Feasibility, Reproducibility and Reference Ranges of Left Atrial Strain in Preterm and Term Neonates in the First 48 h of Life
<p>Longitudinal atrial deformation curve during the three phases of the left atrial with the zero strain reference at end-diastole. The respective strains are: LASr, strain during reservoir phase; LAScd, strain during conduit phase; and LASct, strain during contraction phase.</p> "> Figure A1
<p>(<b>A</b>) M-mode display of the motion of the anterior leaflet of the mitral valve. End-diastole is defined at the mitral valve closure. (<b>B</b>) Three-points for left atrial delineation: points 1 and 2 at the septal and lateral hinge points of the mitral valve and point 3 at the atrial roof.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Study Population
2.3. Echocardiography
- -
- LASr = strain during reservoir phase, calculated as the difference of the strain value at mitral valve opening minus ventricular end-diastole (positive value);
- -
- LAScd = strain during conduit phase, calculated as the difference of the strain value at the onset of atrial contraction minus mitral valve opening (negative value);
- -
2.4. First Phase
2.5. Second Phase
2.6. Statistical Analysis
3. Results
3.1. First Phase
3.2. Second Phase
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Protocol for Atrial Strain Imaging and Postprocessing Data Analysis
Appendix A.1. Image Acquisition
- Ultrasound scanner: Philips Epiq 7 system with 12 MHz phased-array probe;
- Optimized (non-foreshortened) apical 4-chamber view;
- Frame rate: between 100 to 130 frames/s by adjusting the sector width/depth;
- Electrocardiographic tracing on screen;
- Record three consecutive cardiac cycles.
Appendix A.2. Postprocessing Analysis
- Use of software: Tomtec Arena (vTTA2 41.00) with LA analysis option;
- Choose the most suitable cardiac cycle for analysis;
- A reference time point is automatically placed at the QRS complex, a surrogate for end-diastole;
- Consult the M-mode display of the motion of the anterior leaflet of the mitral valve to define end-diastole at the mitral valve closure (Figure A1A);
- Use of a three-point- and-click approach: points 1 and 2 at the septal and lateral hinge points of the mitral valve and point 3 at the atrial roof, and the software automatically generates a LA delineation (Figure A1B);
- Perform manual adjustment to optimize tracking and extrapolate the LA contour across the pulmonary veins, foramen ovale and left appendage orifice;
- Select the end-diastolic (ED) frame as the LA reference frame;
- Confirm the credibility of the atrial strain curve: the atrial reservoir phase starts from a zero strain reference point;
- Record the following measurements: LASr-ED, LAScd-ED and LASct-ED.
References
- Cameli, M.; Mandoli, G.E.; Loiacono, F.; Dini, F.L.; Henein, M.; Mondillo, S. Left atrial strain: A new parameter for assessment of left ventricular filling pressure. Heart Fail. Rev. 2016, 21, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Cameli, M.; Lisi, M.; Mondillo, S.; Padeletti, M.; Ballo, P.; Tsioulpas, C.; Bernazzali, S.; Maccherini, M. Left atrial longitudinal strain by speckle tracking echocardiography correlates well with left ventricular filling pressures in patients with heart failure. Cardiovasc. Ultrasound 2010, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandoli, G.E.; Sisti, N.; Mondillo, S.; Cameli, M. Left atrial strain in left ventricular diastolic dysfunction: Have we finally found the missing piece of the puzzle? Heart Fail. Rev. 2020, 25, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Leischik, R.; Littwitz, H.; Dworrak, B.; Garg, P.; Zhu, M.; Sahn, D.J.; Horlitz, M. Echocardiographic Evaluation of Left Atrial Mechanics: Function, History, Novel Techniques, Advantages, and Pitfalls. Biomed. Res. Int. 2015, 2015, 765921. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.K.; Anderson, P.L.; Caracciolo, G.; Kiotsekoglou, A.; Wilansky, S.; Govind, S.; Mori, N.; Sengupta, P.P. Global left atrial strain correlates with CHADS2 risk score in patients with atrial fibrillation. J. Am. Soc. Echocardiogr. 2011, 24, 506–512. [Google Scholar] [CrossRef]
- Antoni, M.L.; ten Brinke, E.A.; Atary, J.Z.; Marsan, N.A.; Holman, E.R.; Schalij, M.J.; Bax, J.J.; Delgado, V. Left atrial strain is related to adverse events in patients after acute myocardial infarction treated with primary percutaneous coronary intervention. Heart 2011, 97, 1332–1337. [Google Scholar] [CrossRef]
- Yuda, S. Current clinical applications of speckle tracking echocardiography for assessment of left atrial function. J. Echocardiogr. 2021, 19, 129–140. [Google Scholar] [CrossRef]
- Badano, L.P.; Kolias, T.J.; Muraru, D.; Abraham, T.P.; Aurigemma, G.; Edvardsen, T.; D’Hooge, J.; Donal, E.; Fraser, A.G.; Marwick, T.; et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: A consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 591–600. [Google Scholar] [CrossRef]
- Kutty, S.; Padiyath, A.; Li, L.; Peng, Q.; Rangamani, S.; Schuster, A.; Danford, D.A. Functional maturation of left and right atrial systolic and diastolic performance in infants, children, and adolescents. J. Am. Soc. Echocardiogr. 2013, 26, 398–409.e392. [Google Scholar] [CrossRef]
- de Waal, K.; Phad, N.; Boyle, A. Left atrium function and deformation in very preterm infants with and without volume load. Echocardiography 2018, 35, 1818–1826. [Google Scholar] [CrossRef]
- Kupczyńska, K.; Mandoli, G.E.; Cameli, M.; Kasprzak, J.D. Left atrial strain - a current clinical perspective. Kardiol. Pol. 2021, 79, 955–964. [Google Scholar] [CrossRef] [PubMed]
- de Waal, K.; Costley, N.; Phad, N.; Crendal, E. Left Ventricular Diastolic Dysfunction and Diastolic Heart Failure in Preterm Infants. Pediatr. Cardiol. 2019, 40, 1709–1715. [Google Scholar] [CrossRef] [PubMed]
- James, A.T.; Corcoran, J.D.; Jain, A.; McNamara, P.J.; Mertens, L.; Franklin, O.; El-Khuffash, A.F. Assessment of myocardial performance in preterm infants less than 29 weeks gestation during the transitional period. Early Hum. Dev. 2014, 90, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Sirc, J.; Dempsey, E.M.; Miletin, J. Diastolic ventricular function improves during the first 48-hours-of-life in infants weighting <1250 g. Acta Paediatr. 2015, 104, e1–e6. [Google Scholar] [CrossRef] [PubMed]
- Hooper, S.B.; Te Pas, A.B.; Lang, J.; van Vonderen, J.J.; Roehr, C.C.; Kluckow, M.; Gill, A.W.; Wallace, E.M.; Polglase, G.R. Cardiovascular transition at birth: A physiological sequence. Pediatr. Res. 2015, 77, 608–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koestenberger, M.; Nagel, B.; Ravekes, W.; Gamillscheg, A.; Pichler, G.; Avian, A.; Heinzl, B.; Binder, C.; Cvirn, G.; Urlesberger, B. Right ventricular performance in preterm and term neonates: Reference values of the tricuspid annular peak systolic velocity measured by tissue Doppler imaging. Neonatology 2013, 103, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Koestenberger, M.; Nagel, B.; Ravekes, W.; Urlesberger, B.; Raith, W.; Avian, A.; Halb, V.; Cvirn, G.; Fritsch, P.; Gamillscheg, A. Systolic right ventricular function in preterm and term neonates: Reference values of the tricuspid annular plane systolic excursion (TAPSE) in 258 patients and calculation of Z-score values. Neonatology 2011, 100, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.W.; Geva, T.; Shirali, G.S.; Frommelt, P.C.; Humes, R.A.; Brook, M.M.; Pignatelli, R.H.; Rychik, J.; Echocardiography, T.F.o.t.P.C.o.t.A.S.o.; Echocardiography, P.C.o.t.A.S.o. Guidelines and standards for performance of a pediatric echocardiogram: A report from the Task Force of the Pediatric Council of the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2006, 19, 1413–1430. [Google Scholar] [CrossRef] [Green Version]
- Colan, S.D.; Shirali, G.; Margossian, R.; Gallagher, D.; Altmann, K.; Canter, C.; Chen, S.; Golding, F.; Radojewski, E.; Camitta, M.; et al. The ventricular volume variability study of the Pediatric Heart Network: Study design and impact of beat averaging and variable type on the reproducibility of echocardiographic measurements in children with chronic dilated cardiomyopathy. J. Am. Soc. Echocardiogr. 2012, 25, 842–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameli, M.; Miglioranza, M.H.; Magne, J.; Mandoli, G.E.; Benfari, G.; Ancona, R.; Sibilio, G.; Reskovic Luksic, V.; Dejan, D.; Griseli, L.; et al. Multicentric Atrial Strain COmparison between Two Different Modalities: MASCOT HIT Study. Diagnostics 2020, 10, 946. [Google Scholar] [CrossRef]
- James, A.T.; Corcoran, J.D.; Breatnach, C.R.; Franklin, O.; Mertens, L.; El-Khuffash, A. Longitudinal Assessment of Left and Right Myocardial Function in Preterm Infants Using Strain and Strain Rate Imaging. Neonatology 2016, 109, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Mertens, L.; Seri, I.; Marek, J.; Arlettaz, R.; Barker, P.; McNamara, P.; Moon-Grady, A.J.; Coon, P.D.; Noori, S.; Simpson, J.; et al. Targeted Neonatal Echocardiography in the Neonatal Intensive Care Unit: Practice guidelines and recommendations for training. Writing Group of the American Society of Echocardiography (ASE) in collaboration with the European Association of Echocardiography (EAE) and the Association for European Pediatric Cardiologists (AEPC). J. Am. Soc. Echocardiogr. 2011, 24, 1057–1078. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Appleton, C.P.; Gillebert, T.C.; Marino, P.N.; Oh, J.K.; Smiseth, O.A.; Waggoner, A.D.; Flachskampf, F.A.; Pellikka, P.A.; Evangelisa, A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur. J. Echocardiogr. 2009, 10, 165–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ficial, B.; Finnemore, A.E.; Cox, D.J.; Broadhouse, K.M.; Price, A.N.; Durighel, G.; Ekitzidou, G.; Hajnal, J.V.; Edwards, A.D.; Groves, A.M. Validation study of the accuracy of echocardiographic measurements of systemic blood flow volume in newborn infants. J. Am. Soc. Echocardiogr. 2013, 26, 1365–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Boode, W.P.; Kluckow, M.; McNamara, P.J.; Gupta, S. Role of neonatologist-performed echocardiography in the assessment and management of patent ductus arteriosus physiology in the newborn. Semin. Fetal. Neonatal. Med. 2018, 23, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Ficial, B.; Corsini, I.; Fiocchi, S.; Schena, F.; Capolupo, I.; Cerbo, R.M.; Condò, M.; Doni, D.; La Placa, S.; Porzio, S.; et al. Survey of PDA management in very low birth weight infants across Italy. Ital. J. Pediatr. 2020, 46, 22. [Google Scholar] [CrossRef] [Green Version]
- Ficial, B.; Bonafiglia, E.; Gangemi, A.; Clemente, M.; Cappelleri, A.; Corsini, I.; Biban, P. Impact of Aortic Diameter Measurements at Three Anatomical Landmarks on Left Ventricular Output Calculation in Neonates. J. Ultrasound. Med. 2021. [Google Scholar] [CrossRef]
- Ficial, B.; Bonafiglia, E.; Padovani, E.M.; Prioli, M.A.; Finnemore, A.E.; Cox, D.J.; Broadhouse, K.M.; Price, A.N.; Durighel, G.; Groves, A.M. A modified echocardiographic approach improves reliability of superior vena caval flow quantification. Arch. Dis. Child Fetal. Neonatal. Ed. 2017, 102, F7–F11. [Google Scholar] [CrossRef]
- Walter, S.D.; Eliasziw, M.; Donner, A. Sample size and optimal designs for reliability studies. Stat. Med. 1998, 17, 101–110. [Google Scholar] [CrossRef]
- Cantinotti, M.; Scalese, M.; Giordano, R.; Franchi, E.; Assanta, N.; Molinaro, S.; Iervasi, G.; Santoro, G.; Koestenberger, M.; Kutty, S. Left and Right Atrial Strain in Healthy Caucasian Children by Two-Dimensional Speckle-Tracking Echocardiography. J. Am. Soc. Echocardiogr. 2019, 32, 165–168.e181. [Google Scholar] [CrossRef] [Green Version]
- Ghelani, S.J.; Brown, D.W.; Kuebler, J.D.; Perrin, D.; Shakti, D.; Williams, D.N.; Marx, G.R.; Colan, S.D.; Geva, T.; Harrild, D.M. Left Atrial Volumes and Strain in Healthy Children Measured by Three-Dimensional Echocardiography: Normal Values and Maturational Changes. J. Am. Soc. Echocardiogr. 2018, 31, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Finnemore, A.; Groves, A. Physiology of the fetal and transitional circulation. Semin. Fetal. Neonatal. Med. 2015, 20, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Smiseth, O.A.; Inoue, K. The left atrium: A mirror of ventricular systolic and diastolic function. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 270–272. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Khan, F.H.; Remme, E.W.; Ohte, N.; García-Izquierdo, E.; Chetrit, M.; Moñivas-Palomero, V.; Mingo-Santos, S.; Andersen, Ø.; Gude, E.; et al. Determinants of left atrial reservoir and pump strain and use of atrial strain for evaluation of left ventricular filling pressure. Eur. Heart J. Cardiovasc. Imaging 2021. [Google Scholar] [CrossRef]
- Khoo, N.S.; Smallhorn, J.F.; Kaneko, S.; Kutty, S.; Altamirano, L.; Tham, E.B. The assessment of atrial function in single ventricle hearts from birth to Fontan: A speckle-tracking study by using strain and strain rate. J. Am. Soc. Echocardiogr. 2013, 26, 756–764. [Google Scholar] [CrossRef]
- Levy, P.T.; Holland, M.R.; Sekarski, T.J.; Hamvas, A.; Singh, G.K. Feasibility and reproducibility of systolic right ventricular strain measurement by speckle-tracking echocardiography in premature infants. J. Am. Soc. Echocardiogr. 2013, 26, 1201–1213. [Google Scholar] [CrossRef] [Green Version]
N = 30 | GA ≤ 32 Weeks (10 Neonates) | 32 < GA < 37 Weeks (10 Neonates) | GA ≥ 37 Weeks (10 Neonates) |
---|---|---|---|
Gestation (weeks) | 30.9 (26.4–32.0) | 34.4 (33.8–36.1) | 39.1 (38.1–40.2) |
Birth weight (g) | 1270 (660–1450) | 2075 (1840–2850) | 3230 (2800–3680) |
Female | 6 (60%) | 4 (40%) | 4 (40%) |
Cesarean delivery | 8 (80%) | 7 (70%) | 3 (30%) |
5-Min Apgar score | 8 (7–9) | 9 (8–10) | 10 (9–10) |
Postnatal age at scan (h) | 27 (24–48) | 33 (24–48) | 29 (24–48) |
Non-invasive respiratory support with FiO2 < 0.3 | 3 (30%) | 0 (0%) | 0 (0%) |
No respiratory support | 7 (70%) | 10 (100%) | 10 (100%) |
Comparison between Monoplane and Biplane LAS Measurements: | Bias (95% LOA) | ICC (95% CI) |
---|---|---|
LASr | −0.3 (−3.6 to 3) | 0.967 (0.929 to 0.985) |
LAScd | −0.4 (−3.4 to 2.6) | 0.959 (0.911 to 0.982) |
LASct | −0.5 (−3.5 to 3) | 0.937 (0.866 to 0.971) |
N = 90 | GA ≤ 32 Weeks (30 Neonates) | 32 < GA < 37 Weeks (30 Neonates) | GA ≥ 37 Weeks (30 Neonates) |
---|---|---|---|
Gestational age (week) | 30.4 (1.6) | 34.4 (1.2) | 39.6 (1.0) |
Birth weight (g) | 1385 (301) | 2148 (304) | 3348 (414) |
Female | 15 (50%) | 13 (43.3%) | 17 (56.6%) |
Cesarean delivery | 28 (93.3%) | 27 (90%) | 10 (33.3%) |
5-min Apgar score | 9 (7–10) | 9 (8–10) | 10 (8–10) |
First Echo at 24 h of Life | |||
Postnatal age (h) | 24.0 (0.3) | 24.1 (0.3) | 24.0 (0.4) |
Weight (g) | 1334 (286) | 2068 (301) | 3224 (412) |
Parenteral hydration (mL/kg/day) | 79 (18) | 56 (20) | NA |
Heart rate (bpm) | 145 (24) | 132 (14) | 125 (17) |
Systolic blood pressure (mmHg) | 64 (10) | 68 (6) | 74 (5) |
Mean blood pressure (mmHg) | 44 (8) | 45 (5) | 47 (4) |
Diastolic blood pressure (mmHg) | 36 (9) | 36 (8) | 34 (3) |
Non-invasive respiratory support | 23 (76.7%) | 0 (0%) | 0 (0%) |
No respiratory support | 7 (23.3%) | 30 (100%) | 30 (100%) |
Second Echo at 48 h of Life | |||
Postnatal age (h) | 48.1 (0.4) | 48.2 (0.5) | 48.4 (0.5) |
Weight (g) | 1283 (273) | 2049 (317) | 3172 (394) |
Parenteral hydration (mL/kg/day) | 96 (19) | 81 (18) | NA |
Heart rate (bpm) | 138 (19) | 130 (14) | 130 (15) |
Systolic blood pressure (mmHg) | 69 (12) | 70 (8) | 79 (5) |
Mean blood pressure (mmHg) | 48 (9) | 50 (4) | 49 (7) |
Diastolic blood pressure (mmHg) | 38 (9) | 39 (4) | 39 (4) |
Non-invasive respiratory support | 19 (63.3%) | 0 (0%) | 0 (0%) |
No respiratory support | 11 (36.7%) | 30 (100%) | 30 (100%) |
Intraobserver Reproducibility | Interobserver Reproducibility | |||
---|---|---|---|---|
Bias (95% LOA) | ICC (95% CI) | Bias (95% LOA) | ICC (95% CI) | |
LASr | −0.4 (−1.5 to 2.4) | 0.99 (0.967 to 0.998) | 0.6 (−3.3 to 4.5) | 0.936 (0.743 to 0.985) |
LAScd | 0.0 (−1.4 to 1.3) | 0.993 (0.974 to 0.998) | −0.3 (−3.3 to 3.9) | 0.938 (0.752 to 0.936) |
LASct | −0.7 (−2.9 to1.4) | 0.986 (0.944 to 0.996) | −0.6 (−6.1 to 4.8) | 0.871 (0.532 to 0.969) |
Timepoint 1 (24 ± 2 h) | Timepoint 2 (48 ± 2 h) | p | |
---|---|---|---|
Neonates with GA ≤ 32 Weeks | |||
LASr (%) | 32.3 ± 5 | 36.8 ± 5.6 | * |
LAScd (%) | −18.6 ± 21.4 | −20.0 ± 18.8 | |
LASct (%) | −11.4 ± 9.8 | −13.7 ± 17.4 | |
Neonates with GA between 32 and 37 Weeks | |||
LASr (%) | 33.3 ± 8.4 | 36.9 ± 13.4 | * |
LAScd (%) | −22.5 ± 11.4 | −21.2 ± 24.6 | |
LASct (%) | −10.7 ± 10 | −13.3 ± 8.4 | * |
Neonates with GA ≥ 37 Weeks | |||
LASr (%) | 33.3 ± 4.4 | 36.7 ± 4.8 | * |
LAScd (%) | −20.6 ± 11.4 | −21.6 ± 12.2 | |
LASct (%) | −13.4 ± 9.4 | −13.4 ± 10.4 |
Timepoint 1 (24 ± 2 h) | Timepoint 2 (48 ± 2 h) | p | |
---|---|---|---|
Neonates with GA ≤ 32 Weeks | |||
SF (%) | 31.1 (6.0) | 32.8 (9.9) | |
EF (%) | 54.9 (7.8) | 57.0 (7.2) | |
E (cm/s) | 43.4 (10.7) | 40.8 (10.5) | |
A (cm/s) | 53.4 (14.0) | 47.7 (7.6) | * |
E/A | 0.9 (0.2) | 0.9 (0.2) | |
e’ (cm/s) | 5.6 (1.6) | 6.0 (1.1) | |
a’ (cm/s) | 6.6 (2.7) | 6.1 (2.0) | |
E/e’ | 9.6 (3.4) | 7.5 (2.1) | * |
LVO (mL/kg/min) | 178 (64) | 195 (86) | |
GLS (%) | −19.8 (3.9) | −19.7 (4.0) | |
SR E (1/s) | 1.7 (0.4) | 1.9 (0.5) | |
SR A (1/s) | 2.1 (0.6) | 2.0 (0.3) | |
SR S (1/s) | −1.7 (0.2) | −1.7 (0.2) | |
Neonates with GA between 32 and 37 Weeks | |||
SF (%) | 32.4 (6.8) | 30.2 (10.0) | |
EF (%) | 57.9 (11.7) | 56.4 (8.9) | |
E (cm/s) | 48.8 (8.4) | 46.5 (9.0) | |
A (cm/s) | 51.2 (10.7) | 46.8 (8.4) | |
E/A | 0.96 (0.2) | 0.96 (0.2) | |
e’ (cm/s) | 6.1 (2.0) | 7.4 (4.9) | |
a’ (cm/s) | 6.4 (2.4) | 6.5 (2.2) | |
E/e’ | 8.5 (3.2) | 7.4 (3.1) | |
LVO (mL/kg/min) | 151 (44) | 152 (66) | |
GLS (%) | −19.5 (4.1) | −18.6 (8.6) | |
SR E (1/s) | 2.0 (0.5) | 2.2 (0.4) | |
SR A (1/s) | 1.8 (0.4) | 1.9 (0.4) | |
SR S (1/s) | −1.6 (0.3) | −1.6 (0.3) | |
Neonates with GA ≥ 37 Weeks | |||
SF (%) | 32.3 (4.9) | 33.6 (6.9) | |
EF (%) | 57.9 (4.6) | 56.5 (3.4) | |
E (cm/s) | 50.1 (11.9) | 49.9 (8.1) | |
A (cm/s) | 52.3 (11.3) | 50.9 (10.9) | |
E/A | 1.0 (0.2) | 1.0 (0.2) | |
e’ (cm/s) | 6.5 (1.1) | 6.0 (1.2) | |
a’ (cm/s) | 6.0 (1.7) | 6.2 (2.0) | |
E/e’ | 8.2 (2.0) | 8.7 (1.4) | |
LVO (mL/kg/min) | 150 (27) | 168 (29) | |
GLS (%) | −21.0 (2.7) | −22 (3.2) | |
SR E (1/s) | 1.9 (0.4) | 1.9 (0.4) | |
SR A (1/s) | 1.8 (0.4) | 1.7 (0.4) | |
SR S (1/s) | −1.6 (0.3) | −1.6 (0.3) |
GLS | E/e’ | |
---|---|---|
Timepoint 1 (24 ± 2 h) | ||
LASr | −0.270 * | −0.270 * |
LAScd | −0.162 | +0.290 * |
LASct | +0.05 | +0.117 |
Timepoint 2 (48 ± 2 h) | ||
LASr | −0.347 * | −0.351 * |
LAScd | +0.311 | −0.118 |
LASct | +0.230 | −0.027 |
Neonates with hsPDA | Neonates without hsPDA | p | |
---|---|---|---|
E (cm/s) | 48 (9.1) | 41 (11.5) | |
A (cm/s) | 58.3 (10.2) | 49.8 (15.5) | |
E/A | 0.87 (0.2) | 0.93 (0.2) | |
E/e’ | 8.9 (1.8) | 9.7 (4.2) | |
GLS (%) | −19 (1.7) | −18.7 (4.3) | |
LASr (%) | 30.4 (2.2) | 33.3 (2.2) | * |
LAScd (%) | −15.6 (4.1) | −16.2 (4.4) | |
LASct (%) | −8.2 (3.8) | −13.1 (4.6) | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ficial, B.; Corsini, I.; Clemente, M.; Cappelleri, A.; Remaschi, G.; Quer, L.; Urbani, G.; Sandrini, C.; Biban, P.; Dani, C.; et al. Feasibility, Reproducibility and Reference Ranges of Left Atrial Strain in Preterm and Term Neonates in the First 48 h of Life. Diagnostics 2022, 12, 350. https://doi.org/10.3390/diagnostics12020350
Ficial B, Corsini I, Clemente M, Cappelleri A, Remaschi G, Quer L, Urbani G, Sandrini C, Biban P, Dani C, et al. Feasibility, Reproducibility and Reference Ranges of Left Atrial Strain in Preterm and Term Neonates in the First 48 h of Life. Diagnostics. 2022; 12(2):350. https://doi.org/10.3390/diagnostics12020350
Chicago/Turabian StyleFicial, Benjamim, Iuri Corsini, Maria Clemente, Alessia Cappelleri, Giulia Remaschi, Laura Quer, Giulia Urbani, Camilla Sandrini, Paolo Biban, Carlo Dani, and et al. 2022. "Feasibility, Reproducibility and Reference Ranges of Left Atrial Strain in Preterm and Term Neonates in the First 48 h of Life" Diagnostics 12, no. 2: 350. https://doi.org/10.3390/diagnostics12020350
APA StyleFicial, B., Corsini, I., Clemente, M., Cappelleri, A., Remaschi, G., Quer, L., Urbani, G., Sandrini, C., Biban, P., Dani, C., & Benfari, G. (2022). Feasibility, Reproducibility and Reference Ranges of Left Atrial Strain in Preterm and Term Neonates in the First 48 h of Life. Diagnostics, 12(2), 350. https://doi.org/10.3390/diagnostics12020350