Machine Learning-Assisted Hardness Prediction of Dispersion-Strengthened Tungsten Alloy
<p>An illustration of the machine learning process for dispersion-strengthened tungsten alloys.</p> "> Figure 2
<p>Diagram illustrating the 10-fold cross-validation used in this work. The blue rectangle represents the training set, and the green rectangle represents the test set.</p> "> Figure 3
<p>A Pearson correlation coefficient diagram of the features affecting the hardness of the dispersion-strengthened tungsten alloy.</p> "> Figure 4
<p>A comparison of R<sup>2</sup> and MAE for the seven regression models.</p> "> Figure 5
<p>SHAP feature importance rank for target variable hardness.</p> "> Figure 6
<p>Predicted hardness vs. actual hardness for RF algorithm model: (<b>a</b>) training set; (<b>b</b>) test set.</p> "> Figure 7
<p>Predicted hardness vs. actual hardness for SVR algorithm model: (<b>a</b>) training set; (<b>b</b>) test set.</p> "> Figure 8
<p>Predicted hardness vs. actual hardness for XGB model: (<b>a</b>) training set; (<b>b</b>) test set.</p> "> Figure 9
<p>Comparison of model metrics of the training sets and test sets for the RF, SVR and XGBoost models: (<b>a</b>) R<sup>2</sup>; (<b>b</b>) MAE.</p> "> Figure 10
<p>The hardness of tungsten alloy varies with the grain size and reinforcement phase content of different carbon oxides: (<b>a</b>) actual values; (<b>b</b>) predicted values.</p> "> Figure 11
<p>A comparison of predicted hardness based on the current RF model with only RC and GZ features used and actual hardness, along with the percentage error.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.2. Feature Selection
2.3. Machine Learning Algorithm Model
3. Results and Discussion
3.1. Feature Analysis
3.2. Machine Learning
3.3. Effect of the Most Important Features on Hardness
4. Conclusions
- A dataset with 107 data entries for the dispersion-strengthened tungsten alloys was constructed with 9 kinds of features affecting the hardness. The reinforcement phase, grain size, and relative density were identified as the key features influencing the hardness according to the SHAP importance feature.
- Seven regression models, including random forest, support vector regression, XGBoost regression, Linear Regression, K-Nearest Neighbors, Gamma Regression, and Decision Tree Regression, were trained. Only the random forest and support vector regression machine learning model exhibit better performance. The hard prediction model of the dispersion-strengthened tungsten alloy was established based on random forest, support vector regression, and XGBoost regression models.
- The random forest model is the most suitable machine learning method for predicting the hardness of dispersion-strengthened tungsten alloys. The R2 values of the training and test sets are 0.93 and 0.80, and the MAE values of the training and test sets are 22.72 and 38.37.
- The hardness was also predicted based on the random forest model, with only content of the reinforcement phase and grain size used. This was to determine their contribution. More than 87% of the data (94 pieces of data) show percentage errors below 15%, indicating the reliability of the current model, even when only the two most important features are used.
- The present work provides the basis of data extraction and modeling for efficient alloy design in the future. Massive efforts should be made in future work to achieve real industry applications by considering other sintering methods, the way to introduce the powder information, other mechanical properties or functional performances, and the hot working process.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chanthapan, S.; Kulkarni, A.; Singh, J.; Haines, C.; Kapoor, D. Sintering of tungsten powder with and without tungsten carbide additive by field assisted sintering technology. Int. J. Refract. Met. Hard Mater. 2012, 31, 114–120. [Google Scholar] [CrossRef]
- Miao, S.; Xie, Z.M.; Zeng, L.F.; Zhang, T.; Fang, Q.F.; Wang, X.P.; Liu, C.S.; Luo, G.N.; Liu, X. The mechanical properties and thermal stability of a nanostructured carbide dispersion strengthened W-0.5 wt.% Ta-0.01 wt.% C alloy. Fusion Eng. Des. 2017, 125, 490–495. [Google Scholar] [CrossRef]
- Lang, S.-T.; Yan, Q.-Z.; Sun, N.-B.; Zhang, X.-X. Preparation of W–TiC alloys from core–shell structure powders synthesized by an improved wet chemical method. Rare Met. 2018, 42, 1378–1386. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, Y.; Guo, B.; Zhu, L. The microstructure and mechanical properties of TiC-reinforced W-matrix composites prepared by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2023, 112, 106158. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, S.; Chen, Y.; Li, Y.; Li, Q.; Zhu, L.; Ma, M. Microstructure and mechanical properties of tungsten matrix composites synergistically reinforced with TiC-ZrC particles prepared by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2024, 123, 106786. [Google Scholar] [CrossRef]
- Wang, M.M.; Deng, H.W.; Wang, H.; Xie, Z.M.; Zhang, T.; Wang, X.P.; Fang, Q.F.; Liu, C.S.; Liu, X. Fabrication and stability of ultrafine ZrC nanoparticles dispersion strengthened sub-micrometer grained W alloy. Fusion Eng. Des. 2021, 169, 112483. [Google Scholar] [CrossRef]
- Hu, W.; Ma, Q.; Ma, Z.; Huang, Y.; Wang, Z.; Liu, Y. Ultra-fine W–Y2O3 composite powders prepared by an improved chemical co-precipitation method and its interface structure after spark plasma sintering. Tungsten 2019, 1, 220–228. [Google Scholar] [CrossRef]
- Min, G.; Oh, Y.; Kim, H.; Shin, E.; Roh, K.-B.; Kim, J.; Kwak, N.; Kim, Y.; Kim, H.C.; Kim, G.-H.; et al. Effect of yttrium doping in tungsten on sinterability and properties as a plasma-facing material. J. Alloys Compd. 2023, 953, 169961. [Google Scholar] [CrossRef]
- Wang, M.; Sun, H.; Pang, B.; Xi, X.; Nie, Z. Structure evolution of Y2O3 and consequent effects on mechanical properties of W–Y2O3 alloy prepared by ball milling and SPS. Mater. Sci. Eng. A 2022, 832, 142448. [Google Scholar] [CrossRef]
- Xie, Z.M.; Liu, R.; Miao, S.; Zhang, T.; Wang, X.P.; Fang, Q.F.; Liu, C.S.; Luo, G.N. Effect of high temperature swaging and annealing on the mechanical properties and thermal conductivity of W–Y2O3. J. Nucl. Mater. 2015, 464, 193–199. [Google Scholar] [CrossRef]
- Kurishita, H.; Arakawa, H.; Matsuo, S.; Sakamoto, T.; Kobayashi, S.; Nakai, K.; Pintsuk, G.; Linke, J.; Tsurekawa, S.; Yardley, V.; et al. Development of Nanostructured Tungsten Based Materials Resistant to Recrystallization and/or Radiation Induced Embrittlement. Mater. Trans. 2013, 54, 456–465. [Google Scholar] [CrossRef]
- Ding, X.-Y.; Luo, L.-M.; Chen, H.-Y.; Luo, G.-N.; Zhu, X.-Y.; Zan, X.; Cheng, J.-G.; Wu, Y.-C. Fabrication of W–1 wt.% TiC composites by spark plasma sintering. Fusion Eng. Des. 2015, 92, 29–34. [Google Scholar] [CrossRef]
- Yar, M.A.; Wahlberg, S.; Bergqvist, H.; Salem, H.G.; Johnsson, M.; Muhammed, M. Spark plasma sintering of tungsten–yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization. J. Nucl. Mater. 2011, 412, 227–232. [Google Scholar] [CrossRef]
- Kurishita, H.; Amano, Y.; Kobayashi, S.; Nakai, K.; Arakawa, H.; Hiraoka, Y.; Takida, T.; Takebe, K.; Matsui, H. Development of ultra-fine grained W–TiC and their mechanical properties for fusion applications. J. Nucl. Mater. 2007, 367–370, 1453–1457. [Google Scholar] [CrossRef]
- Wang, R.; Xie, Z.M.; Liu, R.; Gao, R.; Yang, J.F.; Fang, Q.F.; Zhang, T.; Song, J.P.; Wang, X.P.; Hao, T.; et al. Effects of ZrC content on the mechanical properties and microstructures of hot-rolled W–ZrC composites. Nucl. Mater. Energy 2019, 20, 100705. [Google Scholar] [CrossRef]
- Huang, G.; Guo, Y.; Chen, Y.; Nie, Z. Application of Machine Learning in Material Synthesis and Property Prediction. Materials 2023, 16, 5977. [Google Scholar] [CrossRef]
- He, J.; Li, Z.; Lin, J.; Zhao, P.; Zhang, H.; Zhang, F.; Wang, L.; Cheng, X. Machine learning-assisted design of refractory high-entropy alloys with targeted yield strength and fracture strain. Mater. Des. 2024, 246, 113326. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, H.; Zhang, Z.; Chen, P.; He, Y.; Guo, L.; Ding, Z.; Chen, J.; Wang, C.; He, Y. Hardness-guided machine learning for tungsten alloy strength prediction. Mater. Today Commun. 2024, 39, 109070. [Google Scholar] [CrossRef]
- Rajput, R.; Raut, A.; Gangi Setti, S. Prediction of mechanical properties of aluminium metal matrix hybrid composites synthesized using Stir casting process by Machine learning. Mater. Today Proc. 2022, 59, 1735–1742. [Google Scholar] [CrossRef]
- Liu, H.-X.; Yang, Y.-F.; Cai, Y.-F.; Wang, C.-H.; Lai, C.; Hao, Y.-W.; Wang, J.-S. Prediction of sintered density of binary W(Mo) alloys using machine learning. Rare Met. 2023, 42, 2713–2724. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, Y.; Wang, D.; Jin, X.; Ding, X. Effect of TaC Content on Microstructure and Properties of W-TaC Composites. Materials 2022, 16, 186. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.M.; Zhang, T.; Liu, R.; Fang, Q.F.; Miao, S.; Wang, X.P.; Liu, C.S. Grain growth behavior and mechanical properties of zirconium micro-alloyed and nano-size zirconium carbide dispersion strengthened tungsten alloys. Int. J. Refract. Met. Hard Mater. 2015, 51, 180–187. [Google Scholar] [CrossRef]
- Xie, Z.M.; Liu, R.; Fang, Q.F.; Zhou, Y.; Wang, X.P.; Liu, C.S. Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten. J. Nucl. Mater. 2014, 444, 175–180. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, R.; Fang, Q.; Zhang, T.; Jiang, Y.; Wang, X.; Liu, C. Microstructure and Mechanical Properties of Nano-Size Zirconium Carbide Dispersion Strengthened Tungsten Alloys Fabricated by Spark Plasma Sintering Method. Plasma Sci. Technol. 2015, 17, 1066–1071. [Google Scholar] [CrossRef]
- Xiao, F.; Barriere, T.; Cheng, G.; Miao, Q. A review of liquid-liquid method for the elaboration and modelling of reinforced tungsten alloys with various sintering processes. J. Alloys Compd. 2023, 940, 168752. [Google Scholar] [CrossRef]
- Wang, Y.K.; Miao, S.; Xie, Z.M.; Liu, R.; Zhang, T.; Fang, Q.F.; Hao, T.; Wang, X.P.; Liu, C.S.; Liu, X.; et al. Thermal stability and mechanical properties of HfC dispersion strengthened W alloys as plasma-facing components in fusion devices. J. Nucl. Mater. 2017, 492, 260–268. [Google Scholar] [CrossRef]
- Tan, X.-Y.; Luo, L.-M.; Lu, Z.-L.; Luo, G.-N.; Zan, X.; Cheng, J.-G.; Wu, Y.-C. Development of tungsten as plasma-facing materials by doping tantalum carbide nanoparticles. Powder Technol. 2015, 269, 437–442. [Google Scholar] [CrossRef]
- Miao, S.; Xie, Z.M.; Yang, X.D.; Liu, R.; Gao, R.; Zhang, T.; Wang, X.P.; Fang, Q.F.; Liu, C.S.; Luo, G.N.; et al. Effect of hot rolling and annealing on the mechanical properties and thermal conductivity of W-0.5wt.% TaC alloys. Int. J. Refract. Met. Hard Mater. 2016, 56, 8–17. [Google Scholar] [CrossRef]
- Luo, L.-M.; Tan, X.-Y.; Chen, H.-Y.; Luo, G.-N.; Zhu, X.-Y.; Cheng, J.-G.; Wu, Y.-C. Preparation and characteristics of W–1wt.% TiC alloy via a novel chemical method and spark plasma sintering. Powder Technol. 2015, 273, 8–12. [Google Scholar] [CrossRef]
- Iqbal, Z.; Saheb, N.; Shuaib, A.R. W-25%Re-HfC composite materials for Pin tool material applications: Synthesis and consolidation. J. Alloys Compd. 2016, 674, 189–199. [Google Scholar] [CrossRef]
- Iqbal, Z.; Merah, N.; Nouari, S.; Shuaib, A.R.; Al-Aqeeli, N. Investigation of wear characteristics of spark plasma sintered W-25wt%Re alloy and W-25wt%Re-3.2wt%HfC composite. Tribol. Int. 2017, 116, 129–137. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Z.; Ding, Q.; Zhong, M.; Arshad, K. Effect of rare earth elements on the consolidation behavior and microstructure of tungsten alloys. Int. J. Refract. Met. Hard Mater. 2015, 48, 19–23. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, L.-M.; Zhu, X.-Y.; Chen, H.-Y.; Chen, J.-L.; Zan, X.; Cheng, J.-G.; Wu, Y.-C. Effect of doped Lu2O3 on the microstructures and properties of tungsten alloy prepared by spark plasma sintering. J. Nucl. Mater. 2015, 456, 316–320. [Google Scholar] [CrossRef]
- Ye, J.; Xu, L.; Zhao, Y.; Li, Z.; Yu, H.; Wei, S.; Shen, H. DBTT and tensile properties of as-sintered tungsten alloys reinforced by yttrium-zirconium oxide. J. Nucl. Mater. 2023, 578, 154318. [Google Scholar] [CrossRef]
- Yar, M.A.; Wahlberg, S.; Bergqvist, H.; Salem, H.G.; Johnsson, M.; Muhammed, M. Chemically produced nanostructured ODS–lanthanum oxide–tungsten composites sintered by spark plasma. J. Nucl. Mater. 2011, 408, 129–135. [Google Scholar] [CrossRef]
- Yar, M.A.; Wahlberg, S.; Abuelnaga, M.O.; Johnsson, M.; Muhammed, M. Processing and sintering of yttrium-doped tungsten oxide nanopowders to tungsten-based composites. J. Mater. Sci. 2014, 49, 5703–5713. [Google Scholar] [CrossRef]
- Yao, G.; Liu, X.; Zhao, Z.; Luo, L.; Cheng, J.; Zan, X.; Wang, Z.; Xu, Q.; Wu, Y. Excellent performance of W–Y2O3 composite via powder process improvement and Y2O3 refinement. Mater. Des. 2021, 212, 110249. [Google Scholar] [CrossRef]
- Xiao, F.; Barriere, T.; Cheng, G.; Miao, Q.; Zuo, S.; Wei, S.; Xu, L. Extremely uniform nanosized oxide particles dispersion strengthened tungsten alloy with high tensile and compressive strengths fabricated involving liquid-liquid method. J. Alloys Compd. 2021, 878, 160335. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Wei, S.; Pan, K.; Wu, X.; Li, Q. Effect of ZrO2 content on microstructure and mechanical properties of W alloys fabricated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2019, 79, 79–89. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Wei, S.; Pan, K.; Aindow, M.; Yang, Y. Microstructure and preparation of an ultra-fine-grained W-Al 2 O 3 composite via hydrothermal synthesis and spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2018, 72, 149–156. [Google Scholar] [CrossRef]
- Liu, R.; Xie, Z.M.; Fang, Q.F.; Zhang, T.; Wang, X.P.; Hao, T.; Liu, C.S.; Dai, Y. Nanostructured yttria dispersion-strengthened tungsten synthesized by sol–gel method. J. Alloys Compd. 2016, 657, 73–80. [Google Scholar] [CrossRef]
- Lee, E.S.; Heo, Y.J.; Kim, J.Y.; Choi, W.; Byun, J.; Oh, S.-T. Fabrication and microstructure characterization of W-La2O3-Y2O3 composites by spark plasma sintering and hot isostatic pressing. Int. J. Refract. Met. Hard Mater. 2024, 119, 106533. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, K.H.; Kim, E.-P.; Cheong, D.-I.; Hong, S.H. Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process. Int. J. Refract. Met. Hard Mater. 2009, 27, 842–846. [Google Scholar] [CrossRef]
- Kim, J.H.; Ji, M.; Choi, W.J.; Byun, J.; Lee, Y.-I. Effect of Y2O3 nanoparticles on enhancing microstructure and mechanical properties of oxide dispersion strengthened W alloy. Int. J. Refract. Met. Hard Mater. 2024, 119, 106534. [Google Scholar] [CrossRef]
- Kim, J.H.; Ji, M.; Byun, J.; Jeong, Y.-K.; Oh, S.-T.; Lee, Y.-I. Fabrication of W-Y2O3 composites by ultrasonic spray pyrolysis and spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2021, 99, 105606. [Google Scholar] [CrossRef]
- Johnson, J.L. Enhanced sintering of tungsten. Int. J. Refract. Met. Hard Mater. 2023, 110, 106017. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, N.; Ma, Z.; Liu, C.; Guo, Q.; Yamauchi, Y.; Alamri, H.R.; Alothman, Z.A.; Shahriar, A.; Hossain, M.; et al. Synthesis of nanosized composite powders via a wet chemical process for sintering high performance W-Y 2 O 3 alloy. Int. J. Refract. Met. Hard Mater. 2017, 69, 266–272. [Google Scholar] [CrossRef]
- Ding, X.-Y.; Luo, L.-M.; Tan, X.-Y.; Luo, G.-N.; Li, P.; Zan, X.; Cheng, J.-G.; Wu, Y.-C. Microstructure and properties of tungsten–samarium oxide composite prepared by a novel wet chemical method and spark plasma sintering. Fusion Eng. Des. 2014, 89, 787–792. [Google Scholar] [CrossRef]
- Ding, X.-Y.; Luo, L.-M.; Lu, Z.-L.; Luo, G.-N.; Zhu, X.-Y.; Cheng, J.-G.; Wu, Y.-C. Chemically produced tungsten–praseodymium oxide composite sintered by spark plasma sintering. J. Nucl. Mater. 2014, 454, 200–206. [Google Scholar] [CrossRef]
- Ding, X.-Y.; Luo, L.-M.; Chen, H.-Y.; Zhu, X.-Y.; Zan, X.; Cheng, J.-G.; Wu, Y.-C. Chemical Synthesis and Oxide Dispersion Properties of Strengthened Tungsten via Spark Plasma Sintering. Materials 2016, 9, 879. [Google Scholar] [CrossRef]
- Davletshin, A.; Korznikova, E.A.; Kistanov, A.A. Machine Learning Prediction of the Corrosion Rate of Zinc-Based Alloys Containing Copper, Lithium, Magnesium, and Silver. J. Phys. Chem. Lett. 2024, 16, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Wang, Y.; Li, J.; Li, Y.; Wang, L.; Zhang, J. Machine Learning Aided Prediction and Design for the Mechanical Properties of Magnesium Alloys. Met. Mater. Int. 2023, 30, 593–606. [Google Scholar] [CrossRef]
Feature Name | Feature Annotation | Feature Range |
---|---|---|
RC (wt%) | Content of reinforcement phase | 0–11.71 |
RV (GPa) | Vickers hardness of reinforcement phase | 0–25.005 |
RMP (°C) | Melting point of reinforcement phase | 0–3920 |
RVEN | Valence electron number of reinforcement phase | 0–10.8 |
ST (°C) | Sintering temperature | 1100–2100 |
T (min) | Sintering time | 0–30 |
P (MPa) | Pressure | 30–85 |
RD (%) | Relative density | 83.2–99.9 |
GZ (μm) | Grain size | 0.36–22.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, S.; Chen, C.; Zhang, C.; Wei, S.; Han, B.; Wang, C.; Pan, K.; Xu, L.; Mao, F.; Yu, H. Machine Learning-Assisted Hardness Prediction of Dispersion-Strengthened Tungsten Alloy. Metals 2025, 15, 294. https://doi.org/10.3390/met15030294
Dai S, Chen C, Zhang C, Wei S, Han B, Wang C, Pan K, Xu L, Mao F, Yu H. Machine Learning-Assisted Hardness Prediction of Dispersion-Strengthened Tungsten Alloy. Metals. 2025; 15(3):294. https://doi.org/10.3390/met15030294
Chicago/Turabian StyleDai, Shaowu, Chong Chen, Cong Zhang, Shizhong Wei, Beibei Han, Changji Wang, Kunming Pan, Liujie Xu, Feng Mao, and Hua Yu. 2025. "Machine Learning-Assisted Hardness Prediction of Dispersion-Strengthened Tungsten Alloy" Metals 15, no. 3: 294. https://doi.org/10.3390/met15030294
APA StyleDai, S., Chen, C., Zhang, C., Wei, S., Han, B., Wang, C., Pan, K., Xu, L., Mao, F., & Yu, H. (2025). Machine Learning-Assisted Hardness Prediction of Dispersion-Strengthened Tungsten Alloy. Metals, 15(3), 294. https://doi.org/10.3390/met15030294