Enhancement of Mechanical and Chloride Binding Properties in Seawater Cement Using a Novel Carbon Nanomaterial
<p>(<b>a</b>) NGQDs powder; (<b>b</b>) TEM, (<b>c</b>) AFM, and (<b>d</b>) Raman spectra of NGQDs.</p> "> Figure 2
<p>(<b>a</b>) FTIR spectra and (<b>b</b>–<b>d</b>) high-resolution XPS: C1s, O1s, and N1s of NGQDs.</p> "> Figure 3
<p>(<b>a</b>) Compressive and (<b>b</b>) flexural strengths of various groups after curing for 28 d.</p> "> Figure 4
<p><span class="html-italic">C</span><sub>b</sub> values of different groups after a 24 h soak in DI water.</p> "> Figure 5
<p>XRD patterns of diverse groups after a 24 h soak in DI water.</p> "> Figure 6
<p>(<b>a</b>) TGA and (<b>b</b>) DTG of diverse groups after a 24 h soak in DI water.</p> "> Figure 7
<p>SEM images of various groups after a 24 h soak in DI water: (<b>a</b>) C0, (<b>b</b>) C2, and (<b>c</b>) C4.</p> "> Figure 8
<p>Chloride binding mechanism of seawater cement: (<b>a</b>) without NGQDs and (<b>b</b>) with NGQDs.</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of NGQDs
2.3. Mix Proportions and Sample Preparation
2.4. Apparatus
2.5. Mechanical Properties
2.6. Chloride Binding Properties and Calculations
2.7. Phase Composition of Various Samples
3. Results and Discussion
3.1. Characterization of NGQDs
3.2. Mechanical Performance
3.3. Chloride Binding Characteristic
3.4. Phase Compositions of Different Samples
3.5. Enhancement Mechanism of Chloride Binding Property
4. Conclusions
- (1)
- NGQDs are triumphantly synthesized by a straightforward hydrothermal technique. The obtained NGQDs with a mean size of 2.64 nm own a great crystallinity carbon core and plentiful N-/O-containing surface groups. Additionally, the specific structure of NGQDs endows them with splendid water solubility and dispersibility, establishing a basis for their employment in seawater cement.
- (2)
- The introduction of NGQDs does not negatively affect the mechanical characteristics of seawater cement. Within the range of 0.2 wt.%, with the increase in NGQD content, the compressive/flexural strengths of seawater cement first improve and then decline. Among them, the sample containing 0.05 wt.% NGQDs possess the best mechanical properties after 28 d of curing, with a compressive strength of 56.31 MPa and a flexural strength of 11.08 MPa, 8.21% and 25.77% larger than that of the blank group, respectively.
- (3)
- After modification with NGQDs, the chloride binding characteristic of seawater cement is improved, and the bound chloride content is positively related to the dosage of NGQDs in the range of 0.2 wt.%. In detail, the specimen with 0.2 wt.% NGQDs owns the highest bound chloride content (4.43 mg/g), 41.08% higher than that of the blank group.
- (4)
- The chloride binding mechanism of seawater cement modified with NGQDs is reasonably disclosed through a comprehensive analysis of phase compositions. Namely, the presence of NGQDs accelerates the production of C–S–H gels and Fs crystals by accelerating the hydration process, thereby facilitating the physisorption and chemical combination of chloride.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tian, W.; Liu, Y.; Wang, W. Enhanced ohmic heating and chloride adsorption efficiency of conductive seawater cementitious composite: Effect of non-conductive nano-silica. Compos. Part B Eng. 2022, 236, 109854. [Google Scholar] [CrossRef]
- Salehi, M. Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environ. Int. 2022, 158, 106936. [Google Scholar] [CrossRef]
- Guo, M.; Hu, B.; Xing, F.; Zhou, X.; Sun, M.; Sui, L.; Zhou, Y. Characterization of the mechanical properties of eco-friendly concrete made with untreated sea sand and seawater based on statistical analysis. Constr. Build. Mater. 2020, 234, 117339. [Google Scholar] [CrossRef]
- Wang, A.; Lyu, B.; Zhang, Z.; Liu, K.; Xu, H.; Sun, D. The development of coral concretes and their upgrading technologies: A critical review. Constr. Build. Mater. 2018, 187, 1004–1019. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, J.; Zhang, P.; Zhang, K. Mechanical behaviour of seawater sea-sand recycled coarse aggregate concrete columns under axial compressive loading. Constr. Build. Mater. 2019, 229, 117050. [Google Scholar] [CrossRef]
- Tong, L.; Zhao, J.; Cheng, Z. Chloride ion binding effect and corrosion resistance of geopolymer materials prepared with seawater and coral sand. Constr. Build. Mater. 2021, 309, 125126. [Google Scholar] [CrossRef]
- He, H.; Shuang, E.; Wen, T.; Yao, J.; Wang, X.; He, C.; Yu, Y. Employing novel N-doped graphene quantum dots to improve chloride binding of cement. Constr. Build. Mater. 2023, 401, 132944. [Google Scholar] [CrossRef]
- Qiu, X.; Yuan, J.; Chen, W.; Tan, X.; Wu, G.; Tian, H. Effect of chloride binding and sulfate ion attack on the chloride diffusion in calcium sulfoaluminate-based material under seawater environment. J. Mater. Res. Technol. JMRT 2024, 30, 4261–4271. [Google Scholar] [CrossRef]
- Li, Q.; Geng, H.; Huang, Y.; Shui, Z. Chloride resistance of concrete with metakaolin addition and seawater mixing: A comparative study. Constr. Build. Mater. 2015, 101, 184–192. [Google Scholar] [CrossRef]
- De Weerdt, K.; Lothenbach, B.; Geiker, M.R. Comparing chloride ingress from seawater and NaCl solution in Portland cement mortar. Cem. Concr. Res. 2019, 115, 80–89. [Google Scholar] [CrossRef]
- Uthaman, S.; George, R.P.; Vishwakarma, V.; Harilal, M.; Philip, J. Enhanced seawater corrosion resistance of reinforcement in nanophase modified fly ash concrete. Constr. Build. Mater. 2019, 221, 232–243. [Google Scholar] [CrossRef]
- Gong, F.; Sun, X.; Takahashi, Y.; Maekawa, K.; Jin, W. Computational modeling of combined frost damage and alkali–silica reaction on the durability and fatigue life of RC bridge decks. J. Intell. Constr. 2023, 1, 9180001. [Google Scholar] [CrossRef]
- Ming, X.; Liu, Q.; Wang, M.; Cai, Y.; Chen, B.; Li, Z. Improved chloride binding capacity and corrosion protection of cement-based materials by incorporating alumina nano particles. Cem. Concr. Compos. 2023, 136, 104898. [Google Scholar] [CrossRef]
- Chen, X.; He, Y.; Lu, L.; Wang, F.; Hu, S. Effects of curing regimes on the chloride binding capacity of cementitious materials. Constr. Build. Mater. 2022, 342, 127929. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Cao, J. Prediction and evaluation of thermal conductivity in nanomaterial-reinforced cementitious composites. Cem. Concr. Res. 2023, 172, 107240. [Google Scholar] [CrossRef]
- Yang, L.; Xu, J.; Huang, Y.; Li, L.; Zhao, P.; Lu, L.; Cheng, X.; Zhang, D.; He, Y. Using layered double hydroxides and anion exchange resin to improve the mechanical properties and chloride binding capacity of cement mortars. Constr. Build. Mater. 2021, 272, 122002. [Google Scholar] [CrossRef]
- Li, S.; Jin, Z.; Yu, Y. Chloride binding by calcined layered double hydroxides and alumina-rich cementitious materials in mortar mixed with seawater and sea sand. Constr. Build. Mater. 2021, 293, 123493. [Google Scholar] [CrossRef]
- Ai, L.; Yang, Y.; Wang, B.; Chang, J.; Tang, Z.; Yang, B.; Lu, S. Insights into photoluminescence mechanisms of carbon dots: Advances and perspectives. Sci. Bull. 2021, 66, 839–856. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, Y.; Gong, X. Evolution and fabrication of carbon dot-based room temperature phosphorescence materials. Chem. Sci. 2023, 14, 3705–3729. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Huang, K.; Tang, B.; Lei, Z.; Wang, Z.; Guo, H.; Lian, C.; Liu, Z.; Wang, L. Graphene Quantum Dot-Mediated Atom-Layer Semiconductor Electrocatalyst for Hydrogen Evolution. Nano-Micro Lett. 2023, 15, 217. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Shuang, E.; Lu, D.; Hu, Y.; Yan, C.; Shan, H.; He, C. Deciphering size-induced influence of carbon dots on mechanical performance of cement composites. Constr. Build. Mater. 2024, 425, 136030. [Google Scholar] [CrossRef]
- Wei, J.; Farzadnia, N.; Khayat, K.H. Synergistic effect of macro synthetic fiber and shrinkage-reducing admixture on engineering properties of fiber-reinforced super-workable concrete. Constr. Build. Mater. 2024, 414, 134566. [Google Scholar] [CrossRef]
- Chang, H. Chloride binding capacity of pastes influenced by carbonation under three conditions. Cem. Concr. Compos. 2017, 84, 1–9. [Google Scholar] [CrossRef]
- Mao, L.; Tang, W.; Deng, Z.; Liu, S.; Wang, C.; Chen, S. Facile Access to White Fluorescent Carbon Dots toward Light-Emitting Devices. Ind. Eng. Chem. Res. 2014, 53, 6417–6425. [Google Scholar] [CrossRef]
- Xia, J.; Chen, S.; Zou, G.; Yu, Y.; Wang, J. Synthesis of highly stable red-emissive carbon polymer dots by modulated polymerization: From the mechanism to application in intracellular pH imaging. Nanoscale 2018, 10, 22484–22492. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Guo, L.; He, Z.; Marzouki, R.; Zhang, R.; Berdimurodov, E. Insights into the newly synthesized N-doped carbon dots for Q235 steel corrosion retardation in acidizing media: A detailed multidimensional study. J. Colloid Interface Sci. 2022, 608, 2039–2049. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yoon, D.; Hwang, J.; Chang, W.; Kim, J. One-pot route to synthesize SnO2-Reduced graphene oxide composites and their enhanced electrochemical performance as anodes in lithium-ion batteries. J. Power Sources 2015, 293, 1024–1031. [Google Scholar] [CrossRef]
- Tang, Y.; He, H.; Qiao, H.; Wang, S.; He, C.; Xiang, T. Carbon dot aggregates: A new strategy to promote corrosion inhibition performance of carbon dots. J. Mater. Res. Technol. JMRT 2024, 33, 1479–1493. [Google Scholar] [CrossRef]
- Fu, R.; Song, H.; Liu, X.; Zhang, Y.; Xiao, G.; Zou, B.; Waterhouse, G.I.N.; Lu, S. Disulfide Crosslinking-Induced Aggregation: Towards Solid-State Fluorescent Carbon Dots with Vastly Different Emission Colors. Chin. J. Chem. 2023, 41, 1007–1014. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Xia, L.; Wang, H.; Chen, Z.; Wu, F. One-Step Synthesis of Ultrasmall and Ultrabright Organosilica Nanodots with 100% Photoluminescence Quantum Yield: Long-Term Lysosome Imaging in Living, Fixed, and Permeabilized Cells. Nano Lett. 2018, 18, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ding, D.; Li, M.; Wang, T.; Ma, H.; Chen, B.; Hu, H.; Chen, J.; Liu, X.; Hou, D. Chloride binding mechanism in seawater-mixed UHPC. Constr. Build. Mater. 2024, 427, 136191. [Google Scholar] [CrossRef]
- Qu, F.; Li, W.; Guo, Y.; Zhang, S.; Zhou, J.L.; Wang, K. Chloride-binding capacity of cement-GGBFS-nanosilica composites under seawater chloride-rich environment. Constr. Build. Mater. 2022, 342, 127890. [Google Scholar] [CrossRef]
- Liao, Y.; Lv, Y.; Huang, G.; Ren, S.; Wang, X.; Guo, R.; Tian, Y.; Deng, S.; Lin, R. Strength and microstructure analysis of subgrade materials containing red sandstone-limestone-cement composites and red sandstone gravel. Constr. Build. Mater. 2024, 416, 135190. [Google Scholar] [CrossRef]
- Bertola, F.; Gastaldi, D.; Irico, S.; Paul, G.; Canonico, F. Behavior of blends of CSA and Portland cements in high chloride environment. Constr. Build. Mater. 2020, 262, 120852. [Google Scholar] [CrossRef]
- Paul, G.; Boccaleri, E.; Buzzi, L.; Canonico, F.; Gastaldi, D. Friedel’s salt formation in sulfoaluminate cements: A combined XRD and 27Al MAS NMR study. Cem. Concr. Res. 2015, 67, 93–102. [Google Scholar] [CrossRef]
- Zhao, L.; Feng, P.; Ye, S.; Liu, X.; Wang, H. Effect of polyethylene glycol on chloride binding in mortar. Constr. Build. Mater. 2021, 311, 125321. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, X.; Yuan, Q.; Wu, Z.; Shi, C. Effects of water to binder ratio on the chloride binding behaviour of artificial seawater cement paste blended with metakaolin and silica fume. Constr. Build. Mater. 2022, 353, 129110. [Google Scholar] [CrossRef]
- Babaahmadi, A.; Machner, A.; Kunther, W.; Figueira, J.; Hemstad, P.; De Weerdt, K. Chloride binding in Portland composite cements containing metakaolin and silica fume. Cem. Concr. Res. 2022, 161, 106924. [Google Scholar] [CrossRef]
- Hemstad, P.; Machner, A.; De Weerdt, K. The effect of artificial leaching with HCl on chloride binding in ordinary Portland cement paste. Cem. Concr. Res. 2020, 130, 105976. [Google Scholar] [CrossRef]
- Krishnan, S.; Bishnoi, S. Understanding the hydration of dolomite in cementitious systems with reactive aluminosilicates such as calcined clay. Cem. Concr. Res. 2018, 108, 116–128. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, M.; Yang, Z.; Guo, R.; Wang, X.-Y.; Lin, R.-S. Properties of red sandstone-limestone-cement ternary composites: Hydration mechanism, microstructure, and high-temperature damage. Dev. Built Environ. 2024, 17, 100346. [Google Scholar] [CrossRef]
Compound | NaCl | MgCl2 | Na2SO4 | CaCl2 | KCl |
---|---|---|---|---|---|
Content | 24.50 | 1.19 | 4.10 | 1.20 | 0.10 |
Specific Surface Area (m2/g) | ρ0 (g/cm3) | Setting Time (min) | Compressive Strength (MPa) | Flexural Strength (MPa) | |||
---|---|---|---|---|---|---|---|
410 | 3.16 | Initial 161 | Final 219 | 3 d 39.9 | 28 d 64.6 | 3 d 7.1 | 28 d 8.9 |
Materials | CaO | Al2O3 | SiO2 | MgO | Fe2O3 | SO3 | Na2O | K2O | Loss on Ignition |
---|---|---|---|---|---|---|---|---|---|
Mass | 62.79 | 4.52 | 19.96 | 2.48 | 3.69 | 2.4 | 0.31 | 0.82 | 1.06 |
Group | Cement (g) | Seawater (mL) | NGQDs (g) | Dosage of NGQDs (wt.%) |
---|---|---|---|---|
C0 | 1000 | 500 | 0 | 0 |
C1 | 1000 | 500 | 0.25 | 0.025 |
C2 | 1000 | 500 | 0.50 | 0.05 |
C3 | 1000 | 500 | 1.00 | 0.1 |
C4 | 1000 | 500 | 2.00 | 0.2 |
Group | Phase Contents (wt.%). | ||||||
---|---|---|---|---|---|---|---|
Fs | C–S–H | AFt | CH | Cc | C2S | C3S | |
C0 | 2.13 | 55.14 | 4.52 | 8.27 | 21.40 | 4.13 | 4.41 |
C1 | 2.88 | 57.77 | 4.89 | 7.14 | 20.43 | 3.26 | 3.63 |
C2 | 3.50 | 58.95 | 4.01 | 7.76 | 21.40 | 2.25 | 2.13 |
C3 | 4.01 | 59.40 | 4.34 | 7.27 | 20.30 | 2.43 | 2.25 |
C4 | 4.38 | 61.29 | 4.50 | 7.52 | 19.92 | 1.13 | 1.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Hong, T.; Zhou, S.; He, C.; He, H.; Wang, S. Enhancement of Mechanical and Chloride Binding Properties in Seawater Cement Using a Novel Carbon Nanomaterial. Buildings 2024, 14, 4020. https://doi.org/10.3390/buildings14124020
Hu Y, Hong T, Zhou S, He C, He H, Wang S. Enhancement of Mechanical and Chloride Binding Properties in Seawater Cement Using a Novel Carbon Nanomaterial. Buildings. 2024; 14(12):4020. https://doi.org/10.3390/buildings14124020
Chicago/Turabian StyleHu, Yin, Tianyao Hong, Sheng Zhou, Chuang He, Haijie He, and Shifang Wang. 2024. "Enhancement of Mechanical and Chloride Binding Properties in Seawater Cement Using a Novel Carbon Nanomaterial" Buildings 14, no. 12: 4020. https://doi.org/10.3390/buildings14124020
APA StyleHu, Y., Hong, T., Zhou, S., He, C., He, H., & Wang, S. (2024). Enhancement of Mechanical and Chloride Binding Properties in Seawater Cement Using a Novel Carbon Nanomaterial. Buildings, 14(12), 4020. https://doi.org/10.3390/buildings14124020