Transcription Factors Are Involved in Wizened Bud Occurrence During the Growing Season in the Pyrus pyrifolia Cultivar ‘Sucui 1’
<p>Numbers of differentially expressed genes (DEGs) (<b>A</b>) and types and proportions of differentially expressed transcription factors (<b>B</b>) in normal flower buds versus wizened flower buds of <span class="html-italic">Pyrus pyrifolia</span> cultivar ‘Sucui 1’, as determined by a transcriptome analysis. The number indicates the number of differentially expressed transcription factor genes and the percentage represents the proportion of the family members of the total differentially expressed transcription factors. A list of abbreviations is given in <a href="#app1-epigenomes-08-00040" class="html-app">Supplementary Materials, Table S3</a>.</p> "> Figure 2
<p>The heat maps of transcription factor expression in different flower buds of <span class="html-italic">Pyrus pyrifolia</span> cultivar ‘Sucui 1’ based on transcriptome sequencing results. CKM, normal flower buds; SM, wizened flower buds. A list of abbreviations is given in <a href="#app1-epigenomes-08-00040" class="html-app">Supplementary Materials, Table S3</a>.</p> "> Figure 3
<p>Distribution of methylation levels in different gene regions of transcription factors in flower buds of <span class="html-italic">Pyrus pyrifolia</span> cultivar ‘Sucui 1’ based on the whole-genome bisulfite sequencing result. CKM, normal flower buds; SM, wizened flower buds; 2K, 2 kilobase; TSS, transcription initiation site; TTS, transcription termination site.</p> "> Figure 4
<p>The numbers of differentially methylated regions (DMRs) in two flower buds of the <span class="html-italic">Pyrus pyrifolia</span> cultivar ‘Sucui 1’ based on the whole-genome bisulfite sequencing results. TFs, transcription factors.</p> "> Figure 5
<p>The number of differentially methylated transcription factors (TFs, (<b>A</b>)), their family distribution (<sup>m</sup>CHH type, (<b>B</b>)) and the heat maps of DMRs in DMGs from TFs (<b>C</b>) in different buds of the <span class="html-italic">Pyrus pyrifolia</span> cultivar ‘Sucui 1’ based on the whole-genome bisulfite sequencing results. CKM, normal flower buds; SM, wizened flower buds. A list of abbreviations is given in <a href="#app1-epigenomes-08-00040" class="html-app">Supplementary Materials, Table S3</a>.</p> "> Figure 6
<p>The fragments per kilo-base per million read values (FPKM valued, blue points) and DNA methylation levels of <sup>m</sup>CHH-type differentially methylated regions (red points) in transcription factor genes in different buds of <span class="html-italic">Pyrus pyrifolia</span> cultivar ‘Sucui 1’ based on transcriptome sequencing and whole-genome bisulfite sequencing results, respectively. CKM, normal flower buds; SM, wizened flower buds.</p> "> Figure 7
<p>IGV software depiction of the methylation states of differentially methylated regions of the 10 genes in wizened flower buds (SM) versus normal flower buds (CKM) of the <span class="html-italic">Pyrus pyrifolia</span> cultivar ‘Sucui 1’ as assessed by whole-genome bisulfite sequencing. DMRs are marked with green boxes; [0–1.00] indicates the methylation level range of <sup>m</sup>CHH sites.</p> "> Figure 8
<p>qPCR analysis of the transcription levels of differentially methylated region-associated transcription factor genes in different buds of the <span class="html-italic">Pyrus pyrifolia</span> cultivar ‘Sucui 1’. <span class="html-italic">PbEF-1α</span> was selected as an internal control gene for normalization. The experimental data were tested via SPSS 26 (IBM, Armonk, NY, USA), and values are shown as the means ± standard deviations (SDs). SDs of the means of three biological replicates are displayed as vertical bars. The significant differences (** <span class="html-italic">p</span> < 0.01) in gene expression data between normal flower buds (CKM) and wizened flower buds (SM) were analyzed using Student’s <span class="html-italic">t</span>-tests.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Transcriptionally Differential TFs from Two Types of Pear Flower Buds
2.2. Differential Methylation Regions in TFs of the Two Types of Pear Flower Buds
2.3. Joint Analysis and Validation of Methylation and Transcriptome Data
3. Discussion
3.1. TFs Involved in the Wizening of Pear Flower Buds
3.2. DNA Methylation Changes for Wizened Buds and Their Relation with the Transcription of Various Genes
4. Conclusions
5. Materials and Methods
5.1. Plant Material
5.2. RNA Sequencing and Data Analysis
5.3. WGBS and Data Analysis
5.4. Combined Transcriptome and Methylome Analysis
5.5. Quantitative Real-Time PCR (qPCR)
5.6. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.Y.; Xue, C.; Hu, H.J.; Li, J.M.; Xue, Y.S.; Wang, R.Z.; Fan, J.; Zou, C.; Tao, S.T.; Qin, M.F.; et al. Genome-wide association studies provide insights into the genetic determination of fruit traits of pear. Nat. Commun. 2021, 12, 1144. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, A.; Ito, A.; Sugiura, T.; Yamane, H. How is global warming affecting fruit tree blooming? “flowering (dormancy) disorder” in Japanese pear (Pyrus pyrifolia) as a case study. Front. Plant Sci. 2022, 12, 787638. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Shi, C.; Hussain, S.B.; Li, M.; Fan, J.; Chen, Q.; Zhang, J.; Liu, Y.; Yang, X.; Hu, H. Morpho-physiological and transcriptome analyses provide insights into the wizened bud formation in pear trees. Agronomy 2022, 12, 484. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.P.; Gu, C.; Tao, S.T.; Wang, D.S.; Guo, X.P.; Qi, K.J.; Zhang, S.L. Transcriptome profiling reveals differentially expressed genes associated with wizened flower bud formation in Chinese pear (Pyrus × bretschneideri Rehd.). J. Hortic. Sci. Biotech. 2016, 91, 227–235. [Google Scholar] [CrossRef]
- Yang, S.; Bai, M.D.; Hao, G.W.; Zhang, X.W.; Guo, H.P.; Fu, B.C.; Li, L.L. Effect of endogenous hormone concentrations on wizened bud in pear. J. Am. Pomol. Soc. 2020, 74, 255–263. [Google Scholar]
- Agarwal, G.; Kudapa, H.; Ramalingam, A.; Choudhary, D.; Sinha, P.; Garg, V.; Singh, V.K.; Patil, G.B.; Pandey, M.K.; Nguyen, H.T.; et al. Epigenetics and epigenomics: Underlying mechanisms, relevance, and implications in crop improvement. Funct. Integr. Genom. 2020, 20, 739–761. [Google Scholar] [CrossRef]
- Ibrar, D.; Ahmad, R.; Hasnain, Z.; Gul, S.; Rais, A.; Khan, S. Epigenetic-based control of flowering and seed development in plants: A review. Plant Breed. 2023, 142, 732–744. [Google Scholar] [CrossRef]
- Xing, L.B.; Li, Y.M.; Qi, S.Y.; Zhang, C.G.; Ma, W.C.; Zuo, X.Y.; Liang, J.Y.; Gao, C.; Jia, P.; Shah, K.; et al. Comparative RNA-Sequencing and DNA methylation analyses of apple (Malus domestica Borkh.) buds with diverse flowering capabilities reveal novel insights into the regulatory mechanisms of flower bud formation. Plant Cell Physiol. 2019, 60, 1702–1721. [Google Scholar] [CrossRef]
- Shi, M.M.; Wang, C.L.; Wang, P.; Zhang, M.L.; Liao, W.B. Methylation in DNA, histone, and RNA during flowering under stress condition: A review. Plant Sci. 2022, 324, 111431. [Google Scholar] [CrossRef]
- Heisler, M.G.; Jönsson, H.; Wenkel, S.; Kaufmann, K.; Jönsson, H. Context-specific functions of transcription factors controlling plant development: From leaves to flowers. Curr. Opin. Plant Biol. 2022, 69, 102262. [Google Scholar] [CrossRef]
- Chen, D.; Yan, W.; Fu, L.Y.; Kaufmann, K. Architecture of gene regulatory networks controlling flower development in Arabidopsis thaliana. Nat. Commun. 2018, 9, 4534. [Google Scholar] [CrossRef] [PubMed]
- Theiβen, G.; Melzer, R.; Rümpler, F. MADS-domain transcription factors and the floral quartet model off lower development: Linking plant development and evolution. Development 2016, 143, 3259–3271. [Google Scholar]
- Liu, Y.X.; Kong, J.; Li, T.Z.; Wang, Y.; Wang, A.; Han, Z.H. Isolation and characterization of an APETALA1-Like gene from pear (Pyrus pyrifolia). Plant Mol. Biol. Rep. 2013, 31, 1031–1039. [Google Scholar] [CrossRef]
- Matías-Hernández, L.; Aguilar-Jaramillo, A.E.; Cigliano, R.A.; Sanseverino, W.; Pelaz, S. Flowering and trichome development share hormonal and transcription factor regulation. J. Exp. Bot. 2016, 67, 1209–1219. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Ding, C.Q.; Hu, H.T.; Dong, G.J.; Zhang, G.H.; Qian, Q.; Ren, D.Y. Molecular events of rice AP2/ERF transcription factors. Int. J. Mol. Sci. 2022, 23, 12013. [Google Scholar] [CrossRef]
- Feng, S.Q.; Sun, S.S.; Chen, X.L.; Wu, S.J.; Wang, D.Y.; Chen, X.S. PyMYB10 and PyMYB10.1 interact with bHLH to enhance anthocyanin accumulation in pears. PLoS ONE 2015, 10, e0142112. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhou, H.Y.; He, Y.R.; Shen, X.P.; Lin, S.; Huang, L. MYB transcription factors and their roles in the male reproductive development of flowering plants. Plant Sci. 2023, 335, 111811. [Google Scholar] [CrossRef]
- Dong, X.G.; Wang, Z.; Tian, L.M.; Zhang, Y.; Qi, D.; Huo, H.L.; Xu, J.Y.; Li, Z.; Liao, R.; Shi, M.; et al. De novo assembly of a wild pear (Pyrus betuleafolia) genome. Plant Biotechn. J. 2020, 18, 581–595. [Google Scholar] [CrossRef]
- Kurokura, T.; Mimida, N.; Battey, N.H.; Hytönen, T. The regulation of seasonal flowering in the Rosaceae. J. Exp. Bot. 2013, 64, 4131–4141. [Google Scholar] [CrossRef]
- Wils, C.R.; Kaufmann, K. Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. BBA Gene Regul. Mech. 2017, 1860, 95–105. [Google Scholar] [CrossRef]
- He, W.G.; Chen, Y.C.; Gao, M.; Zhao, Y.X.; Xu, Z.L.; Cao, P.; Zhang, Q.Y.; Jiao, Y.L.; Li, H.S.; Wu, L.W.; et al. Transcriptome analysis of Litsea cubeba floral buds reveals the role of hormones and transcription factors in the differentiation process. G3-Genes Genom. Genet. 2018, 8, 1103–1114. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Y.; Tan, S.S.; Tan, G.F.; Luo, Y.; Sun, B.; Zhang, Y.; Chen, Q.; Wang, Y.; Zhang, F.; Zhang, Y.T.; et al. Transcriptome analysis reveals important transcription factor families and reproductive biological processes of flower development in celery (Apium graveolens L.). Agronomy 2020, 10, 653. [Google Scholar] [CrossRef]
- Feng, K.; Hou, X.L.; Xing, G.M.; Liu, J.X.; Duan, A.Q.; Xu, Z.S.; Li, M.Y.; Zhuang, J.; Xiong, A.S. Advances in AP2/ERF super-family transcription factors in plant. Crit. Rev. Biotechnol. 2020, 40, 750–776. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Chen, D.; Kaufmann, K. Molecular mechanisms of floral organ specification by MADS domain proteins. Curr. Opin. Plant Biol. 2016, 29, 154–162. [Google Scholar] [CrossRef]
- Zhang, M.; Kimatu, J.N.; Xu, K.; Liu, B. DNA cytosine methylation in plant development. J. Genet. Genom. 2010, 37, 1–12. [Google Scholar] [CrossRef]
- Yang, H.; Chang, F.; You, C.; Cui, J.; Zhu, G.; Wang, L.; Zheng, Y.; Qi, J.; Ma, H. Whole-genome DNA methylation patterns and complex associations with gene structure and expression during flower development in Arabidopsis. Plant J. 2015, 81, 268–281. [Google Scholar] [CrossRef]
- Bai, S.L.; Saito, T.; Sakamoto, D.; Ito, A.; Fujii, H.; Moriguchi, T. Transcriptome analysis of Japanese pear (Pyrus pyrifolia Nakai) flower buds transitioning through endodormancy. Plant Cell Physiol. 2013, 54, 1132–1151. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.F.; Zhou, X.Y.; Lin, J.; Liu, C.X.; Li, X.G.; Chang, Y.H. Single-base resolution methylome of different ecotype from Pyrus betulaefolia reveals epigenomic changes in response to salt stress. Sci. Hortic. 2022, 306, 111437. [Google Scholar] [CrossRef]
- Zou, J.J.; Cai, X.; Yang, J.; Zeng, X.L.; Liu, D.X.; Huang, S.M.; Chen, X.; Yang, Q.Y.; Wang, C.Y.; Chen, H.G. DNA hypomethylation mediates flower opening and senescence in sweet osmanthus through auxin and ethylene responsive pathways. Postharvest Biol. Tech. 2023, 198, 112250. [Google Scholar] [CrossRef]
- Finnegan, E.J.; Kovac, K.A.; Jaligot, E.; Sheldon, C.C.; Peacock, W.J.; Denni, E.S. The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. Plant J. 2005, 44, 420–432. [Google Scholar] [CrossRef]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ 599 preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Jiao, C.; Sun, H.H.; Rosli, H.G.; Pombo, M.A.; Zhang, P.F.; Banf, M.; Dai, X.B.; Martin, G.B.; Giovannoni, J.J.; et al. iTAK: A program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol. Plant 2016, 9, 1667–1670. [Google Scholar] [CrossRef] [PubMed]
- Krueger, F.; Andrews, S.R. Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 2011, 27, 1571–1572. [Google Scholar] [CrossRef]
- Akalin, A.; Kormaksson, M.; Li, S.; Garrett-bakelman, F.E.; Figueroa, M.E.; Melnick, A.; Mason, C.E. MethylKit: A comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012, 13, R87. [Google Scholar] [CrossRef]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef]
- Li, H.; Liu, W.; Yang, Q.S.; Lin, J.; Chang, Y.H. Isolation and comparative analysis of two Na+/H+ antiporter NHX2 genes from Pyrus betulaefolia. Plant Mol. Biol. Rep. 2018, 36, 439–450. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Transcription Factor Family * | The Number of DTFs | Up Regulated | Down Regulated |
---|---|---|---|
AP2/ERF-AP2 | 5 | 0 | 5 |
AP2/ERF-ERF | 25 | 21 | 4 |
ARID | 2 | 0 | 2 |
AUX/IAA | 5 | 1 | 4 |
B3 | 9 | 5 | 4 |
B3-ARF | 6 | 0 | 6 |
BES1 | 2 | 0 | 2 |
bHLH | 25 | 13 | 12 |
bZIP | 9 | 7 | 2 |
C2C2-CO-like | 1 | 1 | 0 |
C2C2-Dof | 3 | 1 | 2 |
C2C2-GATA | 6 | 1 | 5 |
C2C2-YABBY | 7 | 0 | 7 |
C2H2 | 19 | 9 | 10 |
C3H | 2 | 1 | 1 |
GARP-G2-like | 6 | 2 | 4 |
GNAT | 3 | 3 | 0 |
GRAS | 17 | 10 | 7 |
GRF | 5 | 0 | 5 |
HB-BELL | 3 | 0 | 3 |
HB-HD-ZIP | 11 | 5 | 6 |
HB-KNOX | 3 | 1 | 2 |
HB-other | 1 | 1 | 0 |
HMG | 4 | 0 | 4 |
HSF | 5 | 4 | 1 |
IWS1 | 1 | 1 | 0 |
Jumonji | 2 | 2 | 0 |
LIM | 1 | 0 | 1 |
LOB | 6 | 4 | 2 |
MADS-MIKC | 2 | 1 | 1 |
mTERF | 1 | 0 | 1 |
MYB | 25 | 16 | 9 |
MYB-related | 8 | 4 | 4 |
NAC | 18 | 13 | 5 |
NF-YA | 1 | 0 | 1 |
PHD | 2 | 1 | 1 |
PLATZ | 1 | 1 | 0 |
RWP-RK | 2 | 2 | 0 |
SBP | 2 | 0 | 2 |
SET | 1 | 0 | 1 |
SNF2 | 2 | 0 | 2 |
SRS | 2 | 0 | 2 |
SWI/SNF-BAF60b | 2 | 0 | 2 |
TAZ | 1 | 1 | 0 |
TCP | 4 | 0 | 4 |
Tify | 5 | 5 | 0 |
TRAF | 3 | 2 | 1 |
Trihelix | 2 | 1 | 1 |
TUB | 2 | 0 | 2 |
WRKY | 22 | 22 | 0 |
Zf-HD | 9 | 0 | 9 |
Others | 9 | 4 | 5 |
Total | 320 | 166 | 154 |
Group | Methylation Type | Hypermethylation | Hypomethylation | ||
---|---|---|---|---|---|
Gene Region * | Promoter Region ** | Gene Region * | Promoter Region ** | ||
CKM vs. SM | mC | 9 (9) | 2 (2) | 7 (7) | 3 (3) |
mCG | 1 (1) | 1 (1) | 1 (1) | 1 (1) | |
mCHG | 3 (3) | 2 (2) | 3 (3) | 3 (3) | |
mCHH | 54 (53) | 19 (18) | 36 (36) | 19 (19) |
Gene Id | Regulated Type | Chromosome | Start | End | Width | Methylation Point Number | CKM Methylaion Level | SM Methylaion Level |
---|---|---|---|---|---|---|---|---|
GWHGAAYT001858 | Hyper-Down | Chr01 | 15599546 | 15599577 | 32 | 15 | 0.09 | 0.28 |
GWHGAAYT035774 | Hyper-Down | Chr03 | 15306247 | 15306341 | 95 | 20 | 0.03 | 0.13 |
GWHGAAYT039561 | Hyper-Down | Chr04 | 22432346 | 22432441 | 96 | 19 | 0.11 | 0.24 |
GWHGAAYT009204 | Hyper-Down | Chr11 | 30365284 | 30365413 | 130 | 8 | 0.06 | 0.20 |
GWHGAAYT018155 | Hyper-Down | Chr14 | 15904276 | 15904336 | 61 | 8 | 0.13 | 0.32 |
GWHGAAYT019397 | Hyper-Down | Chr14 | 24878942 | 24879068 | 127 | 10 | 0.04 | 0.19 |
GWHGAAYT028370 | Hyper-Down | Chr17 | 3498720 | 3498755 | 36 | 6 | 0.04 | 0.25 |
GWHGAAYT034057 | Hypo-Up | Chr02 | 25937363 | 25937466 | 104 | 13 | 0.26 | 0.13 |
GWHGAAYT003822 | Hypo-Up | Chr10 | 17456977 | 17457036 | 60 | 6 | 0.21 | 0.09 |
GWHGAAYT020193 | Hypo-Up | Chr15 | 4683725 | 4683873 | 149 | 34 | 0.26 | 0.13 |
Gene Name | Gene ID | Gene Annotation | Fold Change (CKM vs. SM) * | ||
---|---|---|---|---|---|
Methylation | Transcriptome | qPCR | |||
PpZFP90 | GWHGAAYT028370 | Zinc finger protein 90-like | 6.88 | −3.10 | −1.57 |
PpLHW | GWHGAAYT035774 | Transcription factor LHW-like | 5.23 | −2.39 | −2.09 |
PpZF-HD11 | GWHGAAYT019397 | Zinc-finger homeodomain protein 11-like | 4.84 | −3.73 | −2.44 |
PpERF4 | GWHGAAYT009204 | Ethylene-responsive transcription factor 4 | 3.29 | −3.42 | −2.74 |
PpMADS6 | GWHGAAYT001858 | MADS-box transcription factor 6-like | 3.22 | −2.31 | −2.37 |
PpERF061 | GWHGAAYT018155 | Ethylene-responsive transcription factor ERF061 | 2.41 | −2.76 | −2.92 |
PpbHLH40 | GWHGAAYT039561 | Transcription factor bHLH140-like | 2.12 | −6.08 | −2.84 |
PpERF011 | GWHGAAYT020193 | Ethylene-responsive transcription factor ERF011 | −2.05 | 2.65 | 2.12 |
PpbHLH130 | GWHGAAYT034057 | Transcription factor bHLH130 | −2.10 | 2.42 | 4.68 |
PpMYB308 | GWHGAAYT003822 | MYB-related protein 308-like | −2.41 | 1.85 | 5.22 |
Primer Name | Forward Primer Sequence (5′-3′) | Reverse Primer Sequence (5′-3′) | Product Length (bp) |
---|---|---|---|
GWHGAAYT001858/MADS | TGAACAAAATCCTCGAGCGG | CGTTGAAGAGCCTCGTGTTTG | 127 |
GWHGAAYT009204/AP2/ERF | CCGTCAACATCGCCAACA | GGGGGGTTTTGAGAGTGAGG | 144 |
GWHGAAYT019397/zf-HD | CTCAGCCACGTCATCGCAA | CCTCCACCGGCATTATAGTCA | 147 |
GWHGAAYT020193/AP2/ERF | TCACCGCCAAGAAAAGCA | TGTAGGAGCCGAGCCAAAT | 110 |
GWHGAAYT028370/C2H2 | ATCACGCTGGTTATGGATTACG | TGTGCCCGAACATCGCTCT | 159 |
GWHGAAYT034057/bHLH | TTTTGAGATGCCTGCTATGGA | TGCCGTGTTTGTTTGCTTG | 190 |
GWHGAAYT035774/LHW | GGAGTTGCGTGATATTGTGCC | AATCTTCGACTCTCCCGTTTGT | 139 |
GWHGAAYT039561/bHLH | TCAGATATGGCTTCACCAGACC | TGAAGCAGCAGCACTAACGAA | 241 |
GWHGAAYT003822/MYB | CCTGGAAGAACAGACAACGAGA | CAGAAGCGGCAGCAAAAGA | 151 |
GWHGAAYT018155/AP2/ERF | ACGGGAAGGTTGTGAAGATGG | TGTAACAGGACGGCGGTGAG | 147 |
GWHGAAYT023062/PpActin | AATGAACTTCGTGTTGCTCCTG | CACCTGAGTCCAGCACAATACC | 196 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Kan, J.; Liu, C.; Yang, Q.; Lin, J.; Li, X. Transcription Factors Are Involved in Wizened Bud Occurrence During the Growing Season in the Pyrus pyrifolia Cultivar ‘Sucui 1’. Epigenomes 2024, 8, 40. https://doi.org/10.3390/epigenomes8040040
Li H, Kan J, Liu C, Yang Q, Lin J, Li X. Transcription Factors Are Involved in Wizened Bud Occurrence During the Growing Season in the Pyrus pyrifolia Cultivar ‘Sucui 1’. Epigenomes. 2024; 8(4):40. https://doi.org/10.3390/epigenomes8040040
Chicago/Turabian StyleLi, Hui, Jialiang Kan, Chunxiao Liu, Qingsong Yang, Jing Lin, and Xiaogang Li. 2024. "Transcription Factors Are Involved in Wizened Bud Occurrence During the Growing Season in the Pyrus pyrifolia Cultivar ‘Sucui 1’" Epigenomes 8, no. 4: 40. https://doi.org/10.3390/epigenomes8040040
APA StyleLi, H., Kan, J., Liu, C., Yang, Q., Lin, J., & Li, X. (2024). Transcription Factors Are Involved in Wizened Bud Occurrence During the Growing Season in the Pyrus pyrifolia Cultivar ‘Sucui 1’. Epigenomes, 8(4), 40. https://doi.org/10.3390/epigenomes8040040