introduction
Earthen constructions have been fundamental to architectural and cultural heritage

for centuries. Found across continents, these structures exemplify the effective use of
locally sourced building materials that are among the oldest and most commonly utilized
(with their use dating back to as early as 8000 B.C. [1]) to create durable and functional
buildings. These earthen buildings demonstrate the technical expertise and craftsmanship
of ancient civilizations, as illustrated by sites such as Çatalhöyük in Turkey, Chan Chan
in Peru, Muslim fortresses in Spain and North Africa, Buddhist monasteries in India,
colonial constructions in the historic centers of Colombian cities, and traditional dwellings
across various regions of Peru [2–4]. The historical value of earthen buildings, combined
with their adaptability to local conditions, underscores their role as a vital part of global
heritage. Beyond their cultural significance, earthen constructions are renowned for their
environmental benefits. Unlike conventional materials such as concrete and steel, earthen
materials have substantially lower embodied energy, contributing to a reduced carbon
footprint during construction [5,6]. Moreover, according to [7], earthen walls provide
natural thermal insulation, helping to regulate indoor temperatures and reduce energy
consumption for heating and cooling, while also offering favorable hygrothermal properties.
These features align earthen construction techniques with modern sustainability goals,
making them a practical and eco-friendly choice for contemporary building practices [8,9].
The natural biodegradability of earthen materials significantly reduces their environmental
impact at the end of their lifecycle, enhancing their ecological attractiveness.

Construction techniques such as adobe, rammed earth (RE), and bahareque continue to
be widely used due to their inherent sustainability and cost-effectiveness. Adobe is created
by molding a mixture of soil, water, and organic fibers into blocks, which are then air-dried.
In contrast, RE involves the construction of large earthen blocks by compacting layers
of moist soil [10,11]. Reference [12] defines the bahareque system (Quincha in Peru) as a
lightweight durable framework, typically made of bamboo (known as guadua in Colombia)
or wood, which is filled with a soil-based mixture. These techniques, deeply rooted in
local traditions, have retained their relevance across diverse regions worldwide [5]. The
structural performance of these materials, however, is subject to key factors, including
material composition, compaction methodology, the use of chemical stabilizers [13], and
curing conditions. These parameters exhibit substantial variability depending on regional
practices and environmental conditions, resulting in differences in mechanical properties
and performance. However, the seismic behavior of earthen walls remains a critical concern
due to the prevalence of these constructions in earthquake-prone regions. Earthen walls
frequently exhibit poor seismic performance due to their inherent material properties and
construction methods. Key factors contributing to the seismic vulnerability of adobe and
RE structures include irregularities in plan and elevation, insufficient wall distribution,
moisture-related issues, weak or inadequate wall-to-wall connections, and their inherently
low tensile and shear strength [14]. The collapse of earthen buildings in past earthquakes
has exposed their structural weaknesses, emphasizing the urgent need for improved
construction practices and effective retrofitting strategies [15,16]. Notable seismic events
have demonstrated the poor performance of earthen buildings, including the 2007 Peru
earthquake (Mw = Moment Weight = 8.0), the 2010 Chile earthquake (Mw 8.8), the
2003 Iran earthquake (Mw6.6), and the 1992 Turkey earthquake (Mw 6.8). In Colombia,
earthquakes have similarly impacted historic earthen constructions, as observed during the
1999 Coffee-Growing Region earthquake (Mw 6.2), the 1983 Popayán earthquake (Mw 5.5),
and the 1875 Cúcuta earthquake (Mw 7.5) [2,11,17,18]. Structural failures in RE and adobe
constructions during seismic events are frequently attributed to poor shear and tensile
strength, leading to diagonal cracking and cracking along construction joints [19–22].
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Understanding the mechanical behavior of earthen walls, particularly their shear strength,
is essential for ensuring their safety, stability, and long-term resilience in seismic regions.
However, due to limitations in research resources and structural laboratory capacities, most
studies on the shear strength of earthen walls have focused on reduced-scale models of
individual walls, with relatively few involving full-scale and large wall specimens. This
research gap highlights the urgent need for more comprehensive experimental programs
(like the research performed in [11,23] to improve our understanding of full-scale earthen
walls’ behavior under seismic loading.

The objectives and novelty of this study lie in its comprehensive integration and
comparison of in-plane shear tests of earthen walls with direct shear tests, providing critical
insights into the mechanical behavior of RE and adobe walls. Unlike previous studies,
which typically focused on either small-scale shear tests or isolated wall tests, this research
is the first to systematically integrate direct shear tests with in-plane shear tests on earthen
walls, including those with openings such as doors and windows. This approach allows for
a direct comparison of shear strength values at different scales, addressing a significant gap
in the literature. By synthesizing and analyzing data from both methodologies, this research
enhances the understanding of how specimen scale influences shear strength and failure
mechanisms. This study aims to (1) quantify the relationship between structural element
size and shear strength, highlighting distinct differences in strength characteristics between
full-scale and smaller specimens, including the effect of axial stress; and to (2) define
minimum specimen sizes for reliable shear strength estimation and propose a strength
reduction factor to align direct shear test results with wall behavior. The findings have
significant practical implications for the seismic assessment, design, and construction
of RE and adobe structures, particularly in regions that are prone to earthquakes. This
study provides specific recommendations for the minimum specimen sizes needed to
obtain accurate shear strength estimates and ensure reliable data for structural analysis.
Furthermore, our results contribute to the refinement of building codes, supporting the safer
and more efficient application of earthen construction techniques in modern architectural
and engineering practices.

2. Methodology
Figure 1 presents the methodology used in this study, which consisted of five dis-

tinct phases:

• Phase 1: Collecting data from in-plane shear load tests on walls. The initial phase
of this research entailed the collection of data from 125 experimental in-plane shear
load tests on earthen walls, as documented in scientific journal articles and conference
papers. These tests were selected based on their availability in the literature rather than
a predefined experimental design. The selection criteria included studies reporting
pseudo-static or cyclic loading tests on walls or wall segments, ensuring relevance
to this study’s objectives. The dataset was compiled by extracting numerical values
(e.g., dimensions, axial forces/stresses, shear forces/stresses, etc.) directly from tables
and text descriptions in the original documents. In cases where the results were
only available as force–displacement curves, the data were digitized to obtain key
parameters. This extensive dataset formed the basis for subsequent analyses. A
comprehensive statistical analysis was conducted to identify trends and patterns in
shear strength behavior, ensuring that the findings reflected the structural response of
earthen walls under in-plane shear loads. Furthermore, a detailed examination of the
relationship between specimen size and shear strength was performed to evaluate the
impact of scale on mechanical properties. Using the compiled results, Mohr–Coulomb
failure envelopes were derived, yielding critical parameters such as cohesion and
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internal friction angle based on the observed axial stress (σ) vs. shear strength (τ)

data in the tests.
• Phase 2: Compiling monotonic direct shear tests and failure surfaces for Mohr–

Coulomb properties. This phase involved compiling 22 monotonic direct shear tests
(or models) from the scientific and technical literature, including 19 tests (models)
performed with axial loading and 3 tests conducted without axial loading. These tests
were selected based on their availability in the literature rather than a predefined ex-
perimental design. Also, these tests were analyzed, providing additional insights into
material behavior under shear loading conditions. The collected data, as detailed in
the table in Section 3.2, included key parameters related to the Mohr–Coulomb failure
surface, such as regression slopes (associated with the friction angle) and intercepts
(corresponding to cohesion). In cases where specific parameters were not directly
reported, they were derived from the available numerical data or extracted through
digitalization of force–displacement and stress–strain curves.

• Phase 3: Conducting cyclic direct shear tests. This phase involved cyclic direct shear
tests to assess the behavior of RE materials under repeated loading conditions, anal-
ogous to seismic demands. As presented in Section 4, the cyclic direct shear tests
incorporated recommendations from international standards to ensure consistent
displacement-controlled cyclic loading. The selected axial stress levels (24 kPa, 79 kPa,
and 184 kPa) were chosen to represent typical working stresses in earthen buildings
ranging from one to three stories. The direct shear tests in this study were performed
on specimens larger than those traditionally used—specifically, cubic specimens with
a side length of 300 mm. These experiments provided critical insights into the strength
and energy dissipation behavior of RE under cyclic loading across various axial stress
levels. Specimen preparation followed the same material composition, compaction
layers (7.5–10 cm), and curing conditions as those used in previous full-scale wall tests
conducted by some of the authors. These walls represent some of the largest earthen
structures ever tested in structural laboratories globally, as documented in [11,23].
This comparative analysis validated the consistency of findings across different testing
methods and scales.

• Phase 4: Comparing axial stress (σ) vs. shear strength (τ) data from different sources.
The fourth phase focused on an integrated comparison of σ vs. τ data obtained from
three key sources: in-plane shear tests on earthen walls (full-scale wall tests and wall
tests), direct shear tests documented in the scientific and technical literature, and
cyclic direct shear tests performed in this study. By synthesizing findings across these
datasets, our research offered a unified perspective on the mechanical behavior of
earthen walls under shear loading. This phase also underscored the critical role of
specimen size and testing methodology in shaping observed failure mechanisms and
strength parameters.

• Phase 5: Integrating results to obtain conclusions. The final phase synthesized the
findings from all preceding phases to develop a comprehensive understanding of
the mechanical behavior of earthen materials under shear loading. The analysis
identified key trends and practical implications for the design and construction of
earthen structures. Specific recommendations were made regarding the minimum
specimen sizes required to reliably estimate actual shear strength. Also, the authors
propose a strength reduction factor for direct shear tests to align them with the strength
of full-scale earthen walls. Finally, our results offer guidance on incorporating σ

vs. τ Mohr–Coulomb surfaces into building codes to improve their applicability
and accuracy.
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Figure 1. Proposed methodology to assess the shear strength of earthen walls (adobe and RE).

It is essential to clarify that, in this study, the term “small-scale” refers to direct shear
test specimens, including cubic or prismatic samples, as well as small wall segments that do
not represent complete structural elements. Conversely, “full-scale” describes large earthen
walls tested under in-plane shear loads, with dimensions comparable to those found in real
adobe or rammed-earth buildings. These walls possess representative lengths, heights, and
thicknesses, enabling a realistic evaluation of shear strength at a structural level. In some
cases, they also include openings such as doors or windows. While some tested walls meet
the criteria for “full-scale”, others are simply referred to as “walls” when their dimensions
do not fully correspond to those of real structures.

3. Database and Comparisons with Previous Research: In-Plane Shear
Tests of Walls, and Direct Shear Tests
3.1. Collected Database: In-Plane Shear Load Tests from the Literature

Research on the seismic performance and shear resistance of adobe and RE walls has
increasingly underscored the critical importance of in-plane load testing for accurately
evaluating shear strength, particularly under static and pseudo-static loading conditions,
in order to establish how earthen materials respond to lateral forces. For instance, Ref. [24]
analyzed the in-plane lateral behavior of adobe walls under varying levels of axial compres-
sion, observing that lateral resistance significantly increased as the vertical compression
stress rose from 0.1 to 0.7 MPa. Similarly, Ref. [25] employed scaled shaking table tests on
scaled adobe wall models, highlighting their substantial vulnerability to shear-related fail-
ures in unreinforced conditions. The authors of ref. [26] showed that near-surface-mounted
steel rebars effectively improved in-plane shear resistance in adobe walls by mitigating
diagonal cracking tendencies. Reference [27] utilized biaxial loading (vertical/axial load
and horizontal/shear load) on RE walls to examine shear failure patterns, highlighting
the relationship between limit states and inter-story drifts for evaluating the seismic per-
formance of earthen walls (limit states). Similarly, Ref. [28] observed that different types
of adobe wall exhibited shear failure modes characterized by cracking along mud joints
and oblique cracks propagating through the blocks. In a complementary study, Ref. [29]
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conducted static pushover tests on RE walls to demonstrate how wall size influences both
drift and in-plane shear resistance (different height/length ratios were tested with in-plane
shear loads), providing a framework for understanding structural responses across varied
configurations. Additionally, Ref. [30] investigated 1:2-scaled adobe walls under horizontal
monotonic loading, identifying weak mortar bonds as a critical factor limiting shear capac-
ity. This observation aligns with the findings from reference [31], where quasi-static tests on
unreinforced adobe walls exhibited shear failure characterized by diagonal crack patterns
along joints and through some adobe units. The tests reported in [31] on timber-reinforced
adobe walls revealed substantial improvements in energy dissipation and shear strength,
emphasizing the significant role of timber in enhancing deformation capacity and overall
structural performance.

Heritage-focused studies contribute critical insights to shear testing research. For exam-
ple, Ref. [32] examined pseudo-static shear behavior in adobe walls from heritage structures
(doctrinal chapels), reporting early failure in unreinforced walls, while steel tensor rein-
forcement significantly improved their stability. Similarly, Ref. [19] investigated Bhutanese
RE walls retrofitted with dowels, observing a 12.3% increase in shear resistance. One of
Europe’s largest full-scale adobe wall tests, reported in [33], involved a 5 m long and 3.6 m
high wall under parallel-plane loading conditions. In Colombia, Refs. [11,23] performed
the largest global full-scale parallel-plane shear tests on adobe and RE walls, establishing a
benchmark for full-scale experimental studies. Specifically, Ref. [23] analyzed one-story,
7 m (length) adobe and RE walls, exploring both reinforced and unreinforced configura-
tions. The results revealed limited shear strength and premature failure in unreinforced
adobe walls under cyclic loading, whereas timber-reinforced walls exhibited significant
enhancements in ductility and energy dissipation. For RE walls, Ref. [22] observed similar
patterns, with brittle failure in unreinforced walls and substantial improvements in stability
and crack resistance in reinforced walls.

At Pontificia Universidad Javeriana (Colombia, South America), Ref. [11] conducted
the world’s largest full-scale test on a two-story RE wall, measuring approximately 6 m
in both length and height. Testing of the unreinforced wall highlighted the fragility of
earthen constructions, demonstrating limited shear capacity, brittle failure, and a low drift
at failure, close to 0.5%. After implementing a steel plate reinforcement system, Ref. [11]
reported substantial performance improvements: cyclic shear tests revealed a 208% increase
in lateral capacity, enhanced energy dissipation, and improved stability. This reinforcement
method, incorporating horizontal and vertical steel plates, effectively confined the earthen
material, minimized crack propagation, and significantly enhanced ductility within the
wall plane. Similarly, Ref. [23] reported comparable benefits in one-story timber-reinforced
earthen walls. The authors of [34,35] investigated the degradation of structural capacity
in unstabilized RE and Portuguese adobe walls through in-plane shear tests under cyclic
loading conditions.

Previously, Ref. [36] presented pushover tests to assess the shear–displacement be-
havior of RE walls with two height-to-length ratios, identifying nonlinear shear responses
and underscoring the influence of material properties on structural performance. The tests
shown in reference [37] revealed the fragile behavior of traditional Portuguese adobe walls
subjected to horizontal shear in the laboratory, which is a problem for existing buildings
in areas of moderate-to-high seismic hazard. The authors of [38] examined RE walls with
structural columns, observing that these additions significantly enhanced shear strength
under lateral loading. The research presented in [39] identified a trade-off in deformation
capacity when utilizing geogrid sheets to improve shear resistance. Investigations into
alternative reinforcement methods for earthen materials provide additional insights. For in-
stance, Ref. [40] demonstrated that polyester strips enhance in-plane shear resistance in RE



Buildings 2025, 15, 689 7 of 30

walls under cyclic loading, while [41] identified three distinct failure modes in unreinforced
earth walls: flexural cracking combined with diagonal shear, rocking with toe crushing and
bed-joint sliding, and rocking accompanied by bed-joint failure. Similarly, Ref. [8] validated
the effectiveness of mesh wraps in improving in-plane shear strength in RE wall elements,
and ref. [9] highlighted the potential of sustainable palm mesh reinforcements to enhance
shear resistance in adobe walls. Additionally, Ref. [42] pioneered the testing of cane mesh
reinforcement in adobe walls under in-plane shear loads, emphasizing the importance of
comprehensive testing to validate the shear response in retrofitted walls, underscoring
the critical vulnerabilities of unreinforced walls in seismic conditions. In 1981 (in Peru),
Ref. [43] conducted shear tests on adobe walls to evaluate in-plane shear resistance, empha-
sizing the importance of such testing for understanding adobe structures. Their findings
revealed that reinforcements, such as cane, can enhance ductility and reduce failure risks,
supporting safer construction practices for adobe buildings in seismic regions. The authors
of [44] investigated the in-plane cyclic behavior of unfired clay and earthen brick walls,
reporting significant shear strength improvements when reinforced with steel wire ropes
and geo-net. Also, Ref. [45] proposed seismic retrofitting solutions using synthetic mesh for
adobe walls, demonstrating considerable enhancements in the seismic performance. Finally,
Ref. [46] demonstrated that the application of cold-formed thin-walled steel improved the
seismic performance of adobe walls, as evidenced by increases in shear resistance (both
cracking and ultimate load), ductility, and energy dissipation.

Complementarily, the studies reported in references [47,48] offer comparative evalua-
tions of stabilized and unstabilized RE walls subjected to lateral cyclic loading, using lime or
cement as stabilizers. Similarly, Refs. [10,49] highlight the advantages of externally bonded
fiber reinforcements, which significantly enhance the shear resistance and displacement
ductility capacity of earthen walls under seismic conditions. In addition, Ref. [50] combined
experimental shear testing with finite element modeling to study the shear performance
of adobe walls. Near-surface-mounted (NSM) reinforcement and sand-coated reeds (in-
vestigated by [51,52] showed a significant enhancement in the in-plane shear strength and
seismic performance of adobe walls. Likewise, Ref. [53] investigated NSM retrofitting using
reinforced mortar strips, bamboo plywood, and wood, reporting significant improvements
in in-plane shear strength and lateral resistance, which are crucial for sustainable seismic
retrofitting practices. The authors of [54] contributed to numerical modeling by developing
adobe material parameters calibrated against quasi-static cyclic tests performed on adobe
walls representative of Peruvian construction techniques. The authors of [55] investigated
the behavior of RE walls in Eastern Europe (Croatia), analyzing key aspects such as shear
stiffness degradation, load-bearing capacity, failure mechanisms, and energy dissipation.
Finally, Ref. [56] studied adobe–brick composite walls reinforced with a wooden center
column, demonstrating improved in-plane shear strength and resilience, making them
suitable for rural construction applications.

Collectively, all of the aforementioned studies included in-plane shear tests on unstabi-
lized/unreinforced walls (near-full-scale walls or full-scale walls), enabling comprehensive
comparisons of shear resistance, ductility, energy dissipation, collapse mechanisms, and
crack propagation between unreinforced and reinforced/strengthened walls. Based on
the previous literature review, a comprehensive compilation of 125 tests on adobe and
RE walls (unstabilized and un-strengthened) subjected to in-plane shear loads was con-
ducted, incorporating both pseudo-static and monotonic testing methods. Some of these
walls included openings, but the majority were solid walls without doors or windows.
Figure 2 illustrates examples of two of the largest full-scale walls with openings tested in
the consulted studies [11,23].
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Figure 2. (a) Overall dimensions of two of the biggest walls with openings found in the references
consulted (new schematic illustrations based on previous research [11,23]; (b) example of calculation
of the axial stress ( σ) and shear strength (τ) at mid-height of an earthen wall.

For each wall analyzed, the following parameters were compiled: the country where
the tests were performed, presence or absence of openings, material type, unit weight,
vertical roof load, wall dimensions (Length, Height, and Thickness), cross-sectional area
at mid-height (Area), testing method (cyclic or monotonic), compressive strength of the
material ( f ′m), axial stress σ applied at mid-height, and shear strength τ at mid-height. The
axial stress includes the weight of the upper half of the wall (W) and the roof load (R).
Figure 2b shows an example of a one-story earthen wall with the geometric variables and
the forces involved in the calculation of axial and shear stresses at mid-height. Table 1
summarizes the countries where most of these tests were performed, with Iran, Peru,
Colombia, and China leading in contributions. Additionally, Tables 2 and 3 provide a
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summary of the primary parameters involved in the in-plane shear tests, including data
from 74 adobe wall tests (presented in Table 2) and 51 RE wall tests (presented in Table 3). A
statistical analysis was conducted on the variables identified in the tests compiled in Tables 2
and 3. Frequency histograms, shown in Figure 3, were developed for geometric parameters
such as wall length, wall height, wall thickness, slenderness ratio (length/thickness), and
cross-sectional area. The analysis indicated that approximately 70% of the tested walls
had a thickness of less than 0.33 m (Figure 3a), and the largest wall thickness tested was
0.65 m, as reported in [11]. The average slenderness ratio was close to 7.4 (Figure 3b).
It is important to mention that recommendations for earthquake-resistant earthen walls
suggest thicknesses ranging from 0.20 to 0.46 m [57]. This indicates that most investigations
focus on thinner walls, likely due to the simplicity of the test setup, as testing thicker walls
presents logistical challenges due to their size and weight. Additionally, the maximum
slenderness ratio recommended for adequate seismic resistance, related to the maximum
unsupported wall lengths, is approximately 10 [57]. Based on the statistical analysis in
Figure 3b, over 70% of the walls tested under in-plane shear loads had slenderness ratios
below 8.0, highlighting a tendency to test small walls, which may not fully represent real
construction scenarios. Furthermore, only 30% of the collected data correspond to walls
with heights greater than 2.2 m, which is likely the minimum standard for modern earthen
buildings (Figure 3c). Additionally, Figure 3d shows that the average length of the walls
tested was approximately 2.1 m.

Table 1. Countries where in-plane shear walls have been tested.

Country Number of Wall Shear Tests

Iran 24
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Peru 22
Colombia 21

China 20
France 13
Japan 11

Croatia 4
Germany 3
Portugal 3
Cyprus 1
Czech

Republic 1

Italy 1
Turkey 1

Table 2. Compilation of data from tests on adobe walls subjected to in-plane shear loads.

Openings
Unit

Weight
(kN/m3)

Length
(m)

Height
(m)

Thickness
(m)

Area
(m2)

Cyclic or
Mono-
tonic

Reference f’
m

(MPa)
σ

(MPa)
τ

(MPa)

No 17.2 2.4 2.1 0.6 1.44 Cyclic [10] 3.52 0.023 0.014
No 19.0 * 1.25 2.35 0.6 0.75 Cyclic [16] 1.32 0.042 0.046
No 19.0 * 1.25 2.35 0.6 0.75 Cyclic [16] 1.32 0.042 0.046
No 17.8 2.5 1.8 0.4 1 Cyclic [22] 1.08 0.085 0.044
No 17.8 2.5 1.8 0.4 1 Cyclic [22] 1.08 0.065 0.023
No 17.8 2.5 1.8 0.4 1 Cyclic [22] 1.08 0.036 0.014
No 21.1 1.2 2.5 0.6 0.72 Cyclic [22] 1.08 0.054 0.02
No 21.1 1.2 1.5 0.6 0.72 Cyclic [22] 1.08 0.068 0.024
No 21.1 2.1 1.5 0.6 1.26 Cyclic [22] 1.08 0.048 0.018
Yes 18.1 7 3.45 0.6 2.7 Cyclic [23] 1.08 0.052 0.02
No 19.0 * 1 0.8 0.2 0.2 Cyclic [24] 2.34 0.108 0.119
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Table 2. Cont.

Openings
Unit

Weight
(kN/m3)

Length
(m)

Height
(m)

Thickness
(m)

Area
(m2)

Cyclic or
Mono-
tonic

Reference f’
m

(MPa)
σ

(MPa)
τ

(MPa)

No 19.0 * 1 0.8 0.2 0.2 Cyclic [24] 2.34 0.308 0.171
No 19.0 * 1 0.8 0.2 0.2 Cyclic [24] 2.34 0.508 0.227
No 19.0 * 1 0.8 0.2 0.2 Cyclic [24] 2.34 0.708 0.284
No 19.0 * 1 0.9 0.2 0.2 Cyclic [24] 2.34 0.109 0.145
No 19.0 * 1 0.9 0.2 0.2 Cyclic [24] 2.34 0.309 0.173
No 19.0 * 1 0.9 0.2 0.2 Cyclic [24] 2.34 0.509 0.212
No 19.0 * 1 0.9 0.2 0.2 Cyclic [24] 2.34 0.709 0.228
No 19.0 * 1 1 0.2 0.2 Cyclic [24] 2.34 0.11 0.111
No 19.0 * 1 1 0.2 0.2 Cyclic [24] 2.34 0.31 0.146
No 19.0 * 1 1 0.2 0.2 Cyclic [24] 2.34 0.51 0.156
No 19.0 * 1 1 0.2 0.2 Cyclic [24] 2.34 0.71 0.21
No 19.0 * 3.6 2.15 0.4 1.44 Cyclic [25] NA 0.022 0.025
Yes 19.0 * 3.6 2.15 0.4 1.04 Cyclic [25] NA 0.025 0.033
Yes 19.0 * 3.6 2.15 0.4 0.98 Cyclic [25] NA 0.025 0.031
No 19.0 * 1.02 0.8 0.2 0.204 Cyclic [26] 2.34 0.108 0.105
No 19.0 * 1.02 0.8 0.2 0.204 Cyclic [26] 2.34 0.308 0.142
No 19.0 * 1.7 1.1 0.24 0.41 Cyclic [28] 0.87 0.11 0.086
Yes 19.0 * 1.75 1.58 0.22 0.26 Monotonic [30] NA 0.014 0.054
No 19.0 * 1.39 1.31 0.34 0.47 Cyclic [31] 2 0.212 0.068
No 19.0 * 3.5 3 0.52 1.82 Cyclic [32] 1.02 0.067 0.023
No 19.0 * 3.5 3 0.52 1.82 Cyclic [32] 1.02 0.067 0.02
No 19.0 * 3.5 3 0.52 1.82 Cyclic [32] 1.02 0.067 0.026
Yes 20 5.1 3.6 0.4 1.36 Cyclic [33] 1.08 0.113 0.062
No 16 3.5 3.07 0.29 1.02 Cyclic [37] 1.04 0.044 0.059
No 19.0 * 2 1.3 0.2 0.39 Cyclic [41] 0.98 0.106 0.11
No 19.0 * 2 1.3 0.2 0.39 Cyclic [41] 0.98 0.059 0.065
No 19.0 * 1.75 1.3 0.2 0.34 Cyclic [41] 0.98 0.106 0.128
No 19.0 * 1.75 1.3 0.2 0.34 Cyclic [41] 0.98 0.059 0.078
No 19.0 * 1.65 1.3 0.2 0.32 Cyclic [41] 0.98 0.012 0.025
No 17.5 2.4 2.4 0.2 0.48 Monotonic [42] 0.83 0.021 0.033
No 17.5 2.4 2.4 0.2 0.48 Monotonic [42] 0.83 0.021 0.026
No 17.5 2.4 2.4 0.2 0.48 Monotonic [42] 0.83 0.021 0.025
No 17.5 4 2.4 0.3 1.2 Monotonic [42] 0.83 0.021 0.013
No 17.5 4 2.4 0.3 1.2 Monotonic [42] 0.83 0.021 0.017
Yes 17.5 4 2.4 0.3 0.9 Monotonic [42] 0.83 0.036 0.025
Yes 17.5 4 2.4 0.3 0.9 Monotonic [42] 0.83 0.036 0.022
No 17.5 4 2.4 0.3 1.2 Monotonic [42] 0.83 0.027 0.026
No 17.5 4 2.4 0.3 1.2 Monotonic [42] 0.83 0.027 0.026
No 17.5 4 2.4 0.3 1.2 Monotonic [42] 0.83 0.021 0.023
No 17.5 2.45 2.3 0.2 0.49 Monotonic [42] 1.18 0.02 0.023
No 20 4 2.4 0.4 1.6 Monotonic [43] 0.95 0.024 0.023
No 20 4 2.4 0.2 0.8 Monotonic [43] 0.95 0.024 0.024
No 20 4 2.4 0.2 0.8 Monotonic [43] 0.95 0.073 0.044
No 20 4 2.4 0.2 0.8 Monotonic [43] 0.95 0.067 0.044
No 20 4 2.4 0.2 0.8 Monotonic [43] 0.95 0.024 0.051
No 20 4 2.4 0.2 0.8 Monotonic [43] 0.95 0.112 0.075
No 20 4 2.4 0.2 0.8 Monotonic [43] 0.95 0.024 0.024
No 20 4 2.4 0.4 1.6 Monotonic [43] 0.95 0.024 0.02
No 20 4 2.4 0.4 1.6 Monotonic [43] 0.95 0.024 0.02
No 20 4 2.4 0.2 0.8 Monotonic [43] 0.95 0.032 0.038
No 18.9 1.05 1.37 0.24 0.25 Cyclic [44] 3.28 0.33 0.212
No 20 3.5 3.07 0.29 1.02 Cyclic [45] 0.46 0.05 0.057
No 19.0 * 2 1.3 0.2 0.4 Cyclic [46] 0.99 0.044 0.042
No 20.1 1.2 1 0.31 0.37 Cyclic [50] 1.06 0.06 0.035
No 20.1 1.2 1 0.31 0.37 Cyclic [50] 1.06 0.06 0.037
No 20.1 1.2 1 0.31 0.37 Cyclic [50] 1.06 0.06 0.037
No 19.0 * 1.02 0.9 0.2 0.2 Cyclic [51] 2.34 0.309 0.152
No 18.1 1 0.9 0.2 0.2 Cyclic [52] 2.34 0.308 0.161
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Table 2. Cont.

Openings
Unit

Weight
(kN/m3)

Length
(m)

Height
(m)

Thickness
(m)

Area
(m2)

Cyclic or
Mono-
tonic

Reference f’
m

(MPa)
σ

(MPa)
τ

(MPa)

No 19.0 * 1.9 1.2 0.2 0.38 Cyclic [53] 5.3 0.261 0.117
No 19.0 * 3.06 1.93 0.3 0.92 Cyclic [54] 0.45 0.026 0.042
No 19.0 * 1.7 1.1 0.24 0.41 Cyclic [56] 2.37 0.099 0.094
No 19.0 * 1 0.9 0.2 0.2 Cyclic [9] 2.34 0.309 0.173
No 19.0 * 1 0.9 0.2 0.2 Cyclic [9] 2.34 0.309 0.217

NA: not available. * The reference does not specify the unit weight of the material, so a value of 19 kN/m3 is
assumed for the calculation of the axial stress at the mid-height of the wall. This value is the average of the data
collected for unit weight.

Table 3. Compilation of data from tests on RE walls subjected to in-plane shear loads.

Openings
Unit

Weight
(kN/m3)

Length
(m)

Height
(m)

Thickness
(m)

Area
(m2)

Cyclic or
Monotonic Reference f’

m
(MPa)

σ (MPa) τ (MPa)

No 18.2 0.5 0.5 0.11 0.06 Monotonic [8] 0.91 0.105 0.079
No 18.2 0.5 0.5 0.11 0.06 Monotonic [8] 0.91 0.155 0.095
No 18.2 0.5 0.5 0.11 0.06 Monotonic [8] 0.91 0.205 0.132
No 18.2 0.5 0.5 0.11 0.06 Monotonic [8] 0.98 0.105 0.086
No 18.2 0.5 0.5 0.11 0.06 Monotonic [8] 0.98 0.155 0.115
No 18.2 0.5 0.5 0.11 0.06 Monotonic [8] 0.98 0.205 0.14
No 19 0.5 0.5 0.11 0.06 Monotonic [8] 1.31 0.155 0.144
No 19 0.5 0.5 0.11 0.06 Monotonic [8] 1.31 0.205 0.194
No 19 0.5 0.5 0.11 0.06 Monotonic [8] 1.65 0.155 0.162
No 19 0.5 0.5 0.11 0.06 Monotonic [8] 1.65 0.205 0.19
No 18.1 2.4 2.1 0.6 1.44 Cyclic [10] 3.5 0.024 0.053
No 15 2.4 2.1 0.6 1.44 Cyclic [10] 1.74 0.021 0.028
No 15.1 2.4 2.1 0.6 1.44 Cyclic [10] 1.89 0.021 0.016
Yes 19.5 5.66 5.7 0.65 3.03 Cyclic [11] 1.29 0.108 0.042
Yes 19.5 5.66 2.69 0.65 2.38 Cyclic [11] 1.29 0.052 0.03
No 19.5 1.2 1.2 0.6 0.72 Monotonic [19] 1.17 0.012 0.018
No 20 2.5 1.8 0.4 1 Cyclic [22] 0.54 0.087 0.033
No 20 2.5 1.8 0.4 1 Cyclic [22] 0.54 0.067 0.03
No 20 2.5 1.8 0.4 1 Cyclic [22] 0.54 0.038 0.017
No 22.2 1.2 2.5 0.6 0.72 Cyclic [22] 0.54 0.057 0.022
No 22.2 1.2 1.5 0.6 0.72 Cyclic [22] 0.54 0.072 0.025
No 22.2 2.1 1.5 0.6 1.26 Cyclic [22] 0.54 0.05 0.02
Yes 17.8 7 3.45 0.6 2.7 Cyclic [23] 0.54 0.051 0.025
No 21.1 1.5 1 0.25 0.38 Monotonic [27] 1.2 0.311 0.096
No 21.1 1.5 1 0.25 0.38 Monotonic [27] 1.2 0.311 0.139
No 21.1 1.5 1.5 0.25 0.38 Monotonic [27] 1.2 0.316 0.105
No 21.1 1.5 1.5 0.25 0.38 Monotonic [27] 1.2 0.316 0.115
No 20 2.8 1.8 0.4 1.12 Cyclic [34] 0.56 0.029 0.097
No 19.0 * 1.5 1.5 0.25 0.38 Monotonic [36] 0.97 0.181 0.105
No 19.0 * 1.5 1.5 0.25 0.38 Monotonic [36] 0.97 0.181 0.115
No 19.0 * 1.5 1 0.25 0.38 Monotonic [36] 0.97 0.177 0.099
No 19.0 * 1.5 1 0.25 0.38 Monotonic [36] 0.97 0.177 0.139
No 21 1.9 1.2 0.25 0.48 Cyclic [38] 0.96 0.213 0.234
No 21 1.9 0.45 0.35 0.67 Cyclic [39] NA 0.205 0.105
No 21 1.9 0.45 0.35 0.67 Cyclic [39] NA 0.205 0.093
No 19.0 * 1.05 1.3 0.25 0.26 Cyclic [40] 3.73 0.572 0.281
No 19.0 * 1.05 1.3 0.25 0.26 Cyclic [40] 3.73 0.572 0.227
No 19.0 * 1.05 1.3 0.25 0.26 Cyclic [40] 3.73 0.572 0.292
No 19.0 * 1.5 1.5 0.2 0.3 Cyclic [47] 1.47 0.014 0.178
No 19.4 1 0.9 0.2 0.2 Cyclic [48] 1.17 0.109 0.145
No 19.4 1 0.9 0.2 0.2 Cyclic [48] 1.17 0.209 0.167
No 19.4 1 0.9 0.2 0.2 Cyclic [48] 1.17 0.309 0.21
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Table 3. Cont.

Openings
Unit

Weight
(kN/m3)

Length
(m)

Height
(m)

Thickness
(m)

Area
(m2)

Cyclic or
Monotonic Reference f’

m
(MPa)

σ (MPa) τ (MPa)

No 20 2.4 2.1 0.6 1.44 Monotonic [49] 1.36 0.081 0.051
No 17.8 1.25 1.25 0.25 0.31 Cyclic [55] 2.28 0.201 0.06
No 17.8 1.25 1.25 0.25 0.31 Cyclic [55] 2.28 0.201 0.063
No 17.8 1.25 1.25 0.25 0.31 Cyclic [55] 2.19 0.201 0.06
No 17.8 1.25 1.25 0.25 0.31 Cyclic [55] 2.19 0.201 0.057
No 17 1.5 1.5 0.25 0.38 Monotonic [58] 1.15 0.335 0.107
No 17 1.5 1.5 0.25 0.38 Monotonic [58] 1.15 0.335 0.115
No 17 1.5 1 0.25 0.38 Monotonic [58] 1.15 0.33 0.096
No 17 1.5 1 0.25 0.38 Monotonic [58] 1.15 0.33 0.139

* The reference does not specify the unit weight of the material, so a value of 19 kN/m3 is assumed for the
calculation of the axial stress at the mid-height of the wall. This value is the average of the data collected for
unit weight.
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Figure 3. Histogram of frequencies of geometric variables: (a) thickness; (b) slenderness; (c) height;
(d) length; (e) area; (f) f ′m.
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A critical variable for determining the average shear strength of the tested walls is the
cross-sectional area, calculated as the product of length and thickness for walls without
openings. Statistical analyses reveal that approximately 60% of the tests documented in the
collected literature correspond to walls with cross-sectional areas smaller than 0.5 m2, as
shown in Figure 3e. Regarding mechanical properties, Figure 3f illustrates the frequency
histogram of compressive strength ( f ′m) for both adobe and RE. The compressive strength
values predominantly fall below 2.4 MPa, consistent with the findings of [59], who reported
compressive strength values below 2.55 MPa for unstabilized RE. Furthermore, Ref. [59]
documented a mean compressive strength of 1.55 MPa, closely aligning with the statistical
mean of 1.44 MPa calculated from the current dataset. For unstabilized adobe masonry,
Ref. [60] reported an average compressive strength of approximately 1.3 MPa, which is
similar to the values observed for unstabilized RE in this study.

Figure 4 presents a detailed examination of the relationship between axial stress (σ)
and shear strength (τ) for adobe walls (Figure 4a), RE walls (Figure 4b), and the combined
dataset (Figure 4c). In Figure 4a, the data for adobe walls show a strong correlation between
axial and shear strength (R2 = 0.8195), highlighting a cohesive–frictional behavior charac-
teristic of this material. While the trend line provides a good representation of the dataset,
the dispersion of points indicates the variability in material properties, testing conditions,
and construction techniques. In Figure 4b, the behavior of RE walls is analyzed, indicating
a slightly weaker correlation (R2 = 0.5281) compared to adobe. The trend lines reveal
that RE walls generally exhibit higher shear strength than adobe walls under comparable
axial stresses, likely due to their denser composition and enhanced interlayer bonding.
The greater variability observed in the RE dataset may reflect differences in granulometry,
compaction quality, and material heterogeneity. Data points from Colombian tests, marked
in red, are consistently located near the lower range of values, emphasizing the importance
of full-scale experiments in capturing realistic material performance. Figure 4c, which inte-
grates data from both materials, illustrates the cohesive–frictional behavior characteristic of
earthen walls, with a regression equation yielding an R2 value of 0.7068. The inclusion of a
99% confidence interval underscores the inherent variability of these materials, which is
influenced by differences in composition, testing protocols, and construction practices.

The AIS-610-EP-2017 standard [61] (Evaluation and Intervention of One- and Two-
Story Adobe and RE Heritage Buildings) includes a Mohr–Coulomb failure curve that is
incorporated into all plots in Figure 4, serving as a conservative baseline for the design of
earthen walls. This curve closely aligns with the lower bound of the dataset, providing safe
and reliable estimations of shear strength for adobe and RE walls under varying axial stress
conditions. Such conservatism is essential in seismic regions, where variability in material
properties and construction practices can significantly impact structural performance. These
findings validate the relevance and applicability of the AIS-610-EP-2017 curve, emphasizing
the importance of integrating data from full-scale experimental tests to refine its accuracy
and ensure its continued effectiveness in guiding safe design practices.

Plotting shear strength against cross-sectional area resulted in the relationships illus-
trated in Figure 5. Shear strength was calculated by dividing the resisting shear force by the
cross-sectional area at the mid-height of the tested wall. The data presented in Figure 5a,b
demonstrate a pronounced inverse relationship between wall area and shear strength for
both adobe and RE specimens. Independent of the axial load stress, as the wall area de-
creases, the measured shear strength consistently increases, reflecting a notable scale effect.
This behavior underscores the tendency of smaller specimens to display higher apparent
shear strength, likely due to a reduced likelihood of encountering material heterogeneities
and the influence of simplified stress distributions during testing.
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Figure 4. Axial stress vs. shear stress according to the collected data from in-plane shear tests of
earthen walls (adobe and RE): (a) adobe; (b) RE; (c) both adobe and RE. The mentioned reference is
AIS (2017) [61].
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Figure 5. Shear strength vs. area of the tested walls according to the collected data of shear in-
plane tests of earthen walls (adobe and RE): (a) adobe; (b) RE; (c) both adobe and RE with different
axial stresses.

When both materials are analyzed together, as shown in Figure 5c, the general trend
remains consistent: smaller-scale tests systematically overestimate the shear strength of
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earthen walls. These findings have critical implications for the development of building
codes and design guidelines, highlighting the importance of accounting for scale effects
when interpreting laboratory results and extrapolating them to real-world applications.

In Figure 5c, axial stress is introduced as an additional variable, represented by markers
in three distinct colors: green for low axial stress (0.0 MPa < σ ≤ 0.1 MPa), yellow for
intermediate axial stress levels (0.1 MPa < σ ≤ 0.3 MPa), and red for high axial stress
(0.3 MPa < σ ≤ 0.8 MPa). The results clearly demonstrate the significant influence of axial
stress on shear strength, comparable in importance to the size of the tested specimens. The
statistical data in Figure 5c indicate a broader range of specimen sizes (areas) tested under
medium and low axial stresses, whereas fewer tests involve full-scale specimens under high
axial stresses. This trend is likely due to the uncommon presence of multi-story earthen
buildings in seismic zones, as such structures typically have fewer than three stories [62].
These types of constructions typically exhibit maximum axial stresses below 0.3 MPa at the
mid-height of critical walls. Consequently, the subsequent analysis focuses exclusively on
axial force ranges below 0.3 MPa.

For medium and low axial stress ranges, the recommended specimen size (area) for
evaluating shear strength through the in-plane shear testing of walls was determined.
This process involved analyzing the relationship between shear resistance (τ) and wall
area using regression equations derived from experimental data. For each axial stress
range, a regression model of the form τ = a · (Area)b was applied, where the constants
a and b were determined based on the experimental results. These equations captured
how shear resistance decreases as wall area increases, demonstrating the scale effect com-
monly observed in earthen walls. Figure 5c and Table 4 present the regression models
and their equations for the cases analyzed. To establish the minimum wall area where
shear strength estimates become stable (i.e., where the slope of the relationship between
shear strength and wall area approaches zero), the derivative of the regression equation(

dτ
dArea

)
was calculated for each axial stress range. A steady-state condition was defined

as
(

dτ
dArea

)
< 0.03 (proposed by the authors), indicating that the rate of change in shear

strength with respect to wall area is negligible (less than 3%), essentially when the curve
flattens out. Solving this inequality provided the critical wall area for each axial stress
range. The results, summarized in Table 4, show that the critical wall area is similar across
the ranges analyzed, with a recommended area ≥ 0.5 m2. This corresponds, for example,
to wall dimensions of 1.7 m × 2.0 m × 0.3 m (length × height × thickness). These findings
highlight the importance of using appropriately sized wall specimens in laboratory shear
tests to ensure results that accurately represent real-world full-scale structural behavior.

Table 4. Minimum wall areas for accurate shear strength estimation in laboratory tests.

Range of Axial Stress Regression Between Shear Strength
(τ) and Area (A)

∣∣∣ dτ
dArea

∣∣∣<0.03

0.0 MPa < σ ≤ 0.1 MPa τ = 0.0291·A−0.422

∣∣∣0.0291·0.422·Area−1.422
∣∣∣ <

0.03|Area| > 0.53 m2

0.0 MPa < σ ≤ 0.3 MPa τ = 0.0792·A−0.188

∣∣∣0.0792·0.188·A−1.188
∣∣∣ <

0.03|Area| > 0.55 m2

3.2. Collected Database: Direct Shear Tests from the Literature

Recent research has extensively examined the mechanical properties of RE and adobe,
with a specific focus on their shear strength parameters cohesion (c) and friction angle (ϕ).
These parameters have traditionally been used to understand the structural behavior of
earthen materials, although many complex and comprehensive models are currently avail-



Buildings 2025, 15, 689 17 of 30

able for modeling soil behavior. The reviewed research highlights the critical interactions
among experimental methodologies, numerical modeling, and environmental factors in
determining shear strength. Notably, most of the direct shear test data available in the
technical and scientific literature pertain to RE, with such tests being uncommon for adobe.
Among the references consulted, and as summarized in Table 5, only one direct shear
test on unstabilized adobe was identified. This limited dataset underscores the need for
more experimental studies focused on adobe. Furthermore, the variability in cohesion and
friction angle reported in Table 5 reflects the influence of material composition, testing
scale, and other inherent factors in unstabilized earthen materials.

Table 5. Strength parameters (cohesion c, and friction angle ϕ) for RE and adobe reported in the
consulted references.

Model ID Reference ϕ (◦) c (MPa) Dimensions of the Specimen
Tested or Numerical Model Comments

1 [63] 37 0.5600 Model
2 [6] 45 0.1300 Model
3 [64] 37 0.1890 Model
4 [65] 51 0.1700 40 × 40 × 65 mm Model and experimental research

5 [66] 41 0.0134 Diameter =
76.2 mm height = 147.2 mm Cylindrical specimen

6 [21] 37 0.0309 490 × 490 × 450 mm Big and intralayer specimen
7 [21] 35 0.0240 490 × 490 × 450 mm Big and intralayer specimen
8 [58] 35 0.0303 490 × 490 × 360 mm Big and layer specimen
9 [58] 33 0.0247 490 × 490 × 360 mm Big and interface specimen

10 [58] 44 0.2630 100 × 100 × 40 mm Small and upper layer specimen
11 [58] 46 0.1350 100 × 100 × 40 mm Small and middle layer specimen
12 [7] 44 0.1640 100 × 100 × 35 mm Middle part of the layer specimen
13 [7] 44 0.2635 100 × 100 × 35 mm Upper part of the layer specimen
14 [13] 65 0.0500 150 × 150 × 189 mm
15 [20] 37 0.5610 Model

16 [67] 51 0.3084 Diameter = 62 mm
height = 25 mm Moisture = 4.2%

17 [67] 41 0.3000 Diameter = 62 mm
height = 25 mm Moisture = 6.0%

18 [61] 17 0.0024 Colombian standard
19 [68] 41 0.0151 270 × 150 × 150 mm Adobe and joint mud mortar

N/A [69] * 0.0301 310 × 150 × 320 mm Molded adobe and mud mortar
N/A [69] * 0.0102 370 × 240 × 200 mm Rammed adobe and mud mortar

N/A [69] * 0.0273 240 × 115 × 179 mm Extruded earth block and mud
mortar

* Shear strength tests with no axial load applied. N/A: not applicable.

The authors of [63] provided insights through experimental testing and finite element
modeling, reporting a friction angle of 37◦ and a cohesion value of 0.560 MPa. This work
highlights the importance of accounting for nonlinear stress–strain relationships in RE
walls, emphasizing their inherent material variability. The authors of [6] advanced the field
by using discrete element modeling to simulate the failure of RE walls under lateral loads.
Their findings included a friction angle of 45◦ and a cohesion of 0.130 MPa, demonstrating
that numerical approaches could complement experimental methods to capture the com-
plexities of soil–structure interactions. The authors of [65] explored combined modeling
and experimental techniques, identifying higher values for the friction angle (51◦) and
moderate cohesion (0.170 MPa) in similar materials, further supporting the applicability of
discrete models for structural predictions. The authors of [20,64] contributed to the under-
standing of RE’s shear behavior and reported values of ϕ = 37◦ and c = 0.189 MPa, aligned
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closely with the findings of [63]. The authors of [20] also presented cohesion values as high
as 0.561 MPa, reflecting the influence of specimen preparation and test setup. Another
study [66] employed finite element modeling to analyze the elastoplastic behavior of RE
walls; this study reported a friction angle of 41◦ and a low cohesion value of 0.0134 MPa,
underscoring the impact of water content on material strength. These results highlight the
role of environmental conditions in determining the performance of earthen materials.

A significant contribution came from El-Nabouch and colleagues [7,21,29,58], who
extensively studied the shear parameters of RE through a series of experiments (direct
shear tests) and numerical validations. The authors of [7,21] used large shear boxes
(490 × 490 × 450 mm) and direct shear boxes of smaller sizes (100 × 100 × 40 mm)
to investigate the interface, interlayer, and intralayer (upper layer and middle part of the
layers) behavior of RE materials, reporting ϕ values ranging from 35◦ to 44◦ and cohe-
sion values between 0.024 MPa and 0.264 MPa. Their findings demonstrated significant
variations in shear parameters, influenced by both layer position and the scale of testing.
Specifically, intralayer tests exhibited higher cohesion values compared to interlayer tests,
highlighting the critical role of layer interfaces in maintaining structural integrity. The
authors of [13] reported an exceptionally high friction angle of 65◦ and a cohesion value of
0.05 MPa. Complementarily, Ref. [67] examined the influence of moisture on adobe’s shear
strength, finding friction angles of 51◦ at 4.2% moisture and 41◦ at 6% moisture content,
although their reported cohesion values were similar. The authors of [69] performed shear
strength tests on earthen bricks bonded with mud mortar, explicitly excluding the appli-
cation of axial load. Consequently, the findings emphasized material cohesion, with no
friction angle values reported. The tests produced average cohesion values ranging from
0.01 MPa to 0.03 MPa. Finally, the standard [61] provides baseline values for traditional
earthen constructions (the same parameters for adobe and RE) and is also the lower bound
of the data collected for adobe and RE walls subjected to pseudo-static in-plane load tests,
with ϕ = 17◦ and c = 0.0024 MPa. These conservative parameters serve as benchmarks for
assessing the safety and feasibility of heritage structures built with unstabilized materials.

Unlike geotechnical characterization, direct shear tests on large specimens of RE or
adobe are essential to capture mechanical behaviors associated with compaction layers,
material heterogeneity, interactions between compaction layers, and mortar–adobe brick
interfaces. These critical variables cannot be effectively observed in small specimens. Con-
sequently, the authors of the referenced studies conducted direct shear tests on specimens
with rectangular cross sections (e.g., parallelepipeds) or, alternatively, on cylindrical speci-
mens. Additionally, some studies have relied on numerical modeling to complement their
experimental findings. Table 5 summarizes the dimensions of the specimens tested using
the direct shear test protocol. Specifically, Refs. [6,20,63,64] employed numerical models to
simulate materials’ behavior. Conversely, Ref. [65] used small specimens with dimensions
of 40 × 40 × 65 mm, which may limit the ability to capture large heterogeneities. The
authors of [66] used cylindrical specimens with a diameter of 76.2 mm and a height of
147.2 mm, in line with typical geotechnical testing standards, while [21,58] consistently
used large specimens measuring 490 × 490 × 450 mm for intralayer and interlayer shear
tests, providing more representative results of the actual performance of RE materials.
In addition, smaller specimens measuring 100 × 100 × 40 mm and 100 × 100 × 35 mm
were used by [7] for comparison purposes. The authors of [13] used specimens measuring
150 × 150 × 189 mm, reflecting a balance between capturing representative behavior and
practical constraints. The studies reported in [67] followed the ASTM standards, using
cylindrical specimens with a diameter of 62 mm and different heights (25 mm and 35 mm).
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4. Direct Cyclic Shear Tests Performed on RE Material
(300 × 300 × 300 mm Specimens)

The authors of [11] presented the largest full-scale two-story rammed-earth (RE) wall
ever tested globally under pseudo-static loading conditions. This wall was constructed and
tested at the Structures Laboratory of the Pontificia Universidad Javeriana in a research
collaboration with Universidad de los Andes, Colombia. Figure 6 illustrates the RE wall
(Figure 6a) along with the experimental setup (Figure 6b). The experimental setup used by
the authors of [11] consisted of two servo-controlled hydraulic actuators applying in-plane
cyclic shear loads to the first and second floors of the tested wall. A 250 kN actuator was
positioned at the second level, while a 100 kN actuator was installed at the first level to
ensure controlled load application. To monitor the wall’s response, 14 LVDTs were placed
at various heights to record the displacement profiles during both push and pull cycles.
Additionally, a distributed load of 5.3 kN/m was applied to simulate the weight of a
conventional earthen construction roof. To further enhance the displacement measurement
accuracy, LIDAR (Light Detection and Ranging) technology was used, employing 3D laser
scanning to track the movement of over 150 million points on the wall’s surface. This
provided high-resolution spatial data, enabling detailed validation of the displacement
profiles and deformation behavior throughout the test. The experiment was conducted
under simultaneous displacement control at both levels, with a predefined ratio of 2.0 be-
tween second-floor and first-floor displacement, programmed through the MTS control
system [11].
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To validate the preliminary conclusions from Section 3, specimens for cyclic direct
shear tests were prepared using identical materials, craftsmanship, and construction meth-
ods as those employed in the full-scale two-story wall (Figure 6a). Large cubic specimens
(300 mm per side) were fabricated for cyclic shear testing, alongside uniaxial compression
specimens, as shown in Figure 7. All specimens underwent a 40-day drying period. Consis-
tent with the full-scale two-story RE wall (5.95 m in length, 6.20 m in height, and 0.65 m
in thickness), the specimens for the shear and compression tests were constructed using
compaction layers of approximately 7.5 to 10 cm in thickness.

The experimental setup for the cyclic direct shear tests used two high-precision MTS
actuators: one vertical actuator to precisely apply the axial load, and another horizontal
actuator, with a maximum capacity of 100 kN and a stroke of ±125 mm, to apply the
horizontal displacement protocol (Figure 8a,b). The instrumentation included two load cells
(one per actuator), the internal LVDTs of the actuators, and two MTS laser deformimeters to
measure the displacements and shear strains on each tested specimen. These laser sensors
monitored the shear displacements on two lateral (parallel) faces of the cubic specimens
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(300 mm per side). The experimental setup was specifically designed by the researchers
to minimize friction and ensure accurate axial load control while applying displacement-
controlled forces. To achieve this, the RE cubes were placed on a steel plate supported
by spheres, as shown in Figure 8c,d. The cyclic loading protocol followed the guidelines
outlined in [70] and is presented in Figure 9a. Horizontal displacements were applied
at a frequency of 0.1 Hz, with the actuator maintaining uniform cyclic loads until failure
or a strain level of 10%. Compressive strength was evaluated after one month of drying
following the compaction of the specimens (a total of 10 specimens of 500 × 500 × 250 mm
were tested in compression). The average compressive strength was 1.29 MPa, with a
coefficient of variation of 17%. Proctor tests according to standard [71] were also performed,
with an average maximum dry density of 16.49 kN/m3 and an optimal moisture content
of 16.48%. For the direct cyclic shear test, three axial stress values were selected to cover
the typical range of vertical working stresses in earthen buildings of 1 to 3 stories. This
corresponds to maximum vertical stresses of approximately 0.2 MPa. The chosen stress
values were 184, 79, and 24 kPa, respectively.
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friction in the test setup.
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Figure 9. (a) Horizontal load protocol (displacement controlled); (b) hysteresis loops for the three
axial stresses considered.

Figure 9b presents the hysteresis curves from the direct cyclic shear tests at the three
axial stress levels. According to the results, the shear resistance and energy dissipation
increase with axial stress. At 24 kPa, the curve shows narrow loops with low force magni-
tudes, indicating minimal energy dissipation and reduced shear resistance due to limited
confinement. As the axial stress increases to 79 kPa, the hysteresis curve shows wider
loops and higher force magnitudes, reflecting improved shear resistance and greater energy
dissipation. At 184 kPa, the curve shows the widest loops and highest forces, highlighting
the role of enhanced confinement in maximizing shear strength and energy dissipation. For
all conditions, the displacement range remains constant, but the force magnitudes increase
significantly with axial stress. The curves also show nonlinear behavior and slight stiffness
degradation, especially at lower axial stresses, as the loops shift to larger displacements
with repeated loading.

Figure 10 presents the final state of the nine specimens tested under axial stresses of
184, 79, and 24 kPa. The photographs reveal that shear failure predominantly occurs along
compaction layers or intermediate zones, which act as inherent planes of weakness within
the material. At 184 kPa, the highest axial stress, the failure surfaces are well defined and
localized, indicating enhanced shear resistance due to increased confinement. At 79 kPa,
the shear planes are less continuous, with cracking mechanisms distributed across the
specimens. At 24 kPa , the lowest axial stress, failure becomes more diffuse and irregular,
with extensive cracking, reflecting reduced shear resistance and brittle behavior under
minimal confinement. These failure patterns highlight the influence of axial stress on shear
response: higher stress promotes localized failure and improved strength, while lower
stress results in a broader damage spread.

Figure 11a illustrates the Mohr–Coulomb failure envelope derived from the cyclic
direct shear test results (green triangles), contrasted with the full-scale two-story RE wall
reported in [11,23] (green diamonds). The authors of [23] detailed the testing of a one-story
RE wall measuring 7.0 m in length, 3.45 m in height, and 0.6 m in thickness, featuring door
and window openings. The authors of [11], on the other hand, reported the testing of a two-
story RE wall, measuring 5.95 m in length, 6.20 m in height, and 0.65 m in thickness. Both
the two-story rammed earth wall tested with in-plane shear loading and the 300 mm side
cubes tested with the cyclic direct shear protocol were constructed using the same materials
and construction methods. The linear trend line from the present study (cyclic shear tests,
Figure 11a, green triangles) indicates an apparent cohesion of 0.0715 MPa and a slope of
0.6608, corresponding to a friction angle of 33.5◦. The high R2 value of 0.9828 demonstrates
a strong correlation between axial stress and shear stress, validating the applicability of
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the Mohr–Coulomb failure criterion to describe the material’s behavior. Also, these values
reflect a moderate shear resistance, typical of cohesive–frictional materials like compacted
RE, where both internal friction and cohesion contribute significantly to resisting shear
failure. However, a clear discrepancy is observed when comparing these results with the
shear strength data from [11,23] (Figure 11a, green diamonds). Specifically, the shear stress
values reported for the full-scale wall tests are consistently lower than those obtained
in the smaller-scale direct shear tests at similar axial stress levels (apparent cohesion of
0.0139 MPa and a slope of 0.26). When comparing the shear strength data of these full-
scale RE walls with the respective strengths estimated from cyclic direct shear tests at the
same axial load level, a ratio between 3.4 and 3.8 is observed. This ratio highlights the
consistent overestimation of shear strength by small-scale direct shear tests when compared
to the structural behavior of real-world walls (full-scale). This difference can be attributed
to scale effects and the inherent complexities associated with full-scale structures, e.g.,
the interactions between massive blocks of RE, interactions between compaction layers,
irregular stress distributions, etc.
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Figure 10. Final state of specimens subjected to cyclic direct shear tests under different axial stress levels.

Similarly, for adobe walls, Figure 11b illustrates the results from full-scale and small-
scale direct shear tests. The authors of [23] described the testing of a full-scale adobe wall
measuring 7.0 m in length, 3.45 m in height, and 0.6 m in thickness, also featuring door
and window openings. Using the same material and construction techniques, nine small
adobe masonry specimens were prepared, each consisting of two adobe bricks and a single
mud joint (dimensions: 0.27 m long, 0.15 m wide, and 0.15 m high). The joint mortar
thickness ranged between 18 mm and 20 mm. The mortar, composed solely of earth and
water, exhibited the following physical properties: liquid limit between 34 and 37%, plastic
limit of 19%, and a plasticity index ranging from 16% to 18%. Particle size distribution
analysis indicated that more than 84% of the material passed sieve #50, while over 68%
passed sieve #200. Based on the Unified Soil Classification System (USCS), the mortar soil
was classified as lean clay (CL). Additionally, compressive strength tests were conducted on
adobe masonry prisms, resulting in an average compressive strength of 1.1 MPa. The shear
specimens were subjected to static direct shear tests, as reported in [68]. The results from
the small-scale direct shear tests are represented by red triangles in Figure 11b, while the
full-scale wall test is represented by a red diamond in Figure 11b. A ratio of approximately
3.0 is observed when comparing the shear strength of the full-scale adobe wall with the
corresponding values estimated from static direct shear tests at the same axial load level.
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Figure 11. Comparative analysis of Mohr–Coulomb failure envelopes derived from direct shear tests
(triangles) and shear strength values obtained from full-scale wall tests (diamonds): (a) rammed earth
(RE), the mentioned references are Ruiz et al. (2023) [11] and Reyes et al. (2019) [23]; (b) adobe, the
mentioned references are AIS & CIMOC (2016) [68] and Reyes et al. (2019) [23].

These comparisons, shown in Figure 11a for RE walls and Figure 11b for adobe walls,
reinforce the need for appropriate scaling adjustments when using small-scale direct shear
tests to estimate the structural behavior of full-scale earthen walls. In addition, the results
emphasize the critical importance of full-scale testing to capture realistic macro-structural
failure mechanisms. Given the importance of these findings, Figure 11 presents detailed
visual illustrations, including diagrams of the full-scale wall setups and the direct shear
test configurations for small specimens. This approach enhances clarity and facilitates a
deeper understanding of the experimental methodologies and their implications.

Similar to the present study [58], conducted both static direct shear tests and in-plane
shear tests on wall specimens, applying axial stresses ranging from 0.05 MPa to just below
0.4 MPa. The larger direct shear specimens measured 490 × 490 × 360 mm, while the
smaller specimens were 100 × 100 × 40 mm. Additionally, within the same study, and using
the same rammed-earth materials, in-plane shear tests were performed on 1.5 × 1.5 m walls
with a thickness of 0.25 m, subjected to vertical loads inducing axial stresses of 0.3 MPa [29].
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It is important to note that while the walls tested in [29,58] measured 1.5 m per side and do
not fully represent full-scale earthen walls, they still offer a valuable basis for comparison
with the findings of this study. According to the results reported in [29], the average
maximum shear strength of walls subjected to in-plane shear loading was 0.107 MPa (at an
axial stress of 0.3 MPa). In contrast, the shear strength values estimated from small direct
shear specimens under the same 0.3 MPa axial stress ranged from 0.44 to 0.55 MPa [58],
significantly exceeding the shear strength of the walls. Furthermore, when using large
direct shear specimens under the same 0.3 MPa axial stress, the estimated shear strength
reported in [58] ranged between 0.22 and 0.24 MPa—still overestimating the wall strength,
but substantially lower than the values obtained from small specimens. Table 6 summarizes
this analysis, demonstrating that a reduction factor of 3.18 is necessary to adjust small-scale
direct shear test results to better represent full-scale wall behavior. This factor closely aligns
with the range of 3.0 to 3.8 determined in the present study, further reinforcing the validity
of the findings.

Table 6. Comparison between direct shear strengths and in-plane wall shear strengths reported
in [29,58].

References σ
(MPa) τ (MPa) Type of Tests Dimensions of the

Specimen Tested
Average τ

(MPa)

Ratio Between Shear
Strength of Small

Specimens and Walls

[58] 0.3 0.2194 Direct shear 490 × 490 × 360 mm

0.3647

3.18

[58] 0.3 0.2430 Direct shear 490 × 490 × 360 mm
[58] 0.3 0.4418 Direct shear 100 × 100 × 40 mm
[58] 0.3 0.5545 Direct shear 100 × 100 × 40 mm

[29,58] 0.3 0.0969 In-plane shear 1000 × 1500 × 250 mm

0.1145
[29,58] 0.3 0.1149 In-plane shear 1500 × 1500 × 250 mm
[29,58] 0.3 0.1059 In-plane shear 1500 × 1500 × 250 mm
[29,58] 0.3 0.1403 In-plane shear 1000 × 1500 × 250 mm

5. Comparative Analysis of Direct Shear Test Results and Shear Strength
of Earthen Walls

For comparative purposes, and to extend the observations made in the previous
chapter to the information compiled in technical–scientific publications, Figure 12 presents
a comprehensive analysis of shear strength results for earthen materials, incorporating
data from the present study’s cyclic direct shear tests (green triangles), 125 shear wall
tests compiled from the literature and summarized in Tables 2 and 3 (blue circles), and
the Mohr–Coulomb failure envelopes reported in prior studies and listed in Table 5 (solid
lines). A clear trend emerges from the wall test results: shear strength increases with higher
axial stress, consistent with the Mohr–Coulomb failure criterion. However, despite this
trend, significant data scatter is observed, reinforcing the complexity of shear resistance in
full-scale walls. The figure also demonstrates that failure envelopes derived from direct
shear tests overestimate the shear strength of full-scale adobe and RE walls, a discrepancy
that becomes apparent when these curves are compared to the conservative failure line
of [61] (Colombian standard). While direct shear tests are effective in determining key
material parameters such as cohesion and friction angle in soils, they do not account
for critical structural factors that influence the shear resistance of full-scale walls under
realistic structural conditions (full-scale or near-full-scale). These factors include density
variations, pores, voids in the material, and the presence of openings such as doors and
windows, which significantly reduce the mechanical performance of a wall. Additionally,
small-scale tests do not capture the interaction of the earthen material with other structural
components, such as foundations, floor systems, and lintels, which play a major role in
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stress redistributions. In the specific case of rammed-earth constructions, the walls are
built from large compacted blocks, typically one to two meters in length, about one meter
in height, and as thick as the wall itself. These blocks interact at their interfaces with the
adjacent blocks above, below, and laterally, forming complex stress redistributions during
in-plane shear loading. This interaction between compacted blocks is not represented in
small-scale direct shear tests, even when using the largest specimens found in the literature
(500 mm per side). These critical factors are not considered in direct shear tests, resulting in
an overestimation of walls’ shear strength when relying solely on small-scale direct shear
test specimens. By addressing the uncertainties inherent in full-scale structural behavior, the
AIS-610-EP-2017 curve [61] ensures safer and more reliable predictions of shear resistance,
particularly for historic structures, where safety and preservation are the main goal. To
achieve a more accurate assessment of the shear strength of unstabilized adobe and RE
walls, it is crucial to conduct tests on specimens with a minimum representative size. The
tendency of small-scale direct shear tests to overestimate shear strength, compared to that
of full-scale walls, highlights (1) the need for caution when extrapolating their results to
full-scale conditions, along with (2) the importance of conducting tests on wall specimens
with a minimum representative size to complement the data.
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Figure 12. Comparison of shear strength data of earthen walls and Mohr–Coulomb failure envelopes
from the scientific and technical literature. The mentioned reference is AIS (2017) [61].

Finally, a review of international normative documents related to seismic design or
seismic reinforcement of earthen walls reveals that only a few countries have developed spe-
cific regulations or standards for these constructions—for instance, Afghanistan, Australia,
Colombia, Chile, France, Germany, India, Kyrgyzstan, Nepal, Peru, New Zealand, and
the USA [57,72,73]. Finding only a few examples of contemporary construction standards
for earthen buildings in seismic zones is understandable given the numerous deficiencies
in mechanical performance that these structures have historically exhibited. However,
these regulations primarily define maximum allowable shear strength values rather than
providing Mohr–Coulomb failure envelopes, limiting their applicability for comprehensive
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structural assessment. For instance, the Peruvian and Chilean standards define shear
strength values of approximately 0.025 MPa for earthen walls, which align closely with wall
tests but are significantly lower than the values derived from most of the Mohr–Coulomb
failure surfaces derived from direct shear tests on small specimens and shown in Figure 12.

6. Conclusions
This study presents a comprehensive assessment of the shear strength and scale effects

on earthen walls, focusing on adobe and RE constructions. Key conclusions from this
investigation are summarized below:

• Small-scale direct shear tests, whether cyclic or monotonic, fail to accurately represent
the true shear strength of adobe and rammed-earth (RE) walls. These tests consistently
overestimate the shear strength of earthen walls, since they are limited by their inability
to replicate critical factors such as material heterogeneities, construction joints, and
stress redistributions, which are critical in the failure mechanisms of earthen walls
(full-scale and near-full-scale walls). This study highlights that these discrepancies
are particularly pronounced when comparing small-scale direct shear tests results to
full-scale in-plane shear wall tests, reinforcing the necessity for appropriate scaling
adjustments in laboratory-based shear evaluations.

• The minimum cross-sectional area required for reliable shear strength testing of earthen
walls is approximately 0.5 m2. This threshold, derived from an analysis of experimental
data, accounts for the influence of scale effects and ensures that the results reflect the
structural behavior of walls.

• When it is impractical to test specimens with the minimum cross-sectional areas found
above, it is necessary to align small-scale direct shear tests results with the realistic
structural behavior of full-scale earthen walls. The required adjustment factors are
3.4~3.8 for rammed earth and approximately 3.0 for adobe. In summary, direct shear
test results should be divided by at least 3.4 to accurately reflect the true shear strength
of full-scale earthen walls.

• The AIS-610-EP-2017 failure criterion (from a Colombian standard for the seismic
rehabilitation of earthen constructions) provides a conservative lower bound for the
shear strength of adobe and RE walls. This conservative approach is essential for safe
structural design and assessment, particularly for heritage buildings, as it accounts for
the uncertainties associated with construction methods, material variability, and the
failure mechanisms of full-scale walls.

• A detailed analysis of shear strength data from earthen walls reveals a clear trend: shear
strength increases with higher axial stresses, in alignment with the Mohr–Coulomb
failure criterion. However, small-scale direct shear tests fail to replicate the realistic
stress paths and interactions between wall components that influence shear resistance.

• The results reveal significant discrepancies between the shear strength values obtained
from cyclic direct shear tests and those derived from full-scale wall tests. For the 300
mm cubic specimens subjected to cyclic shear tests, the Mohr–Coulomb envelope exhib-
ited an apparent cohesion of 0.0715 MPa and a slope representative of a friction angle
of 33.5◦ (slope of 0.66). However, the full-scale two-story wall with global dimensions
of 5.95 m long, 6.20 m high, and 0.65 m thick exhibited a significantly lower appar-
ent cohesion of 0.0135 MPa and a much flatter slope (slope of 0.26). This significant
disparity underscores the limitations of even relatively large cubic specimens, such
as the 300 mm samples tested in direct shear tests, in capturing the macro-structural
behaviors that govern the failure mechanisms of full-scale earthen walls.

• Testing full-scale earthen walls under realistic boundary conditions is essential for
accurately assessing their shear strength and mechanical behavior. Small-scale direct
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shear tests alone are insufficient for structural design, as they fail to capture the
complex interactions that influence wall performance. These complex interactions
include density variations, pores, voids in the material, the presence of openings (such
as doors and windows), and the interaction of earthen walls with other structural
components, including foundations, floor systems, lintels, and the interfaces between
rammed-earth blocks. All of these factors significantly reduce the mechanical strength
of a wall. Incorporating full-scale data into design and retrofitting practices ensures
that structural assessments reflect real-world performance, enhancing the safety and
resilience of earthen buildings, particularly in seismic regions.

7. Future Works
Future research should explore how material stabilization techniques (lime, cement,

natural fibers) and specimen scale affect the shear strength of earthen walls. Additional
experimental testing on full-scale earthen walls is needed to refine the proposed strength
reduction factors and confirm their applicability across different construction methods.
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