The Blue Supergiant Problem and the Main-Sequence Width
<p>HR diagram comparison of Galactic B supergiants with solar metallicity [<a href="#B34-galaxies-13-00019" class="html-bibr">34</a>] MESA model tracks with initial masses from 8–60 <math display="inline"><semantics> <msub> <mi mathvariant="normal">M</mi> <mo>⊙</mo> </msub> </semantics></math>, in steps 8, 12, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 <math display="inline"><semantics> <msub> <mi mathvariant="normal">M</mi> <mo>⊙</mo> </msub> </semantics></math>. The figure on the left-hand side is for a small amount of overshooting with <math display="inline"><semantics> <msub> <mi>α</mi> <mi>ov</mi> </msub> </semantics></math>= 0.1, while the figure on the right-hand side is for <math display="inline"><semantics> <msub> <mi>α</mi> <mi>ov</mi> </msub> </semantics></math>= 0.5. The dashed lines on both the left and right-hand side denote the TAMS location. The blue stars represent the observed B supergiant sample from Crowther et al. [<a href="#B22-galaxies-13-00019" class="html-bibr">22</a>] with our updated luminosities utilising Gaia DR3 distances.</p> "> Figure 2
<p>An illustration of the mass-luminosity plane, showing a typical evolutionary track that begins at the ZAMS, indicated by the red dot, and progresses along the black arrow towards the TAMS. The dotted vector indicates how factors such as increased rotation and/or convective overshooting can extend the M-L vector. The curved dashed line represents the gradient where mass-loss rates influence this M-L vector. The red solid area is prohibited, as set by the mass-luminosity relationship. Adapted from Higgins & Vink [<a href="#B34-galaxies-13-00019" class="html-bibr">34</a>].</p> "> Figure 3
<p>Luminosities (Left-hand side) and rotational velocities (right-hand side) versus effective temperature from the VLT Flames survey of massive stars for evolutionary masses over 15 <math display="inline"><semantics> <msub> <mi mathvariant="normal">M</mi> <mo>⊙</mo> </msub> </semantics></math>. Luminosity classes are represented by blue plus signs (for luminosity classes II–V) and red stars (for luminosity class I). The evolutionary tracks for LMC metallicity (50% solar), including the predicted bi-stability jump, are shown in grey, with initial rotation velocities of 250 km/s for five masses: 15, 20, 30, 40, and 60 <math display="inline"><semantics> <msub> <mi mathvariant="normal">M</mi> <mo>⊙</mo> </msub> </semantics></math>. Note that the critical mass for bi-stability braking is approximately 35 <math display="inline"><semantics> <msub> <mi mathvariant="normal">M</mi> <mo>⊙</mo> </msub> </semantics></math> at LMC metallicity in these specific models computed with the BONN stellar evolution code for a step overshooting value of <math display="inline"><semantics> <msub> <mi>α</mi> <mi>ov</mi> </msub> </semantics></math> = 0.5. The rotational velocity tracks can be compared to the angular momentum conservation case, depicted as grey dotted background lines, showing that bi-stability braking can be steeper than would be attributable to angular momentum conservation. The black dots along the evolutionary tracks correspond to <math display="inline"><semantics> <msup> <mn>10</mn> <mn>5</mn> </msup> </semantics></math> year time-steps. Adapted from Vink et al. [<a href="#B20-galaxies-13-00019" class="html-bibr">20</a>].</p> ">
Abstract
:1. Introduction on the Blue Supergiant Problem
2. The Related Problem of the Main-Sequence Width
3. Data & Method
4. Mass-Luminosity Plane: Disentangling Mixing and Mass Loss
5. The Importance of Homogeneous Samples and More Diagnostics
6. Final Words
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
B[e] | The B[e] phenomenon refers to forbidden emission lines. |
BSG | Blue supergiant (not to be confused with B supergiant that refers to spectral type) |
RSG | Red supergiant |
LBV | Luminous blue variable |
CBM | Core-boundary mixing |
ML-plane | Mass-luminosity plane |
MS | Main sequence |
1 | There is a technical difference in terminology between B supergiants, referring to supergiants of a specific spectral type (i.e., B), and blue supergiants (BSG) which is the more generic evolutionary term that distinguishes the hotter and bluer supergiants (hotter than ∼8 kK) from the cooler (3–5 kK) red supergiants (RSGs). |
2 | |
3 | Note that this could potentially be improved [37]. |
References
- Smartt, S.J. Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars. Publ. Astron. Soc. Aust. 2015, 32, e016. [Google Scholar] [CrossRef]
- Kochanek, C.S. On the red supergiant problem. Mon. Not. R. Astron. Soc. 2020, 493, 4945–4949. [Google Scholar] [CrossRef]
- Davies, B.; Beasor, E.R. The ‘red supergiant problem’: The upper luminosity boundary of Type II supernova progenitors. Mon. Not. R. Astron. Soc. 2020, 493, 468–476. [Google Scholar] [CrossRef]
- Vink, J.S.; Sabhahit, G.N. Exploring the Red Supergiant wind kink. A Universal mass-loss concept for massive stars. Astron. Astrophys. 2023, 678, L3. [Google Scholar] [CrossRef]
- Hoyle, F. On the main-sequence band and the Hertzsprung gap. Mon. Not. R. Astron. Soc. 1960, 120, 22–32. [Google Scholar] [CrossRef]
- Kraft, R.P. Stellar Rotation and Stellar Evolution among Cepheids and Other Luminous Stars in the Hertzsprung Gap. Astrophys. J. 1966, 144, 1008. [Google Scholar] [CrossRef]
- Fitzpatrick, E.L.; Garmany, C.D. The H-R Diagram of the Large Magellanic Cloud and Implications for Stellar Evolution. Astrophys. J. 1990, 363, 119. [Google Scholar] [CrossRef]
- Castro, N.; Crowther, P.A.; Evans, C.J.; Vink, J.S.; Puls, J.; Herrero, A.; Garcia, M.; Selman, F.J.; Roth, M.M.; Simón-Díaz, S. Mapping the core of the Tarantula Nebula with VLT-MUSE. II. The spectroscopic Hertzsprung-Russell diagram of OB stars in NGC 2070. Astron. Astrophys. 2021, 648, A65. [Google Scholar] [CrossRef]
- Zickgraf, F.J.; Wolf, B.; Stahl, O.; Leitherer, C.; Appenzeller, I. B(e)-supergiants of the Magellanic Clouds. Astron. Astrophys. 1986, 163, 119–134. [Google Scholar]
- Grassitelli, L.; Langer, N.; Mackey, J.; Gräfener, G.; Grin, N.J.; Sander, A.A.C.; Vink, J.S. Wind-envelope interaction as the origin of the slow cyclic brightness variations of luminous blue variables. Astron. Astrophys. 2021, 647, A99. [Google Scholar] [CrossRef]
- Groh, J.H.; Hillier, D.J.; Damineli, A. AG Carinae: A Luminous Blue Variable with a High Rotational Velocity. Astrophys. J. 2006, 638, L33–L36. [Google Scholar] [CrossRef]
- Podsiadlowski, P.; Morris, T.S.; Ivanova, N. Massive Binary Mergers: A Unique Scenario for the sgB[e] Phenomenon? In Proceedings of the Stars with the B[e] Phenomenon, Vlieland, The Netherlands, 10–16 July 2005; Astronomical Society of the Pacific Conference Series. Kraus, M., Miroshnichenko, A.S., Eds.; Volume 355, p. 259. [Google Scholar]
- Pasquali, A.; Nota, A.; Langer, N.; Schulte-Ladbeck, R.E.; Clampin, M. R4 and Its Circumstellar Nebula: Evidence for a Binary Merger? Astrophys. J. 2000, 119, 1352–1358. [Google Scholar] [CrossRef]
- Vanbeveren, D.; Mennekens, N.; Van Rensbergen, W.; De Loore, C. Blue supergiant progenitor models of type II supernovae. Astron. Astrophys. 2013, 552, A105. [Google Scholar] [CrossRef]
- Justham, S.; Podsiadlowski, P.; Vink, J.S. Luminous Blue Variables and Superluminous Supernovae from Binary Mergers. Astrophys. J. 2014, 796, 121. [Google Scholar] [CrossRef]
- Menon, A.; Ercolino, A.; Urbaneja, M.A.; Lennon, D.J.; Herrero, A.; Hirai, R.; Langer, N.; Schootemeijer, A.; Chatzopoulos, E.; Frank, J.; et al. Evidence for Evolved Stellar Binary Mergers in Observed B-type Blue Supergiants. Astrophys. J. Lett. 2024, 963, L42. [Google Scholar] [CrossRef]
- Henneco, J.; Schneider, F.R.N.; Hekker, S.; Aerts, C. Merger seismology: Distinguishing massive merger products from genuine single stars using asteroseismology. Astron. Astrophys. 2024, 690, A65. [Google Scholar] [CrossRef]
- Dvořáková, N.; Korčáková, D.; Dinnbier, F.; Kroupa, P. The mass distribution of stellar mergers: A new scenario for several FS CMa stars. Astron. Astrophys. 2024, 689, A234. [Google Scholar] [CrossRef]
- Schneider, F.R.N.; Podsiadlowski, P.; Langer, N.; Castro, N.; Fossati, L. Rejuvenation of stellar mergers and the origin of magnetic fields in massive stars. Mon. Not. R. Astron. Soc. 2016, 457, 2355–2365. [Google Scholar] [CrossRef]
- Vink, J.S.; Brott, I.; Gräfener, G.; Langer, N.; de Koter, A.; Lennon, D.J. The nature of B supergiants: Clues from a steep drop in rotation rates at 22000 K. The possibility of Bi-stability braking. Astron. Astrophys. 2010, 512, L7. [Google Scholar] [CrossRef]
- Martinet, S.; Meynet, G.; Ekström, S.; Simón-Díaz, S.; Holgado, G.; Castro, N.; Georgy, C.; Eggenberger, P.; Buldgen, G.; Salmon, S.; et al. Convective core sizes in rotating massive stars. I. Constraints from solar metallicity OB field stars. Astron. Astrophys. 2021, 648, A126. [Google Scholar] [CrossRef]
- Crowther, P.A.; Lennon, D.J.; Walborn, N.R. Physical parameters and wind properties of galactic early B supergiants. Astron. Astrophys. 2006, 446, 279–293. [Google Scholar] [CrossRef]
- Anders, E.H.; Pedersen, M.G. Convective Boundary Mixing in Main-Sequence Stars: Theory and Empirical Constraints. Galaxies 2023, 11, 56. [Google Scholar] [CrossRef]
- Martins, F.; Palacios, A. A comparison of evolutionary tracks for single Galactic massive stars. Astron. Astrophys. 2013, 560, A16. [Google Scholar] [CrossRef]
- Ekström, S.; Georgy, C.; Eggenberger, P.; Meynet, G.; Mowlavi, N.; Wyttenbach, A.; Granada, A.; Decressin, T.; Hirschi, R.; Frischknecht, U.; et al. Grids of stellar models with rotation. I. Models from 0.8 to 120 M&sun; at solar metallicity (Z = 0.014). Astron. Astrophys. 2012, 537, A146. [Google Scholar]
- Brott, I.; de Mink, S.E.; Cantiello, M.; Langer, N.; de Koter, A.; Evans, C.J.; Hunter, I.; Trundle, C.; Vink, J.S. Rotating massive main-sequence stars. I. Grids of evolutionary models and isochrones. Astron. Astrophys. 2011, 530, A115. [Google Scholar] [CrossRef]
- Evans, C.; Hunter, I.; Smartt, S.; Lennon, D.; de Koter, A.; Mokiem, R.; Trundle, C.; Dufton, P.; Ryans, R.; Puls, J.; et al. The VLT-FLAMES Survey of Massive Stars. Messenger 2008, 131, 25–29. [Google Scholar]
- Howarth, I.D.; Siebert, K.W.; Hussain, G.A.J.; Prinja, R.K. Cross-correlation characteristics of OB stars from IUE spectroscopy. Mon. Not. R. Astron. Soc. 1997, 284, 265–285. [Google Scholar] [CrossRef]
- de Burgos, A.; Simón-Díaz, S.; Urbaneja, M.A.; Puls, J. The IACOB project. X. Large-scale quantitative spectroscopic analysis of Galactic luminous blue stars. Astron. Astrophys. 2024, 687, A228. [Google Scholar] [CrossRef]
- Bernini-Peron, M.; Sander, A.A.C.; Ramachandran, V.; Oskinova, L.M.; Vink, J.S.; Verhamme, O.; Najarro, F.; Josiek, J.; Brands, S.A.; Crowther, P.A.; et al. X-Shooting ULLYSES: Massive stars at low metallicity: VII. Stellar and wind properties of B supergiants in the Small Magellanic Cloud. Astron. Astrophys. 2024, 692, A89. [Google Scholar] [CrossRef]
- Verhamme, O.; Sundqvist, J.; de Koter, A.; Sana, H.; Backs, F.; Brands, S.A.; Najarro, F.; Puls, J.; Vink, J.S.; Crowther, P.A.; et al. X-Shooting ULLYSES: Massive Stars at low metallicity: IX. Empirical constraints on mass-loss rates and clumping parameters for OB supergiants in the Large Magellanic Cloud. Astron. Astrophys. 2024, 692, A91. [Google Scholar] [CrossRef]
- Heger, A.; Langer, N.; Woosley, S.E. Presupernova Evolution of Rotating Massive Stars. I. Numerical Method and Evolution of the Internal Stellar Structure. Astrophys. J. 2000, 528, 368–396. [Google Scholar] [CrossRef]
- Maeder, A. Chemical enrichments by massive stars and the effects of rotation. New Astron. Rev. 2000, 44, 291–296. [Google Scholar] [CrossRef]
- Higgins, E.R.; Vink, J.S. Massive star evolution: Rotation, winds, and overshooting vectors in the mass-luminosity plane. I. A calibrated grid of rotating single star models. Astron. Astrophys. 2019, 622, A50. [Google Scholar] [CrossRef]
- Brown, A.G.A. et al. [Gaia Collaboration] Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 2021, 649, A1. [Google Scholar]
- Bailer-Jones, C.A.L.; Rybizki, J.; Fouesneau, M.; Demleitner, M.; Andrae, R. Estimating Distances from Parallaxes. V. Geometric and Photogeometric Distances to 1.47 Billion Stars in Gaia Early Data Release 3. Astron. J. 2021, 161, 147. [Google Scholar] [CrossRef]
- Maíz Apellániz, J. An estimation of the Gaia EDR3 parallax bias from stellar clusters and Magellanic Clouds data. Astron. Astrophys. 2022, 657, A130. [Google Scholar] [CrossRef]
- Oudmaijer, R.D.; Jones, E.R.M.; Vioque, M. A census of post-AGB stars in Gaia DR3: Evidence for a substantial population of Galactic post-RGB stars. Mon. Not. R. Astron. Soc. Lett. 2022, 516, L61–L65. [Google Scholar] [CrossRef]
- Weßmayer, D.; Przybilla, N.; Butler, K. Quantitative spectroscopy of B-type supergiants. aap 2022, 668, A92. [Google Scholar] [CrossRef]
- McEvoy, C.; Dufton, P.; Evans, C.; Kalari, V.; Markova, N.; Simón-Díaz, S.; Vink, J.; Walborn, N.; Crowther, P.; de Koter, A.; et al. The VLT-FLAMES Tarantula Survey-XIX. B-type supergiants: Atmospheric parameters and nitrogen abundances to investigate the role of binarity and the width of the main sequence. Astron. Astrophys. 2015, 575, A70. [Google Scholar] [CrossRef]
- Bowman, D.M. Asteroseismology of high-mass stars: New insights of stellar interiors with space telescopes. Front. Astron. Space Sci. 2020, 7, 70. [Google Scholar] [CrossRef]
- Mahy, L.; Damerdji, Y.; Gosset, E.; Nitschelm, C.; Eenens, P.; Sana, H.; Klotz, A. A modern study of HD 166734: A massive supergiant system. Astron. Astrophys. 2017, 607, A96. [Google Scholar] [CrossRef]
- Tkachenko, A.; Pavlovski, K.; Johnston, C.; Pedersen, M.G.; Michielsen, M.; Bowman, D.M.; Southworth, J.; Tsymbal, V.; Aerts, C. The mass discrepancy in intermediate- and high-mass eclipsing binaries: The need for higher convective core masses. Astron. Astrophys. 2020, 637, A60. [Google Scholar] [CrossRef]
- Higgins, E.R.; Vink, J.S. Stellar age determination in the mass-luminosity plane. Mon. Not. R. Astron. Soc. 2023, 518, 1158–1169. [Google Scholar] [CrossRef]
- Vink, J.S.; Sabhahit, G.N.; Higgins, E.R. The maximum black hole mass at solar metallicity. Astron. Astrophys. 2024, 688, L10. [Google Scholar] [CrossRef]
- Hastings, B.; Wang, C.; Langer, N. The single star path to Be stars. Astron. Astrophys. 2020, 633, A165. [Google Scholar] [CrossRef]
- Koenigsberger, G.; Moreno, E.; Langer, N. Induced differential rotation and mixing in asynchronous binary stars. Astron. Astrophys. 2021, 653, A127. [Google Scholar] [CrossRef]
- Castro, N.; Fossati, L.; Langer, N.; Simón-Díaz, S.; Schneider, F.R.N.; Izzard, R.G. The spectroscopic Hertzsprung-Russell diagram of Galactic massive stars. Astron. Astrophys. 2014, 570, L13. [Google Scholar] [CrossRef]
- Scott, L.J.A.; Hirschi, R.; Georgy, C.; Arnett, W.D.; Meakin, C.; Kaiser, E.A.; Ekström, S.; Yusof, N. Convective core entrainment in 1D main-sequence stellar models. Mon. Not. R. Astron. Soc. 2021, 503, 4208–4220. [Google Scholar] [CrossRef]
- Ishii, M.; Ueno, M.; Kato, M. Core-Halo Structure of a Chemically Homogeneous Massive Star and Bending of the Zero-Age Main Sequence. Publ. Astron. Soc. Jpn. 1999, 51, 417–424. [Google Scholar] [CrossRef]
- Petrovic, J.; Pols, O.; Langer, N. Are luminous and metal-rich Wolf-Rayet stars inflated? Astron. Astrophys. 2006, 450, 219–225. [Google Scholar] [CrossRef]
- Gräfener, G.; Owocki, S.P.; Vink, J.S. Stellar envelope inflation near the Eddington limit. Implications for the radii of Wolf-Rayet stars and luminous blue variables. Astron. Astrophys. 2012, 538, A40. [Google Scholar] [CrossRef]
- Sabhahit, G.N.; Vink, J.S. Stellar expansion or inflation? Astron. Astrophys. 2025, 693, A10. [Google Scholar] [CrossRef]
- Georgy, C.; Saio, H.; Meynet, G. The puzzle of the CNO abundances of α Cygni variables resolved by the Ledoux criterion. Mon. Not. R. Astron. Soc. 2014, 439, L6–L10. [Google Scholar] [CrossRef]
- Bowman, D.M.; Burssens, S.; Pedersen, M.G.; Johnston, C.; Aerts, C.; Buysschaert, B.; Michielsen, M.; Tkachenko, A.; Rogers, T.M.; Edelmann, P.V.F.; et al. Low-frequency gravity waves in blue supergiants revealed by high-precision space photometry. Nat. Astron. 2019, 3, 760–765. [Google Scholar] [CrossRef]
- Bellinger, E.P.; de Mink, S.E.; van Rossem, W.E.; Justham, S. The Potential of Asteroseismology to Resolve the Blue Supergiant Problem. apjl 2024, 967, L39. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vink, J.S.; Oudmaijer, R.D. The Blue Supergiant Problem and the Main-Sequence Width. Galaxies 2025, 13, 19. https://doi.org/10.3390/galaxies13020019
Vink JS, Oudmaijer RD. The Blue Supergiant Problem and the Main-Sequence Width. Galaxies. 2025; 13(2):19. https://doi.org/10.3390/galaxies13020019
Chicago/Turabian StyleVink, Jorick S., and Rene D. Oudmaijer. 2025. "The Blue Supergiant Problem and the Main-Sequence Width" Galaxies 13, no. 2: 19. https://doi.org/10.3390/galaxies13020019
APA StyleVink, J. S., & Oudmaijer, R. D. (2025). The Blue Supergiant Problem and the Main-Sequence Width. Galaxies, 13(2), 19. https://doi.org/10.3390/galaxies13020019