Analysis of Damage to Reinforced Concrete Beams Under Explosive Effects of Different Shapes, Equivalents, and Distances
<p>Reinforcement diagram of the reinforced concrete beam.</p> "> Figure 2
<p>Schematic diagram of the experimental setup.</p> "> Figure 3
<p>On-site layout diagram.</p> "> Figure 4
<p>Explosive arrangement diagram for the experiment (<b>a</b>) S-1 test, 2 kg, 50 cm, (<b>b</b>) S-2 test, 6 kg, 50 cm, (<b>c</b>) S-3 test, 10 kg, 50 cm, and (<b>d</b>) S-4 test, 6 kg, 25 cm.</p> "> Figure 5
<p>Overpressure sensor arrangement diagram.</p> "> Figure 6
<p>On-site overpressure sensor arrangement diagram.</p> "> Figure 7
<p>Overall damage diagram of the reinforced concrete beam in the (<b>a</b>) S-1 test, 2 kg, 50 cm, (<b>b</b>) S-2 test, 6 kg, 50 cm, (<b>c</b>) S-3 test, 10 kg, 50 cm, and (<b>d</b>) S-4 test, 6 kg, 25 cm.</p> "> Figure 8
<p>Local damage diagram of the blast-facing surface in the (<b>a</b>) S-1 test, 2 kg, 50 cm, (<b>b</b>) S-2 test, 6 kg, 50 cm, (<b>c</b>) S-3 test, 10 kg, 50 cm, (<b>d</b>) S-4 test, 6 kg, 25 cm.</p> "> Figure 9
<p>Finite element models: (<b>a</b>) FE model of the concrete beam and supports, (<b>b</b>) FE model of the air domain, and (<b>c</b>) FE model of the reinforcement.</p> "> Figure 10
<p>Effect of element size on maximum residual displacement.</p> "> Figure 11
<p>Comparison of the overall damage modes.</p> "> Figure 12
<p>Comparison of local damage dimensions.</p> "> Figure 13
<p>Experimental and numerical simulation overpressure time-history curves from the (<b>a</b>) S-1 test P1 and (<b>b</b>) S-1 test P2.</p> "> Figure 14
<p>Numerical simulation damage diagrams FOR (<b>a</b>) M-1, 2 kg, 50 cm, sphere, (<b>b</b>) M-2, 2 kg, 50 cm, cuboid, (<b>c</b>) M-3, 2 kg, 25 cm sphere, (<b>d</b>) M-4, 2 kg, 25 cm, cuboid, (<b>e</b>) M-5, 4 kg, 50 cm, sphere, (<b>f</b>) M-6, 4 kg, 50 cm, cuboid, (<b>g</b>) M-7, 4 kg, 25 cm, sphere, (<b>h</b>) M-8, 4 kg, 25 cm, cuboid, (<b>i</b>) M-9, 6 kg, 50 cm, sphere, (<b>j</b>) M-10, 6 kg, 50 cm, cuboid, (<b>k</b>) M-11, 6 kg, 25 cm, sphere, (<b>l</b>) M-12, 6 kg, 25 cm, cuboid, (<b>m</b>) M-13, 10 kg, 50 cm sphere, and (<b>n</b>) M-14, 10 kg, 50 cm, cuboid.</p> "> Figure 15
<p>Maximum residual displacement of the beam.</p> "> Figure 16
<p>Depth of explosion crater on the beam.</p> "> Figure 17
<p>Displacement time-history curves of explosives under different charges and standoff distances.</p> "> Figure 18
<p>Displacement time-history curves under different explosive shapes.</p> "> Figure 19
<p>Overpressure time-history curves of explosives under different charges.</p> "> Figure 20
<p>Impulse time-history curves of explosives under different charges.</p> "> Figure 21
<p>Overpressure time-history curves of explosives under different standoff distances.</p> "> Figure 22
<p>Impulse time-history curves of explosives under different standoff distances.</p> "> Figure 23
<p>Overpressure time-history curves under different explosive shapes.</p> "> Figure 24
<p>Impulse time-history curves under different explosive shapes.</p> ">
Abstract
:1. Introduction
2. Explosion Tests
2.1. Overview of the Experiment
2.2. Experimental Results
3. Simulation and Validation
3.1. Numerical Model and Material Parameters
3.2. Comparison and Analysis of Tests and Simulations
4. Dynamic Response Analysis
4.1. Simulation Condition Analysis
4.2. Parameter Analysis
4.2.1. Maximum Residual Displacement
4.2.2. Crater Depth
4.2.3. Time-History Displacement
4.2.4. Time-History Overpressure and Impulse
4.3. Damage Assessment Criteria
5. Conclusions
- Strengths of the Model
- Limitations of the Model
- Design Recommendations
- Further Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smith, P.J. Terrorism in Asia: A Persistent Challenge Sustained by Ideological, Physical, and Criminal Enablers. In Handbook of Asian Criminology; Liu, J., Hebenton, B., Jou, S., Eds.; Springer: New York, NY, USA, 2013; pp. 147–164. ISBN 978-1-4614-5218-8. [Google Scholar]
- Shi, Y.; Stewart, M.G. Damage and risk assessment for reinforced concrete wall panels subjected to explosive blast loading. Int. J. Impact Eng. 2015, 85, 5–19. [Google Scholar] [CrossRef]
- Shi, Y.; Xiong, W.; Li, Z.-X.; Xu, Q. Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions. Int. J. Impact Eng. 2016, 90, 122–131. [Google Scholar] [CrossRef]
- Dua, A.; Braimah, A.; Kumar, M. Experimental and numerical investigation of rectangular reinforced concrete columns under contact explosion effects. Eng. Struct. 2020, 205, 109891. [Google Scholar] [CrossRef]
- Luccioni, B.M.; Ambrosini, R.D.; Danesi, R.F. Analysis of building collapse under blast loads. Eng. Struct. 2004, 26, 63–71. [Google Scholar] [CrossRef]
- Osteraas, J.D. Murrah building bombing revisited: A qualitative assessment of blast damage and collapse patterns. J. Perform. Constr. Facil. 2006, 20, 330–335. [Google Scholar] [CrossRef]
- Wang, W. Mechanical Research on Reinforced Concrete Materials. Materials 2023, 16, 6892. [Google Scholar] [CrossRef] [PubMed]
- Shafighfard, T.; Kazemi, F.; Bagherzadeh, F.; Mieloszyk, M.; Yoo, D. Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams. Comput. Aided Civ. Eng 2024, 39, 3573–3594. [Google Scholar] [CrossRef]
- Zhang, C.; Gholipour, G.; Mousavi, A.A. Blast loads induced responses of RC structural members: State-of-the-art review. Compos. Part B Eng. 2020, 195, 108066. [Google Scholar] [CrossRef]
- Yang, C.; Jia, X.; Huang, Z.; Zhao, L.; Shang, W. Damage of full-scale reinforced concrete beams under contact explosion. Int. J. Impact Eng. 2022, 163, 104180. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, J.; Huang, F. Behavior of reinforced concrete beams and columns subjected to blast loading. Def. Technol. 2018, 14, 550–559. [Google Scholar] [CrossRef]
- Gao, C.; Kong, X.; Fang, Q. Experimental and numerical investigation on the attenuation of blast waves in concrete induced by cylindrical charge explosion. Int. J. Impact Eng. 2023, 174, 104491. [Google Scholar] [CrossRef]
- Wei, W.; Rui-chao, L.I.U.; Biao, W.U.; Lin, L.I.; Jia-rong, H.; Xing, W. Damage Criteria of Reinforced Concrete Beams under Blast Loading. Acta Armamentarii 2016, 37, 1421–1429. [Google Scholar]
- Cudzilo, S.; Kohlicek, P.; Trzcinski, V.A.; Zeman, S. Performance of emulsion explosives. Combust. Explos. Shock Waves 2002, 38, 463–469. [Google Scholar] [CrossRef]
- Simoens, B.; Lefebvre, M.H.; Minami, F. Influence of different parameters on the TNT-equivalent of an explosion. Cent. Eur. J. Energetic Mater. 2011, 8, 53–67. [Google Scholar]
- Locking, P.M. TNT equivalence—Experimental comparison against prediction. In Proceedings of the 27th International symposium on ballistics, Freiburg, Germany, 22–26 April 2013; pp. 22–26. [Google Scholar]
- Xie, L.X.; Lu, W.B.; Zhang, Q.B.; Jiang, Q.H.; Chen, M.; Zhao, J. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses. Tunn. Undergr. Space Technol. 2017, 66, 19–33. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Wang, J.; Wang, S.; Wang, H.; Yin, Y.; Li, F. Effect of confining pressure on damage accumulation of rock under repeated blast loading. Int. J. Impact Eng. 2021, 156, 103961. [Google Scholar] [CrossRef]
- Borrvall, T.; Riedel, W. The RHT concrete model in LS-DYNA. In Proceedings of the 8th European LS-DYNA User Conference, Strasbourg, France, 23–24 May 2011; pp. 23–24. [Google Scholar]
- Malvar, L.J. Review of static and dynamic properties of steel reinforcing bars. ACI Mater. J. 1998, 95, 609–616. [Google Scholar]
- Cheng, D.-S.; Hung, C.-W.; Pi, S.-J. Numerical Simulation of Near-Field Explosion. J. Appl. Sci. Eng. 2013, 16, 61–67. [Google Scholar] [CrossRef]
Test | Dimension (mm) | Explosive Mass (kg) | Explosive Shape | Blast Distance (m) |
---|---|---|---|---|
S-1 | 125 × 250 × 3000 | 2 | Strip | 0.5 |
S-2 | 125 × 250 × 3000 | 6 | Strip | 0.5 |
S-3 | 125 × 250 × 3000 | 10 | Sphere | 0.5 |
S-4 | 125 × 250 × 3000 | 6 | Sphere | 0.25 |
ρ/(kg·m−3) | D (m·s−1) | PCJ/GPa | A/GPa | B/GPa | R1 | R2 | ω | E0 (KJ·m−3) |
---|---|---|---|---|---|---|---|---|
1630 | 6930 | 21 | 371.3 | 3.231 | 4.15 | 0.95 | 0.3 | 7 × 106 |
ρ/(kg·m−3) | fc/MPa | ν | E/GPa |
---|---|---|---|
2500 | 40 | 0.2 | 32.5 |
ρ/(kg·m−3) | E/GPa | σ/MPa | d/mm | ν |
---|---|---|---|---|
7800 | 200 | 300 | 6 | 0.3 |
ρ/(kg·m−3) | E/GPa | σ/MPa | d/mm | ν |
---|---|---|---|---|
7800 | 200 | 360 | 10 | 0.3 |
ρ/(kg·m−3) | C0 | C1 | C2 | C3 | C4 | C5 | C6 | E0 (KJ·m−3) |
---|---|---|---|---|---|---|---|---|
1.29 | 0 | 0 | 0 | 0 | 0.4 | 0.4 | 0 | 253 |
Test | Explosive Mass/kg | Explosive Shape | Blast Distance/m | Scale Distance Z/(m/kg1/3) | Amendatory Scale Distance X/(m/kg1/3) |
---|---|---|---|---|---|
M-1 | 2 | Sphere | 0.5 | 0.629 | 0.629 |
M-2 | 2 | Cuboid | 0.5 | 0.629 | 0.5 |
M-3 | 2 | Sphere | 0.25 | 0.5 | 0.5 |
M-4 | 2 | Cuboid | 0.25 | 0.5 | 0.4 |
M-5 | 4 | Sphere | 0.5 | 0.5 | 0.5 |
M-6 | 4 | Cuboid | 0.5 | 0.5 | 0.4 |
M-7 | 4 | Sphere | 0.25 | 0.396 | 0.396 |
M-8 | 4 | Cuboid | 0.25 | 0.396 | 0.3168 |
M-9 | 6 | Sphere | 0.5 | 0.436 | 0.436 |
M-10 | 6 | Cuboid | 0.5 | 0.436 | 0.348 |
M-11 | 6 | Sphere | 0.25 | 0.346 | 0.346 |
M-12 | 6 | Cuboid | 0.25 | 0.346 | 0.2768 |
M-13 | 10 | Sphere | 0.5 | 0.368 | 0.368 |
M-14 | 10 | Cuboid | 0.5 | 0.368 | 0.294 |
Damage Levels | Main Characteristics | Adjusted Scaled Standoff Distance |
---|---|---|
Minor damage | On the rear blast-facing side of the beam, a few cracks were observed, while small areas of concrete spalling were also noted on both sides of the central region of the top surface. | X > 0.4 |
Moderate damage | The midsection of the beam experienced significant bending stress, resulting in noticeable crushing damage in this area. Additionally, triangular cone-shaped fracture cracks were observed at other locations on the sides of the beam. | 0.3 < X < 0.4 |
Severe damage | The entire beam underwent significant deformation, with the blast-facing side subjected to severe compressive forces, resulting in a distinct inverted triangular cone-shaped crushed area. In the central region of the rear blast-facing side, minor spalling of the concrete surface was observed. | 0.28 < X < 0.3 |
Complete damage | The beam experienced severe bending and fracturing, ultimately leading to collapse. On the rear blast-facing side, the collapsed and fragmented area connected with the heavily crushed region on the blast-facing side, forming a continuous damage zone through the beam. | X < 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Zheng, R.; Wang, W.; Ye, C.; Luo, W.; Shen, S. Analysis of Damage to Reinforced Concrete Beams Under Explosive Effects of Different Shapes, Equivalents, and Distances. Buildings 2025, 15, 452. https://doi.org/10.3390/buildings15030452
Ma Y, Zheng R, Wang W, Ye C, Luo W, Shen S. Analysis of Damage to Reinforced Concrete Beams Under Explosive Effects of Different Shapes, Equivalents, and Distances. Buildings. 2025; 15(3):452. https://doi.org/10.3390/buildings15030452
Chicago/Turabian StyleMa, Yu, Rongyue Zheng, Wei Wang, Chenzhen Ye, Wenzhe Luo, and Sihao Shen. 2025. "Analysis of Damage to Reinforced Concrete Beams Under Explosive Effects of Different Shapes, Equivalents, and Distances" Buildings 15, no. 3: 452. https://doi.org/10.3390/buildings15030452
APA StyleMa, Y., Zheng, R., Wang, W., Ye, C., Luo, W., & Shen, S. (2025). Analysis of Damage to Reinforced Concrete Beams Under Explosive Effects of Different Shapes, Equivalents, and Distances. Buildings, 15(3), 452. https://doi.org/10.3390/buildings15030452