Effects of Two Community-Based Exercise Programs on Adherence, Cardiometabolic Markers, and Body Composition in Older People with Cardiovascular Risk Factors: A Prospective Observational Cohort Study
<p>Prospective observational cohort design and testing procedures. CRF: cardiovascular risk factors, AM: Activa Murcia.</p> "> Figure 2
<p>Flow diagram of the progress of the prospective observational cohort study.</p> "> Figure 3
<p>METs/min per week performed in AM3 and AM6 at the beginning and 6 months after the exercise program. ns: no significant effects between pre- and post-6 months follow up; * <span class="html-italic">p</span> < 0.05 significant differences between baseline and 6 months follow up.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants Selection
2.3. Definition of Cohorts
2.4. Outcome Measures
2.4.1. Exercise Adherence
2.4.2. Body Composition
2.4.3. Blood Pressure
2.4.4. Lipid Profile and Dyslipidemia
2.5. Data Analysis
3. Results
3.1. Adherence: Physical Activity
3.2. Body Composition
3.3. Systolic and Diastolic Blood Pressure
3.4. Dyslipidemia Lipid Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ozemek, C.; Laddu, D.R.; Lavie, C.J.; Claeys, H.; Kaminsky, L.A.; Ross, R.; Wisloff, U.; Arena, R.; Blair, S.N. An Update on the Role of Cardiorespiratory Fitness, Structured Exercise and Lifestyle Physical Activity in Preventing Cardiovascular Disease and Health Risk. Prog. Cardiovasc. Dis. 2018, 61, 484–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fong, J.H. Out-of-pocket health spending among Medicare beneficiaries: Which chronic diseases are most costly? PLoS ONE 2019, 14, e0222539. [Google Scholar] [CrossRef] [PubMed]
- Muka, T.; Imo, D.; Jaspers, L.; Colpani, V.; Chaker, L.; van der Lee, S.J.; Mendis, S.; Chowdhury, R.; Bramer, W.M.; Falla, A.; et al. The global impact of non-communicable diseases on healthcare spending and national income: A systematic review. Eur. J. Epidemiol. 2015, 30, 251–277. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation 2018, 137, e67–e492. [Google Scholar] [CrossRef]
- Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H.; Bairey Merz, C.N.; Blum, C.B.; Eckel, R.H.; Goldberg, A.C.; Gordon, D.; Levy, D.; Lloyd-Jones, D.M.; et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report of the American college of cardiology/American heart association task force on practice guidelines. J. Am. Coll. Cardiol. 2014, 63, 2879–2934. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, P.N.; Toth, P.P.; Ballantyne, C.M.; Rader, D.J. Familial hypercholesterolemias: Prevalence, genetics, diagnosis and screening recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J. Clin. Lipidol. 2011, 5, s9–s10. [Google Scholar] [CrossRef]
- Rubio Pérez, F.J.; Franco Bonafonte, L.; Ibarretxe Guerediaga, D.; Oyon Belaza, M.P.; Ugarte Peyron, P. Effect of an individualised physical exercise program on lipid profile in sedentary patients with cardiovascular risk factors. Clin. Investig. Arterioscler. 2017, 29, 201–208. [Google Scholar] [CrossRef]
- Ministerio de Sanidad y Consumo I Conferencia de Prevención y Promoción de la Salud en la Práctica Clínica en España. Prevención de la dependencia en las personas mayores. Aten. Primaria 2008, 40, 473–474. [Google Scholar] [CrossRef] [Green Version]
- Hansen, D.; Dendale, P.; Coninx, K.; Vanhees, L.; Piepoli, M.F.; Niebauer, J.; Cornelissen, V.; Pedretti, R.; Geurts, E.; Ruiz, G.R.; et al. The European Association of Preventive Cardiology Exercise Prescription in Everyday Practice and Rehabilitative Training (EXPERT) tool: A digital training and decision support system for optimized exercise prescription in cardiovascular disease. Concept, definitions and construction methodology. Eur. J. Prev. Cardiol. 2017, 24, 1017–1031. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.J.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task. Circulation 2018, 138, e426–e483. [Google Scholar] [CrossRef]
- Kotseva, K.; Wood, D.; De Bacquer, D.; De Backer, G.; Rydén, L.; Jennings, C.; Gyberg, V.; Amouyel, P.; Bruthans, J.; Castro Conde, A.; et al. EUROASPIRE IV: A European Society of Cardiology survey on the lifestyle, risk factor and therapeutic management of coronary patients from 24 European countries. Eur. J. Prev. Cardiol. 2016, 23, 636–648. [Google Scholar] [CrossRef]
- Yusuf, P.S.; Hawken, S.; Ôunpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef]
- Young, D.R.; Hivert, M.F.; Alhassan, S.; Camhi, S.M.; Ferguson, J.F.; Katzmarzyk, P.T.; Lewis, C.E.; Owen, N.; Perry, C.K.; Siddique, J.; et al. Sedentary behavior and cardiovascular morbidity and mortality: A science advisory from the American Heart Association. Circulation 2016, 134, e262–e279. [Google Scholar] [CrossRef] [PubMed]
- Lavie, C.J.; Ozemek, C.; Carbone, S.; Katzmarzyk, P.T.; Blair, S.N. Sedentary Behavior, Exercise, and Cardiovascular Health. Circ. Res. 2019, 124, 799–815. [Google Scholar] [CrossRef]
- Stevens, G. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks; World Health Organization: Geneva, Switzerland, 2009; pp. 1–70. ISBN 9789241563. [Google Scholar]
- Fletcher, G.F.; Landolfo, C.; Niebauer, J.; Ozemek, C.; Arena, R.; Lavie, C.J. Promoting Physical Activity and Exercise: JACC Health Promotion Series. J. Am. Coll. Cardiol. 2018, 72, 1622–1639. [Google Scholar] [CrossRef] [PubMed]
- Oliver-Martínez, P.; Ramos-Campo, D.; Martínez-Aranda, L.; Martínez-Rodríguez, A.; Rubio-Arias, J. Chronic effects and optimal dosage of strength training on SBP and DBP: A systematic review with meta-analysis. J. Hypertens. 2020. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Emerson, J.A.; Williams, D.M. The exercise-affect-adherence pathway: An evolutionary perspective. Front. Psychol. 2016, 7, 1–11. [Google Scholar] [CrossRef]
- Pate, R.R.; Macera, C.A.; Pratt, M.; Heath, G.W.; Blair, S.N.; Bouchard, C.; Haskell, W.L.; King, A.C.; Buchner, D.; Ettinger, W.; et al. Physical Activity and Public Health: A Recommendation From the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA J. Am. Med. Assoc. 1995, 2073, 402–407. [Google Scholar] [CrossRef]
- Trost, S.G.; Owen, N.; Bauman, A.E.; Sallis, J.F.; Brown, W. Correlates of adults’ participation in physical activity: Review and update. Med. Sci. Sports Exerc. 2002, 33, 1996–2001. [Google Scholar] [CrossRef]
- Roux, L.; Pratt, M.; Tengs, T.O.; Yore, M.M.; Yanagawa, T.L.; Van Den Bos, J.; Rutt, C.; Brownson, R.C.; Powell, K.E.; Heath, G.; et al. Cost effectiveness of community-based physical activity interventions. Am. J. Prev. Med. 2008, 35, 578–588. [Google Scholar] [CrossRef]
- Katzmarzyk, P.T.; Janssen, I. The economic costs associated with physical inactivity and obesity in Canada: An update. Can. J. Appl. Physiol. 2004, 29, 90–115. [Google Scholar] [CrossRef] [PubMed]
- Chatzisarantis, N.L.D.; Hagger, M.S. Effects of an intervention based on self-determination theory on self-reported leisure-time physical activity participation. Psychol. Health 2009, 24, 29–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekkekakis, P.; Parfitt, G.; Petruzzello, S.J. The Pleasure and Displeasure People Feel When they Exercise at Different Intensities. Sports Med. 2011, 41, 641–671. [Google Scholar] [CrossRef] [PubMed]
- Ekkekakis, P.; Vazou, S.; Bixby, W.R.; Georgiadis, E. The mysterious case of the public health guideline that is (almost) entirely ignored: Call for a research agenda on the causes of the extreme avoidance of physical activity in obesity. Obes. Rev. 2016, 17, 313–329. [Google Scholar] [CrossRef]
- Hartman, M.E.; Ekkekakis, P.; Dicks, N.D.; Pettitt, R.W. Dynamics of pleasure-displeasure at the limit of exercise tolerance: Conceptualizing the sense of exertional physical fatigue as an affective response. J. Exp. Biol. 2019, 222, jeb186585. [Google Scholar] [CrossRef] [Green Version]
- Hall, E.E.; Petruzzello, S.J.; Ekkekakis, P.; Miller, P.C.; Bixby, W.R. Role of self-reported individual differences in preference for and tolerance of exercise intensity in fitness testing performance. J. Strength Cond. Res. 2014, 28, 2443–2451. [Google Scholar] [CrossRef] [Green Version]
- López-Román, F.J.; Tornel-Miñarro, F.I.; Delsors-Merida-Nicolich, E.; Fernández-López, L.; Martínez-Ros, M.T.; García Sánchez, E.; López-Santiago, A. Feasibility of implementing a preventive physical exercise programme recommended by general practitioners in cardiovascular risk patients: A pre-post comparison study. Eur. J. Gen. Pract. 2020, 26, 71–78. [Google Scholar] [CrossRef]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redon, J.; Zanchetti, A.; Böhm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.; et al. 2013 ESH/ESC Practice Guidelines for the Management of Arterial Hypertension. Blood Press. 2014, 23, 3–16. [Google Scholar] [CrossRef]
- Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) Developed with the special contribution of the Europe. Atherosclerosis 2016, 253, 281–344. [Google Scholar] [CrossRef] [Green Version]
- Apovian, C.M. Obesity: Definition, comorbidities, causes, and burden. Am. J. Manag. Care 2016, 22, s176–s185. [Google Scholar] [PubMed]
- Thompson, P.D.; Arena, R.; Riebe, D.; Pescatello, L.S. ACSM’s new preparticipation health screening recommendations from ACSM’s guidelines for exercise testing and prescription, ninth edition. Curr. Sports Med. Rep. 2013, 12, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Roman-Viñas, B.; Serra-Majem, L.; Hagströmer, M.; Ribas-Barba, L.; Sjöström, M.; Segura-Cardona, R. International physical activity questionnaire: Reliability and validity in a Spanish population. Eur. J. Sport Sci. 2010, 10, 297–304. [Google Scholar] [CrossRef]
- Giné-Garriga, M.; Martin, C.; Martín, C.; Puig-Ribera, A.; Antón, J.J.; Guiu, A.; Cascos, A.; Ramos, R. Referral from primary care to a physical activity programme: Establishing long-term adherence? A randomized controlled trial. Rationale and study design. BMC Public Health 2009, 9, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Borràs, C.; Giné-Garriga, M.; Puig-Ribera, A.; Martín, C.; Solà, M.; Cuesta-Vargas, A.I. A new model of exercise referral scheme in primary care: Is the effect on adherence to physical activity sustainable in the long term? A 15-month randomised controlled trial. BMJ Open 2018, 8, e017211. [Google Scholar] [CrossRef]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Romero, F.L.; Alonso, V.B.; Arcos, F.S.; Peralta, L.P.; Cruz Fernández, J.M.; Abadal, L.T.; Padial, L.R.; González Juanatey, J.R. Guidelines of the Spanish Society of Cardiology on High Blood Pressure. Rev. Esp. Cardiol. 2000, 53, 66–90. [Google Scholar] [CrossRef]
- Stonerock, G.L.; Blumenthal, J.A. Role of Counseling to Promote Adherence in Healthy Lifestyle Medicine: Strategies to Improve Exercise Adherence and Enhance Physical Activity. Prog. Cardiovasc. Dis. 2017, 59, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Prochaska, J.O.; Velicer, W.F. The transtheoretical model of health behavior change. Am. J. Health Promot. 1997, 12, 38–48. [Google Scholar] [CrossRef]
- Hall, E.E.; Ekkekakis, P.; Petruzzello, S.J. Predicting affective responses to exercise using resting EEG frontal asymmetry: Does intensity matter? Biol. Psychol. 2010, 83, 201–206. [Google Scholar] [CrossRef]
- Biedenweg, K.; Meischke, H.; Bohl, A.; Hammerback, K.; Williams, B.; Poe, P.; Phelan, E.A. Understanding older adults’ motivators and barriers to participating in organized programs supporting exercise behaviors. J. Prim. Prev. 2014, 35, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.L.; Yoo, J.K.; Kim, H.K.; Hwang, M.H.; Handberg, E.M.; Petersen, J.W.; Christou, D.D. Novel all-extremity high-intensity interval training improves aerobic fitness, cardiac function and insulin resistance in healthy older adults. Exp. Gerontol. 2016, 82, 112–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sultana, R.N.; Sabag, A.; Keating, S.E.; Johnson, N.A. The Effect of Low-Volume High-Intensity Interval Training on Body Composition and Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis. Sports Med. 2019, 49, 1687–1721. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Ross, R. Vigorous intensity physical activity is related to the metabolic syndrome independent of the physical activity dose. Int. J. Epidemiol. 2012, 41, 1132–1140. [Google Scholar] [CrossRef]
- Foster-Schubert, K.E.; Alfano, C.M.; Duggan, C.R.; Xiao, L.; Campbell, K.L.; Kong, A.; Bain, C.E.; Wang, C.Y.; Blackburn, G.L.; McTiernan, A. Effect of diet and exercise, alone or combined, on weight and body composition in overweight-to-obese postmenopausal women. Obesity 2012, 20, 1628–1638. [Google Scholar] [CrossRef] [Green Version]
- Gibala, M.J.; McGee, S.L. Metabolic adaptations to short-term high-intensity interval training: A little pain for a lot of gain? Exerc. Sport Sci. Rev. 2008, 36, 58–63. [Google Scholar] [CrossRef]
- Clark, J.E. Diet, exercise or diet with exercise: Comparing the effectiveness of treatment options for weight-loss and changes in fitness for adults (18–65 years old) who are overfat, or obese; systematic review and meta-analysis. J. Diabetes Metab. Disord. 2015, 14, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.C.; Hay, J.L.; Kehler, D.S.; Boreskie, K.F.; Arora, R.C.; Umpierre, D.; Szwajcer, A.; Duhamel, T.A. Effects of High-Intensity Interval Training Versus Moderate-Intensity Continuous Training On Blood Pressure in Adults with Pre- to Established Hypertension: A Systematic Review and Meta-Analysis of Randomized Trials. Sports Med. 2018, 48, 2127–2142. [Google Scholar] [CrossRef]
- Cornelissen, V.A.; Smart, N.A. Exercise training for blood pressure: A systematic review and meta-analysis. J. Am. Heart Assoc. 2013, 2, e004473. [Google Scholar] [CrossRef] [Green Version]
- Molmen-Hansen, H.E.; Stolen, T.; Tjonna, A.E.; Aamot, I.L.; Ekeberg, I.S.; Tyldum, G.A.; Wisloff, U.; Ingul, C.B.; Stoylen, A. Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. Eur. J. Prev. Cardiol. 2012, 19, 151–160. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Laredo-Aguilera, J.A.; Muñoz-Jiménez, M.; Latorre-Román, P.A. Effects of 12-Week Concurrent High-Intensity Interval Strength and Endurance Training Program on Physical Performance in Healthy Older People. J. Strength Cond. Res. 2019, 33, 1445–1452. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, V.A.; Arnout, J.; Holvoet, P.; Fagard, R.H. Influence of exercise at lower and higher intensity on blood pressure and cardiovascular risk factors at older age. J. Hypertens. 2009, 27, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Boutcher, Y.N.; Boutcher, S.H. Exercise intensity and hypertension: what’s new? J. Hum. Hypertens. 2017, 31, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Bertani, R.F.; Campos, G.O.; Perseguin, D.M.; Bonardi, J.M.T.; Ferriolli, E.; Moriguti, J.C.; Lima, N.K.C. Resistance Exercise Training Is More Effective than Interval Aerobic Training in Reducing Blood Pressure During Sleep in Hypertensive Elderly Patients. J. Strength Cond. Res. 2018, 32, 2085–2090. [Google Scholar] [CrossRef]
- Catapano, A.L.; Reiner, Z.; De Backer, G.; Graham, I.; Taskinen, M.R.; Wiklund, O.; Agewall, S.; Alegria, E.; Chapman, M.J.; Durrington, P.; et al. ESC/EAS Guidelines for the management of dyslipidaemias: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis 2011, 217, S1–S44. [Google Scholar] [CrossRef] [PubMed]
- Pérez de Isla, L.; Pérez de Isla, L.; Fernández, P.L.S.; Álvarez-Sala Walther, L.; Barrios Alonso, V.; Castro Conde, A.; Galve Basilio, E.; García Ortiz, L.; Mata López, P.; Alegría Ezquerra, E.; et al. Comments on the 2016 ESC/EAS Guidelines for the Management of Dyslipidemias. Rev. Esp. Cardiol. 2017, 70, 72–77. [Google Scholar] [CrossRef]
- Mann, S.; Beedie, C.; Jimenez, A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: Review, synthesis and recommendations. Sports Med. 2014, 44, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Kannan, U.; Vasudevan, K.; Balasubramaniam, K.; Yerrabelli, D.; Shanmugavel, K.; John, N.A. Effect of exercise intensity on lipid profile in sedentary obese adults. J. Clin. Diagn. Res. 2014, 8, BC08–BC10. [Google Scholar] [CrossRef]
- Motalebi, S.A.; Iranagh, J.A.; Mohammadi, F. Effect of a Physical Activity Program on Serum Biochemical Parameters among the Elderly Women. Rev. Recent Clin. Trials 2019, 14, 209–216. [Google Scholar] [CrossRef]
- Scicchitano, P.; Cameli, M.; Maiello, M.; Modesti, P.A.; Muiesan, M.L.; Novo, S.; Palmiero, P.; Saba, P.S.; Pedrinelli, R.; Ciccone, M.M. Nutraceuticals and dyslipidaemia: Beyond the common therapeutics. J. Funct. Foods 2014, 6, 11–32. [Google Scholar] [CrossRef]
- Lanier, J.B.; Bury, D.C.; Richardson, S.W. Diet and Physical Activity for Cardiovascular Disease Prevention. Am. Fam. Physician 2016, 93, 919–924. [Google Scholar] [PubMed]
- Nystoriak, M.A.; Bhatnagar, A. Cardiovascular Effects and Benefits of Exercise. Front. Cardiovasc. Med. 2018, 5, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciccone, M.M.; Aquilino, A.; Cortese, F.; Scicchitano, P.; Sassara, M.; Mola, E.; Rollo, R.; Caldarola, P.; Giorgino, F.; Pomo, V.; et al. Feasibility and effectiveness of a disease and care management model in the primary health care system for patients with heart failure and diabetes (Project Leonardo). Vasc. Health Risk Manag. 2010, 6, 297–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Block | Objective | Intensity | Duration (min) | |
---|---|---|---|---|
%MHR | RPE | |||
Warm up | Mobility and stretching | 5 | ||
Aerobic 1 (intervalic) | CV endurance | 85% | RPE (C): 14–16 RPE (C-R): 5–6 | 25 |
Aerobic 2 (constant) | CV endurance | 80% | RPE (C): 14–16 RPE (C-R): 5–6 | 25 |
Tone up muscle | muscle strength | 90% | RPE (C): 14–16 RPE (C-R): 5–6 | 25 |
Strength and endurance | muscle strength and CV endurance | 60% | RPE (C): 11–13 RPE (C-R): 3–4 | 25 |
Cool down | flexibility | 5 |
Level | Training Mode | Density | Week 1 | Week 2 | Week 3 | Week 4 | ||
---|---|---|---|---|---|---|---|---|
Level 1 | S | W | 1 | I | L | L | L | M |
R | 1 | RT | passive | active-passive | active | run-passive | ||
A | W | 3 | I | L | L | L | L | |
R | 1 | RT | active-passive | passive | run-passive | run-active | ||
Level 2 | S | W | 1.05 | I | L | L | L | M |
R | 55 | RT | passive | active-passive | active | run-passive | ||
A | W | 3.10 | I | L | L | L | L | |
R | 50 | RT | active-passive | active | run-passive | run-active | ||
Level 3 | S | W | 1.10 | I | L | M | M | M |
R | 50 | RT | passive | active | run-passive | run-active | ||
A | W | 3.20 | I | L | L | L | M | |
R | 40 | RT | active | run-passive | run-active | run-active | ||
Level 4 | S | W | 1.15 | I | L | M | M | M |
R | 45 | RT | passive | active | run-passive | run-active | ||
A | W | 3.30 | I | L | L | M | M | |
R | 30 | RT | active | run-passive | run-passive | run-active | ||
Level 5 | S | W | 1.20 | I | L | M | M | H |
R | 40 | RT | active | run-passive | run-active | run-active | ||
A | W | 3.40 | I | L | L | M | H | |
R | 20 | RT | active | run-active | run-active | run-active | ||
Level 6 | S | W | 1.25 | I | L | M | M | H |
R | 35 | RT | active | run-passive | run-active | run-active | ||
A | W | 3.50 | I | L | L | M | H | |
R | 10 | RT | active | run-active | run-active | run-active |
AM3 (n = 51) | AM6 (n = 42) | |
---|---|---|
Age (years) | 59.2 ± 7.4 | 59.4 ± 8.9 |
SEX (% women) | 82.4 | 71.4 |
Weight (kg) | 32.3 ± 9.9 | 30.1 ± 10.3 |
BMI (kg/m2) | 30.6 ± 5.3 | 29.5 ± 4.3 |
CVRF (%) | ||
HBP | 62.7 | 66.7 |
Dyslipidemia | 78.4 | 76.2 |
Obesity | 51.0 | 52.4 |
Overweight | 49.0 | 47.6 |
Prediabetes | 39.2 | 35.7 |
Smoking | 9.8 | 7.1 |
Drugs (%) | ||
HBP | 58.8 | 61.9 |
Dyslipidemia | 39.2 | 42.9 |
Time | Time × Cohort Effect | |||||||
---|---|---|---|---|---|---|---|---|
Group | Pre | Post-3 | Post-6 | F | p | F | p | |
Weight | AM3 | 78.7 ± 16.0 | 78.9 ± 15.9 | 1.557 | 0.215 | 1.028 | 0.336 | |
(kg) | AM6 | 75.9 ± 13.5 | 75.8 ± 13.6 | 76.8 ± 13.6 | ||||
BMI | AM3 | 30.4 ± 5.3 | 30.4 ± 5.3 | 0.706 | 0.437 | 0.556 | 0.500 | |
(kg/m2) | AM6 | 29.5 ± 4.5 | 29.5 ± 4.2 | 29.8 ± 4.0 | ||||
LBM | AM3 | 44.8 ± 8.0 | 44.3 ± 7.5 | 2.816 | 0.089 | 0.649 | 0.437 | |
(kg) | AM6 | 44.7 ± 9.5 | 44.2 ± 9.2 | 44.6 ± 9.4 |
Time | Time × Cohort Effect | |||||||
---|---|---|---|---|---|---|---|---|
Group | Pre | Post-3 | Post-6 | F | p | F | p | |
SBP | AM3 | 140.9 ± 20.7 | 137.1 ± 16.4 | 2.353 | 0.115 | 0.281 | 0.692 | |
AM6 | 137.5 ± 18.9 | 136.1 ± 15.6 | 134.4 ± 21.3 | |||||
DBP | AM3 | 86.1 ± 11.5 | 83.4 ± 9.5 | 0.857 | 0.002 | 2.978 | 0.077 | |
AM6 | 89.1 ± 14.8 | 86.7 ± 8.6 | 81.2 ± 10.3 * |
Time | Time × Cohort Effect | |||||||
---|---|---|---|---|---|---|---|---|
Group | Pre | Post-3 | Post-6 | F | p | F | p | |
Lipid panel | ||||||||
Total cholesterol | AM3 | 210.2 ± 49.6 | 199.6 ± 38.1 | 1.342 | 0.259 | 2.101 | 0.146 | |
(mg/dL) | AM6 | 196.5 ± 44.6 | 195.8 ± 38.2 | 199.8 ± 37.8 | ||||
LDL | AM3 | 124.5 ± 44.7 | 115.4 ± 33.4 | 17.395 | <0.001 | 3.084 | 0.079 | |
(mg/dL) | AM6 | 130.2 ± 32.0 | 115.9 ± 31.1 * | 107.2 ± 27.8 **,# | ||||
HDL | AM3 | 60.6 ± 13.3 | 62.7 ± 14.3 | 3.419 | 0.051 | 0.552 | 0.527 | |
(mg/dL) | AM6 | 52.3 ± 12.0 | 52.9 ± 12.1 | 53.9 ± 13.7 | ||||
Triglycerides | AM3 | 125.5 ± 60.2 | 107.7 ± 50.2 | 0.348 | 0.704 | 4.152 | 0.019 | |
(mg/dL) | AM6 | 133.9 ± 58.6 | 144.6 ± 84.6 | 143.0 ± 67.4 | ||||
Glycemic profile | ||||||||
Glucose | AM3 | 102.5 ± 20.6 | 105.3 ± 20.0 | 1.506 | 0.229 | 0.203 | 0.737 | |
(mmol/L) | AM6 | 107.7 ± 23.2 | 108.9 ± 26.2 | 109.0 ± 27.1 | ||||
Glycated hemoglobin | AM3 | 5.53 ± 0.49 | 5.62 ± 0.66 | 2.723 | 0.086 | 1.076 | 0.330 | |
(%) | AM6 | 5.78 ± 0.65 | 5.89 ± 0.73 | 5.77 ± 0.68 | ||||
Insulin | AM3 | 9.83 ± 6.43 | 7.67 ± 3.80 * | 10.401 | 0.001 | 0.98 | 0.350 | |
(mU/L) | AM6 | 10.63 ± 5.80 | 8.84 ± 4.41 * | 9.71 ± 4.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Sánchez, E.; Rubio-Arias, J.Á.; Ávila-Gandía, V.; López-Román, F.J.; Menarguez-Puche, J.F. Effects of Two Community-Based Exercise Programs on Adherence, Cardiometabolic Markers, and Body Composition in Older People with Cardiovascular Risk Factors: A Prospective Observational Cohort Study. J. Pers. Med. 2020, 10, 176. https://doi.org/10.3390/jpm10040176
García-Sánchez E, Rubio-Arias JÁ, Ávila-Gandía V, López-Román FJ, Menarguez-Puche JF. Effects of Two Community-Based Exercise Programs on Adherence, Cardiometabolic Markers, and Body Composition in Older People with Cardiovascular Risk Factors: A Prospective Observational Cohort Study. Journal of Personalized Medicine. 2020; 10(4):176. https://doi.org/10.3390/jpm10040176
Chicago/Turabian StyleGarcía-Sánchez, Esther, Jacobo Á. Rubio-Arias, Vicente Ávila-Gandía, F. Javier López-Román, and Juan F. Menarguez-Puche. 2020. "Effects of Two Community-Based Exercise Programs on Adherence, Cardiometabolic Markers, and Body Composition in Older People with Cardiovascular Risk Factors: A Prospective Observational Cohort Study" Journal of Personalized Medicine 10, no. 4: 176. https://doi.org/10.3390/jpm10040176
APA StyleGarcía-Sánchez, E., Rubio-Arias, J. Á., Ávila-Gandía, V., López-Román, F. J., & Menarguez-Puche, J. F. (2020). Effects of Two Community-Based Exercise Programs on Adherence, Cardiometabolic Markers, and Body Composition in Older People with Cardiovascular Risk Factors: A Prospective Observational Cohort Study. Journal of Personalized Medicine, 10(4), 176. https://doi.org/10.3390/jpm10040176